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A scheme for locally adaptive bandwidth selection is proposed which
sensitively shrinks the bandwidth of a kernel estimator at lowest density
regions such as the support boundary which are unknown to the statisti-
cian. In case of a Hölder continuous density, this locally minimax-optimal
bandwidth is shown to be smaller than the usual rate, even in case of ho-
mogeneous smoothness. Some new type of risk bound with respect to a
density-dependent standardized loss of this estimator is established. This
bound is fully non-asymptotic and allows to deduce convergence rates at
lowest density regions that can be substantially faster than n�1/2. It is
complemented by a weighted minimax lower bound which splits into two
regimes depending on the value of the density. The new estimator adapts
into the second regime, and it is shown that simultaneous adaptation into
the fastest regime is not possible in principle as long as the Hölder expo-
nent is unknown. Consequences on plug-in rules for support recovery are
worked out in detail. In contrast to those with classical density estimators,
the plug-in rules based on the new construction are minimax-optimal, up
to some logarithmic factor.

1. Introduction. Adaptation in the classical context of nonparametric func-
tion estimation in Gaussian white noise has been extensively studied in the statis-
tical literature. Since Nussbaum (1996) has established asymptotic equivalence in
Le Cam’s sense for the nonparametric models of density estimation and Gaussian
white noise, a rigorous framework is provided which allows to carry over specific
statistical results established for the Gaussian white noise model to the model
of density estimation, at least in dimension one. Density estimation is as one of
the most fundamental problems in statistics subject to a variety of recent stud-
ies, see e.g. Efromovich (2008), Gach, Nickl and Spokoiny (2013), Lepski (2013),
Birgé (2014) and Liu and Wong (2014). It has become clear that under the con-
ditions for the asymptotic equivalence to hold, minimax rates of convergence in
density estimation with respect to pointwise or mean integrated squared error loss
coincide with the optimal convergence rates obtained in the context of nonpara-
metric regression, and the procedures are typically identical on the level of ideas.
A main requisite on the density for Nussbaum’s (1996) asymptotic equivalence
is the assumption that it is compactly supported and uniformly bounded away
from zero on its support. If this assumption is violated, the density estimation
experiment may produce statistical features which do not have any analog in the
regression context. For instance, minimax estimation of non-compactly supported
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densities under L
p

-loss bears striking di↵erences to the compact case, see Juditsky
and Lambert-Lacroix (2004), Reynaud-Bouret, Rivoirard and Tuleau-Malot (2011)
and Goldenshluger and Lepski (2011, 2013). The minimax rates reflect an interplay
of the regularity parameters and the parameter of the loss function, an e↵ect which
is caused by the tail behavior of the densities under consideration. In this article we
recover such an exclusive e↵ect even for compactly supported densities. It turns out
that minimax estimation in regions where the density is small is possible with higher
accuracy although fewer observations are available, leading to rates which can be
substantially faster than n�1/2. Even more, this accuracy can be achieved to a large
extent without a priori knowledge of these regions by a kernel density estimator
with an adaptively selected bandwidth. As discovered by Butucea (2001), the exact
constant of normalization for pointwise adaptive univariate density estimation on
Sobolev classes depends increasingly on the density at the point of estimation itself.
The crucial observation is that the classical bias variance trade-o↵ does not reflect
the dependence of the kernel estimator’s variance on the density, which brings the
idea of an estimated variance in the bandwidth selection rule into play. Although
Butucea’s interesting result requires the point of estimation to be fixed, it suggests
that a potential gain in the rate might be possible at lowest density regions. In
this paper we investigate the problem of adaptation to lowest density regions un-
der anisotropic Hölder constraints. A bandwidth selection rule is introduced which
provably attains fast pointwise rates of convergence at lowest density regions. On
this way, new weighted lower risk bounds over anisotropic Hölder classes are estab-
lished, which split into two regimes depending on the value of the density. We show
that the new estimator uniformly improves the global minimax rate of convergence,
adapts to the second regime and finally that adaptation into the fastest regime is
not possible in principle if the density’s regularity is unknown. We identify the best
possible adaptive rate of convergence

n
� �̄

�̄+d

up to a logarithmic factor, where �̄ is the unnormalized harmonic mean of the d-
dimensional Hölder exponent.
This breakpoint determines the attainable speed of convergence of plug-in estima-
tors for functionals of the density where the quality of estimation at the boundary
is crucial. We exemplarily demonstrate it for the problem of support recovery. In
order to line up with the related results of Cuevas and Fraiman (1997) about plug-
in rules for support estimation and Rigollet and Vert (2009) on minimax analysis
of plug-in level-set estimators, we measure the performance of the plug-in support
estimator with respect to the global measure of symmetric di↵erence of sets under
the margin condition (Polonik (1995), see also Mammen and Tsybakov (1999) and
Tsybakov (2004)). In contrast to level set estimation however, plug-in rules for the
support functional possess sub-optimal convergence rates when the classical kernel
density estimator with minimax-optimal global bandwidth choice is used. We derive
the optimal minimax rate for support recovery

n� ��

�+d ,
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where � denotes the margin exponent, d the dimension and � the isotropic Hölder
exponent. Our result demonstrates that support recovery is possible with higher
accuracy than level set estimation as already conjectured by Tsybakov (1997). We
finally show that the performance of the plug-in support estimator resulting from
our new density estimator turns out to be minimax-optimal up to a logarithmic
factor.
The article is organized as follows. Section 2 contains the basic notations. In Sec-
tion 3 the adaptive density estimator is introduced, new weighted lower pointwise
risk bounds are derived and the optimality performance of the estimator is proved.
Section 4 addresses the important problem of density support estimation as an ex-
ample of a functional which substantially benefits from the new density estimator.
The proofs are deferred to Section 5 and the supplemental article [Patschkowski
and Rohde (2015)].

2. Preliminaries and notation. All our estimation procedures are based
on a sample of n real-valued d-dimensional random vectors X

i

= (X
i,1

, . . . , X
i,d

),
i = 1, . . . , n (d � 1 and if not stated otherwise n � 2), that are independent and
identically distributed according to some unknown probability measure P on Rd

with continuous Lebesgue density p. E⌦n

p

denotes the expectation with respect to
the n-fold product measure P⌦n. Let

p̂
n,h

(t) = p̂
n,h

(t,X
1

, . . . , X
n

) :=
1

n

n

X

i=1

K
h

(t�X
i

),

denote the kernel density estimator with d-dimensional bandwidth h = (h
1

, . . . , h
d

)
at point t 2 Rd, where

K
h

(x) :=

 

d

Y

i=1

h
i

!�1

K

✓

x
1

h
1

, . . . ,
x
d

h
d

◆

describes a rescaled kernel supported on
Q

d

i=1

[�h
i

, h
i

]. The kernel function K is
assumed to be compactly supported on [�1, 1]d and to be of product structure, i.e.

K(x
1

, . . . , x
d

) =
Q

d

i=1

K
i

(x
i

). Additionally, K
i,h

i

(x) := h�1

i

K
i

(x/h
i

), i = 1, . . . , d.
The components K

i

are assumed to integrate to one and to be continuous on its
support with K

i

(0) > 0. If not stated otherwise, they are symmetric and non-
negative, implying that the kernel is of first order. Recall that K is said to be
of kth order, k = (k

1

, ..., k
d

) 2 Nd, if the functions x 7! xj

i

i

K
i

(x
i

), j
i

2 N with
1  j

i

 k
i

, i = 1, . . . , d, satisfy
Z

xj

i

i

K
i

(x
i

)d�(x
i

) = 0,

where �d denotes the Lebesgue measure on Rd throughout the article. The Lebesgue
measure on R is denoted by �. For any function f : Rd ! R and x=(x

1

, . . . , x
d

)2Rd

we define the univariate functions

f
i,x

: R �! R
y 7�! f(x

1

, . . . , x
i�1

, y, x
i+1

, . . . , x
d

).
(2.1)
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and denote by P
(f

i,x

)

y,l

the Taylor polynomial

P
(f

i,x

)

y,l

(·) :=
l

X

k=0

f (k)

i,x

(y)

k!
(·� y)k(2.2)

of f
i,x

at the point y 2 R of degree l (whenever it exists). Let H
d

(�, L) be the
anisotropic Hölder class with regularity parameters (�, L), i.e. any function f be-
longing to this class fulfills for all y, y0 2 R the inequality

sup
x2Rd

|f
i,x

(y)� f
i,x

(y0)|  L |y � y0|�i

for those i 2 {1, . . . , d} with �
i

 1, and in case �
i

> 1 admits derivates with
respect to its i-th coordinate up to the order b�

i

c := max{n 2 N : n < �
i

}, such
that the approximation by the Taylor polynomial satisfies

sup
x2Rd

�

�

�

f
i,x

(y)� P
(f

i,x

)

y

0
,b�

i

c(y)
�

�

�

 L |y � y0|�i for all y, y0 2 R.

For adaptation issues, it is assumed that � = (�
1

, . . . ,�
d

) 2
Q

d

i=1

[�⇤
i,l

,�⇤
i,u

] and
L 2 [L⇤

l

, L⇤
u

] for some positive constants �⇤
i,l

< �⇤
i,u

, i = 1, ..., d, and L⇤
l

< L⇤
u

.
For short, we simply write �⇤ and L⇤ for the couples (�⇤

l

,�⇤
u

) and (L⇤
l

, L⇤
u

), and

finally R(�⇤, L⇤) for the rectangle
Q

d

i=1

[�⇤
i,l

,�⇤
i,u

] ⇥ [L⇤
l

, L⇤
u

] . It turns out that all
rates of convergence emerging in an anisotropic setting involve the unnormalized
harmonic mean of the smoothness parameters

�̄ :=

 

d

X

i=1

1

�
i

!�1

.

To focus on rates only and for ease of notation we denote by c positive constants that
may change from line to line. All relevant constants will be numbered consecutively.
Dependencies of the constants on the functional classes’ parameters are always
indicated and it should be kept in mind that the constants can potentially depend
on the chosen kernel, the loss function and the dimension as well. Furthermore,
P

d

(�, L) denotes the set of all probability densities in H
d

(�, L). It is well-known
that any function f 2 P

d

(�, L) is uniformly bounded by a constant

c
1

(�, L) = sup{kpk
sup

: p 2 P
d

(�, L)}(2.3)

depending on the regularity parameters only.

3. New lower risk bounds, adaptation to lowest density regions.
The fully nonparametric problem of estimating a density p at some given point
t = (t

1

, . . . , t
d

) has quite a long history in the statistical literature and has been
extensively studied. Considering di↵erent estimators, a very natural question is
whether there is an estimator that is optimal and how optimality can be exactly
described. A common concept of optimality is stated in a minimax framework.
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An estimator T
n

(t) = T
n

(t,X
1

, . . . , X
n

) is called minimax-optimal over the class
P

d

(�, L) if its risk matches the minimax risk

inf
T

n

(t)

sup
p2P

d

(�,L)

E⌦n

p

|T
n

(t)� p(t)|r

for some r � 1, where the infimum is taken over all estimators. However, the mini-
max approach is often rated as quite pessimistic as it aims at finding an estimator
which performs best in the worst situation. Di↵erent in spirit is the oracle approach.
Within a prespecified class T of estimators, it aims at finding for any individual
density the estimator T̂

n

2 T which is optimal, leading to oracle inequalities of the
form

E⌦n

p

|T̂
n

(t)� p(t)|r  c inf
T

n

2T
E⌦n

p

|T
n

(t)� p(t)|r + R
n

with a remainder term R
n

depending on the class T , the underlying density p
and the sample size only. Besides having the drawback that there is no notion
of optimality judging about the adequateness of the estimator’s class, an equally
severe problem may be caused by the fact that the remainder term is uniform in T
and thus a worst case remainder. The latter is responsible for the fact that our fast
convergence rates cannot be deduced from the oracle inequality in Goldenshluger
and Lepski (2013), the order for their remainder being unimprovable, however. In
this article, we introduce the notion of best possible p-dependent minimax speed of
convergence  n

p(t),�,L

within the function class P
d

(�, L) and aim at constructing

an estimator T
n

(t) bounding the risk

sup
p2P

d

(�,L)

sup
t2Rd

:

p(t)>0

E⌦n

p

 

|T
n

(t)� p(t)|
 n

p(t),�,L

!

r

uniformly over a range of parameters (�, L). Firstly, this requires a suitable defini-
tion of the quantity  n

p(t),�,L

.

3.1. New weighted lower risk bound. As we want to work out the explicit
dependence on the value of the density, it seems suitable to fix an arbitrary constant
" 2 (0, 1), and to pick out maximal not necessarily disjoint subsets U

�

of P
d

(�, L)
with the following properties: [U

�

= {p 2 P
d

(�, L) : p(t) > 0}, and pairwise
ratios p(t)/q(t), p, q 2 U

�

, are bounded away from zero by " and from infinity by
1/". This motivates the construction of the subsequent theorem.

Theorem 3.1 (New weighted lower risk bound). For any � = (�
1

, . . . ,�
d

) with
0 < �

i

 2, i = 1, . . . , d, L > 0 and r � 1, there exist constants c
2

(�, L, r) > 0 and
n
0

(�, L) 2 N, such that for every t 2 R the pointwise minimax risk over Hölder-
smooth densities is bounded from below by

inf
0<�c1(�,L)

inf
T

n

(t)

sup
p2P

d

(�,L):

�/2p(t)�

E⌦n

p

✓

|T
n

(t)� p(t)|
 n

p(t),�

◆

r

� c
2

(�, L, r)

for all n � n
0

(�, L), where  n

x,�

:= x ^ (x/n)
�̄

2�̄+1 and c
1

(�, L) defined in (2.3).
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Remark 3.2. (i) The lower bound of the above theorem is attained by the oracle
estimator

T
n

(t) := p̂
n,h

n,�

(t) ·
�

� � n�¯

�/(

¯

�+1)

 

(3.1)

with h
n,�,i

= (�/n)
1

2�̄+1

1
�

i . Hence,  n

p(t),�

cannot be improved in principle. We re-
fer to it in the sequel as p-dependent speed of convergence within the functional
class P

d

(�, L).

(ii) Note that for the classical minimax rate n�¯

�/(2

¯

�+1),

lim
n!1

inf
0<�c1(�,L)

inf
T

n

(t)

sup
p2P

d

(�,L):

�/2p(t)�

E⌦n

p

✓

|T
n

(t)� p(t)|
n�¯

�/(2

¯

�+1)

◆

r

= 0

as a direct consequence of the subsequently formulated Theorem 3.3. The p-dependent
speed of convergence  n

p(t),�

is of substantially smaller order than the classical one
along a shrinking neighborhood of lowest density regions.

Note that the exponent �̄/(2�̄ + 1) implicitly depends on the dimension d and
coincides in case of isotropic smoothness with the well-known exponent �/(2�+d).
It splits into two regimes which are listed and specified in the following table.

Regime Rate  n

x,�

(i) x  n

� �̄

�̄+1
x

(ii) n

� �̄

�̄+1
< x  c1(�, L)

�
x

n

� �̄

2�̄+1

The worst p-dependent speed of convergence within P
d

(�, L), namely

sup
0<xc1(�,L)

 n

x,�

,

reveals the classical minimax rate n�¯

�/(2

¯

�+1). The fastest rate in regime (ii) is of
the order

n�¯

�/(

¯

�+1) for x = n�¯

�/(

¯

�+1),

which is substantially smaller than the classical minimax risk bound. Figure 1
visualizes the split-up into the regimes and relates the new p-dependent rate of
Theorem 3.1 to the classical minimax rate for di↵erent sample sizes from n = 50
to n = 800.
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Fig 1. New lower bound (solid line), Classical lower bound (dashed line)

It becomes apparent from the proof that the lower bound actually even holds for
the subset of (�, L)-regular densities with compact support. At first glance however,
the new lower bound is of theoretical value only, because the value of a density at
some point to be estimated is unknown. The question is whether it is possible to
improve the local rate of convergence of an estimator without prior knowledge in
regions where fewer observations are available, that is, to which extent it is possible
to adapt to lowest density regions.

3.2. Adaptation to lowest density regions. Adaptation is an important chal-
lenge in nonparametric estimation. Lepski (1990) introduced a sequential multiple
testing procedure for bandwidth selection of kernel estimators in the Gaussian white
noise model. It has been widely used and refined for a variety of adaptation is-
sues over the last two decades. For recent references, see Giné and Nickl (2010),
Chichignoud (2012), Goldenshluger and Lepski (2011, 2013), Chichignoud and Led-
erer (2014), Jirak, Meister and Reiß (2014), Dattner, Reiß and Trabs (2014), and
Bertin, Lacour and Rivoirard (2014) among many others. Our subsequently con-
structed estimator is based on the anisotropic bandwidth selection procedure of
Kerkyacharian, Lepski and Picard (2001), which has been developed in the Gaus-
sian white noise model, but incorporates the new approach of adaptation to lowest
density regions. Although Goldenshluger and Lepski (2013) pursue a similar goal
via some kind of empirical risk minimization, their oracle inequality provides no
faster rates than n�1/2 times the average of the density over the unit cube around
the point under consideration. They deduce from it adaptive minimax rates of con-
vergence with respect to the L

p

-risk over anisotropic Nikol’skii classes for density
estimation on Rd. As concerns adaptation to lowest density regions such as the
unknown support boundary, this oracle inequality is not su�cient as no faster rates
than n�1/2 can be deduced from it, and it is not clear whether these faster rates
are attainable for their estimator in principle. Besides having the drawback that
there is no notion of optimality judging about the adequateness of the estimator’s
class, an equally severe problem of the oracle approach may be caused by the fact
that the remainder term is uniform in the estimator’s class and thus a worst case
remainder. The latter is responsible for the fact that our fast convergence rates
cannot be deduced from the oracle inequality in Goldenshluger and Lepski (2013),
the order for their remainder being unimprovable, however. It raises the question
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whether this imposes a fundamental limit on the possible range of adaptation. We
shall demonstrate in what follows that it is even possible to attain substantially
faster rates, indeed that adaptation to the whole second regime of Theorem 3.1 is
an achievable goal, and that this describes precisely the full range where adaptation
to lowest density regions is possible as long as the density’s regularity is unknown.
Our procedure uses kernel density estimators p̂

n,h

(t) with multivariate bandwidths
h = (h

1

, . . . , h
d

), which are able to deal with di↵erent degrees of smoothness in
di↵erent coordinate directions. Note that optimal bandwidths for estimation of
Hölder-continuous densities are typically derived by a bias-variance trade-o↵ bal-
ancing the bias bound

�

�p(t)� E⌦n

p

p̂
n,h

(t)
�

�  c(�, L) ·
d

X

i=1

h�

i

i

,(3.2)

see (5.3) in Section 5 for details, against the rough variance bound

Var(p̂
n,h

(t))  c
1

(�, L)kKk2
2

n
Q

d

i=1

h
i

,(3.3)

where k·k
2

is the Euclidean norm (on L
2

(�d)). This bound leads to suboptimal rates
of convergence whenever the density is small since it is not able to capture small
values of p in a small neighborhood around t in contrast to the sharp convolution
bound

Var(p̂
n,h

(t))  1

n
((K

h

)2 ⇤ p)(t) =: �2

t

(h).(3.4)

Balancing (3.2) and (3.4) leads to smaller bandwidths at lowest density regions as
compared to bandwidths resulting from the classical bias-variance trade-o↵ between
(3.2) and (3.3). The convolution bound (3.4) is unknown and it is natural to replace
it by its unbiased empirical version

�̃2

t

(h) :=
1

n2

Q

d

i=1

h2

i

n

X

i=1

K2

✓

t�X
i

h

◆

.

However, �̃2

t

(h) concentrates extremely poorly around its mean if the bandwidth h
is small, which is just the important situation at lowest density regions. Precisely,
Bernstein’s inequality provides the bound

P⌦n

✓

?

?

?

?

�̃2

t

(h)

�2

t

(h)
� 1

?

?

?

?

� ⌘

◆

 2 exp

 

� 3⌘2

2(3 + 2⌘)kKk2
sup

�2

t

(h) · n2

d

Y

i=1

h2

i

!

,(3.5)

which suggests to study the following truncated versions instead

�2

t,trunc

(h) := max

(

log2 n

n2

Q

d

i=1

h2

i

, �2

t

(h)

)

,

�̃2

t,trunc

(h) := max

(

log2 n

n2

Q

d

i=1

h2

i

, �̃2

t

(h)

)

.

(3.6)
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Without the logarithmic term, the truncation level ensures tightness of the family
of random variables �̃2

t,trunc

(h)/�2

t,trunc

(h), because the exponent in (3.5) remains a
non-degenerate function in ⌘. The logarithmic term is introduced in order to guar-
antee su�cient concentration of sup

h

|1� �̃2

t,trunc

(h)/�2

t,trunc

(h)|.

Construction of the adaptive estimator. Our estimation procedure is devel-
oped in the anisotropic setting, in which neither the variance bound nor the bias
bound provides an immediate monotone behavior in the bandwidth. Unlike in
the univariate or isotropic multivariate case, Lepski’s (1990) idea of mimicking
the bias-variance trade-o↵ fails. Consequently, our estimation scheme imitates the
anisotropic procedure of Kerkyacharian, Lepski and Picard (2001) and Klutchniko↵
(2005), developed in the Gaussian white noise model, with the following changes.
Firstly, their threshold given by the variance bound in the Gaussian white noise set-
ting is replaced essentially with the truncated estimate in (3.6), which is sensitive to
small values of the density. Moreover, it is crucial in the anisotropic setting that our
procedure uses an ordering of bandwidths according to these estimated variances
instead of an ordering according to the product of the bandwidth’s components.
The bandwidth selection scheme chooses a bandwidth in the set

H :=

(

h = (h
1

, . . . , h
d

) 2
d

Y

i=1

(0, h
max,i

] :
d

Y

i=1

h
i

� log2 n

n

)

,

where for simplicity we set (h
max,1

, . . . , h
max,d

) = (1, . . . , 1). Let furthermore

J :=

(

j = (j
1

, . . . , j
d

) 2 Nd

0

:
d

X

i=1

j
i


�

log
2

✓

n

log2 n

◆⌫

)

be a set of indices and denote by

G :=
n

(2�j1 , . . . , 2�j

d) : j 2 J
o

⇢ H

the corresponding dyadic grid of bandwidths, that serves as a discretization for the
multiple testing problem in Lepski’s selection rule. For ease of notation, we abbre-
viate dependences on the bandwidth (2�j1 , . . . , 2�j

d) by the multiindex j. Next,
with j ^m denoting the minimum by component, the set of admissible bandwidths
is defined as

A = A(t) :=
n

j 2 J : |p̂
n,j^m

(t)� p̂
n,m

(t)|  c
14

q

�̂2

t

(m) log n

for all m 2 J with �̂2

t

(m) � �̂2

t

(j)
o

,
(3.7)

with a properly chosen constant c
14

= c
14

(�⇤, L⇤) satisfying the constraint (5.17)
appearing in the proof of Theorem 3.3. Here, both the threshold and the ordering
of bandwidths are defined via the truncated variance estimator

�̂2

t

(h) :=min

(

�̃2

t,trunc

(h),
kKk2

2

c
1

n
Q

d

i=1

h
i

)
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=min

(

max

"

log2 n

n2

Q

d

i=1

h2

i

,
1

n2

Q

d

i=1

h2

i

n

X

i=1

K2

✓

t�X
i

h

◆

#

,
kKk2

2

c
1

n
Q

d

i=1

h
i

)

,(3.8)

where c
1

= c
1

(�⇤, L⇤) is an upper bound on c
1

(�, L) in the range of adaptation.
The threshold in (3.7) could be modified by a further logarithmic factor to avoid
the dependence of the constants on the range of adaptation. Recall again that this
refined estimated threshold is crucial for our estimation scheme. The procedure
selects the bandwidth among all admissible bandwidths with

ĵ = ĵ(t) 2 argmin
j2A

�̂2

t

(j).(3.9)

Finally,

p̂
n

:= p̂
n,

ˆ

j

^ c
1

defines the adaptive estimator. In case of isotropic Hölder smoothness it is su�cient
to restrict the grid to bandwidths with equal components, and we even simplify the
method by replacing the ordering by estimated variances in condition (3.8) ”for all
m 2 J with �̂2

t

(m) � �̂2

t

(j)” by the classical order ”for all m 2 J with m � j” as
the componentwise ordering is the same for all components.

Performance of the adaptive estimator. Clearly, the truncation in the threshold
imposes serious limitations to which extent adaptation to lowest densities regions
is possible. However, a careful analysis of the ratio

sup
h

?

?

?

?

?

�̃2

t,trunc

(h)

�2

t,trunc

(h)
� 1

?

?

?

?

?

rather than the di↵erence sup
h

|�̃2

t,trunc

(h)��2

t,trunc

(h)| allows to prove indeed that
adaptation is possible in the whole second regime.

Theorem 3.3 (New upper bound). For any rectangle R(�⇤, L⇤) with [�⇤
i,l

,�⇤
i,u

] ⇢
(0, 2], [L⇤

l

, L⇤
u

] ⇢ (0,1) and r � 1, there exists a constant c
3

(�⇤, L⇤, r) > 0,
such that the new density estimator p̂

n

with adaptively chosen bandwidth according
to (3.9) satisfies

sup
(�,L)2R(�

⇤
,L

⇤
)

sup
p2P

d

(�,L)

sup
t2Rd

E⌦n

p

✓

|p̂
n

(t)� p(t)|
 ̃n

p(t),�

◆

r

 c
3

(�⇤, L⇤, r),

where

 ̃n

x,�

:=



n
� �̄

�̄+1 _
�

x/n
�

�̄

2�̄+1

�

(log n)3/2.

The p-dependent speed of convergence  ̃n

p(t),�

(except the logarithmic factor)
is plotted in Figure 2, which shows the superiority of the new estimator in low
density regions. It also depicts that the new estimator is able to adapt to regime
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(ii) up to a logarithmic factor, and that it improves the rate of convergence signifi-
cantly in both regimes as compared to the classical minimax rate. Besides, although
not emphasized before, p̂

n

is fully adaptive to the smoothness in terms of Hölder
regularity.

Fig 2. New upper bound without logarithmic factor (solid line), Classical upper bound
(dashed line)

As  and  ̃ coincide (up to a logarithmic factor) in regime (ii) but di↵er in
regime (i), the question arises whether the breakpoint

n�¯

�/(

¯

�+1)

describes the fundamental bound on the range of adaptation to lowest density
regions. The following result shows that this is indeed the case as long as the
density’s regularity is unknown.

Theorem 3.4. For any �
2

< �
1

 2 and any sequence (⇢(n)) converging to
infinity with

⇢(n) = O
⇣

n
�1��2

(2�1+1)(�2+1) (log n)�3/2

⌘

,

there exist L
1

, L
2

> 0 and densities p
n

2 P
1

(�
1

, L
1

) with

n��1/(�1+1)

p
n

(t)
= o(1)

as n ! 1, such that for every estimator T
n

(t) satisfying

E⌦n

p

n

|T
n

(t)� p
n

(t)|  c
3

(�⇤
1

, L⇤
1

, r)

✓

p
n

(t)

n

◆

�1
2�1+1

(log n)3/2,(3.10)

there exist n
0

(�
1

,�
2

, L
1

, L
2

) and a constant c > 0 both independent of t, with

sup
q2P

d

(�2,L2):

q(t)c(n)·n
� �2

�2+1

E⌦n

q

|T
n

(t)� q(t)|

n� �2
�2+1

� c

for all n � n
0

(�
1

,�
2

, L
1

, L
2

) and any sequence (c(n)) with c(n) � ⇢(n)�1.
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The following consideration provides a heuristic reason why adaptation to re-
gime (i) is not possible in principle. Consider the univariate and Lipschitz contin-
uous triangular density p : R ! R, x 7! (1 � |x|) {|x|  1}. If �

n

< n��/(�+1) =
n�1/2, the expected number of observations in {p  �

n

} is less than one. Without
the knowledge of the regularity, it is intuitively clear that it is impossible to predict
whether local averaging is preferable to just estimating by zero.

3.2.1. Adaptation to lowest density regions when � is known. If the Hölder-
exponent � 2 (0, 2] is known to the statistician, the form of the oracle estimator
(3.1) suggests that some further improvement in regime (i) might be possible by
considering the truncated estimator

p̂
n

(·) ·
n

p̂
n

(·) � n
� �̄

�̄+1 (log n)⇣1
o

(3.11)

for some suitable constant ⇣
1

> 0. In fact, elementary algebra shows that this
threshold does not a↵ect the performance in regime (ii) (up to a logarithmic term).
For isotropic Hölder smoothness, we prove in the supplemental article [Patschkowski
and Rohde (2015)] that the estimator (3.11) indeed attains the p-dependent speed
of convergence

#n
p(t),�

=  n

p(t),�

_ n�⇣2

up to logarithmic terms, with  n

x,�

as defined in Theorem 3.1. Here, the constant
⇣
2

can be made arbitrarily large by enlarging c
14

and ⇣
1

. That is, if the Hölder
exponent is known, adaptation to regime (i) is possible to a large extent.

3.2.2. Extension to � > 2. As concerns an extension of Theorem 3.1 and The-
orem 3.3 to arbitrary � > 2, Lemma 5.1 (ii) demonstrates that the variance of the
kernel density estimator never falls below the reference speed of convergence  ̃n

p(t),�

.
However, it can be substantially larger, resulting in a lower speed of convergence
as compared to the reference speed of convergence. Therefore, it seems necessary
to introduce a p-dependent speed of convergence which does not incorporate the
value of the density p(t) only but also information on the derivatives. An exception
of outstanding importance are points t close to the support boundary, because not
only p(t) itself but also all derivatives are necessarily small. Theorem A.1, which
is deferred to the supplemental article [Patschkowski and Rohde (2015)], reveals
that our procedure then even reaches the fast adaptive speed of convergence at the
support boundary for every � > 0. In fact, as � ! 1, adaptive rates arbitrarily
close to n�1 can be attained.

4. Application to support recovery. The phenomenon of faster rates of
convergence in regions where the density is small may have strong consequences on
plug-in rules for certain functionals of the density. As an application of the results
of Section 3, we investigate the support plug-in functional. Support estimation has
a long history in the statistical literature. Ge↵roy (1964) and Rényi and Sulanke
(1963, 1964) are cited as pioneering reference most commonly, followed by further
contributions of Chevalier (1976), Devroye and Wise (1980), Grenander (1981),
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Hall (1982), Groeneboom (1988), Tsybakov (1989, 1991, 1997), Cuevas (1990), Ko-
rostelev and Tsybakov (1993), Härdle, Park and Tsybakov (1995), Mammen and
Tsybakov (1995), Cuevas and Fraiman (1997), Gayraud (1997), Hall, Nussbaum
and Stern (1997), Báıllo, Cuevas and Justel (2000), Cuevas and Rodŕıguez-Casal
(2004), Klemelä (2004), and Biau, Cadre and Pelletier (2008), Biau, Cadre, Mason
and Pelletier (2009), Brunel (2013), and Cholaquidis, Cuevas and Fraiman (2014)
as a by far non-exhaustive list of contributions. In order to demonstrate the sub-
stantial improvement in the rates of convergence for the plug-in support estimator
based on the new density estimator, we first establish minimax lower bounds for
support estimation under the margin condition which have not been provided in
the literature so far. Theorem 4.4 and Theorem 4.5 then reveal that the minimax
rates for the support estimation problem are substantially faster than for the level
set estimation problem, as already conjectured in Tsybakov (1997). In fact, in the
level set estimation framework, when � and L are given, the classical choice of a
bandwidth of order n�1/(2�+d) in case of isotropic Hölder smoothness leads directly
to a minimax-optimal plug-in level set estimator as long as the o↵set is suitably
chosen (Rigollet and Vert 2009). In contrast, this bandwidth produces suboptimal
rates in the support estimation problem, no matter how the o↵set is chosen. At first
sight, this makes the plug-in rule as a by-product of density estimation inappropri-
ate. We shall demonstrate subsequently, however, that our new density estimator
avoids this problem. In order to line up with the results of Cuevas and Fraiman
(1997) and Rigollet and Vert (2009), we work essentially under the same type of
conditions. The distance between two subsets A and B of Rd is measured by

d
�

(A,B) := �d(A�B),

where � denotes the symmetric di↵erence of sets

A�B := (A \B) [ (B \A).

Subsequently, Ā denotes the topological closure of a set A ⇢ Rd. We impose the
following condition, which characterizes the complexity of the problem. It was in-
troduced by Polonik (1995), see also Mammen and Tsybakov (1999), Tsybakov
(2004) and Cuevas and Fraiman (1997), where the latter authors referred to it as
sharpness order.

Definition 4.1 (Margin condition). A density p : Rd ! R is said to satisfy
the -margin condition with exponent � > 0, if

�d
⇣

{x 2 Rd | 0 < p(x)  "}
⌘

 
2

· "�

for all 0 < "  
1

, where  = (
1

,
2

) 2 (0,1)2.

In particular, �d(@�
p

) = 0 for every density which satisfies the margin condition,
where @�

p

denotes the boundary of the support �
p

. To highlight the line of ideas,
we restrict the application to the important special case of isotropic smoothness.
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Let H iso

d

(�, L) denote the isotropic Hölder class with one-dimensional parameters
� and L, which is for 0 < �  1 defined by

H iso

d

(�, L) :=
n

f : Rd ! R : |f(x)� f(y)|  L kx� yk�
2

for all x, y 2 Rd

o

.

For � > 1 it is defined as the set of all functions f : Rd ! R that are b�c times
continuously di↵erentiable such that the following property is satisfied

�

�

�

f(x)� P (f)

y,b�c(x)
�

�

�

 L kx� yk�
2

for all x, y 2 Rd,(4.1)

where

P (f)

y,l

(x) :=
X

|k|l

Dkf(y)

k
1

! · · · k
d

!
(x

1

� y
1

)k1 · · · (x
d

� y
d

)kd

with |k| :=
P

d

i=1

k
i

and the partial di↵erential operator

Dk :=
@|k|

@xk1
1

. . . @xk

d

d

denotes the multivariate Taylor polynomial of f at the point y 2 Rd up to the l-th
order, see also (2.2) for the coinciding definition in one dimension. Correspondingly,
Piso

d

(�, L) denotes the set of probability densities contained in H iso

d

(�, L). The
following lemma demonstrates, that not every combination of margin exponent and
Hölder continuity is possible.

Lemma 4.2. There exists a compactly supported density in Piso

d

(�, L) satisfying
the margin condition to the exponent � if and only if ��  1.

4.1. Lower risk bounds for support recovery. For any subset A ⇢ Rd and
" > 0 the closed outer parallel set of A at distance " > 0 is given by

A" :=
n

x 2 Rd : inf
y2A

kx� yk
2

 "
o

and the closed inner "-parallel set by A�" := ((Ac)")
c

. Here, k · k
2

denotes the
Euclidean norm (on Rd). A support satisfying

0 < lim inf
"!0

�d(�
p

\ ��"

p

)

�d(�"

p

\ �
p

)
 lim sup

"!0

�d(�
p

\ ��"

p

)

�d(�"

p

\ �
p

)
< 1

is referred to as boundary regular support. Note that a support is always boundary
regular if its Minkowski surface measure is well defined (in the sense that outer
and inner Minkowski content exist and coincide). The minimax lower bound is
formulated under the assumption of �

p

fulfilling the following complexity condition
(to the exponent µ = ��), which even slightly weakens the assumption of boundary
regularity under the margin condition.
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Definition 4.3 (Complexity condition). A set A is said to satisfy the ⇠-
complexity condition to the exponent µ > 0 if for all 0 < "  ⇠

1

there exists a
disjoint decomposition A = A

1,"

[A
2,"

such that

�d(A"

1,"

\A
1,"

) _ �d(A
2,"

)

"µ
 ⇠

2

,

where ⇠ = (⇠
1

, ⇠
2

) 2 (0,1)2.

Note that a boundary regular support of a (�, L)-Hölder-smooth density satisfy-
ing the margin condition to the exponent � fulfills the complexity condition to the
exponent µ � �� for the canonical decomposition �

p

= �
p

[ ;. Let us finally relate
the margin condition 4.1 to the two-sided margin condition

�d{x 2 Rd : 0 < |p(x)� �|  "}  c "� ,

which is imposed in the context of density level set estimation for some level � > 0,
c.f. Rigollet and Vert (2009). If �

p,�

= {x 2 Rd : p(x) > �} denotes the �-level set
at level � > 0, the two-sided (, �)-margin condition provides the bound

�d
�

�"

p,�

\ �
p,�

�

 
2

(c"�^1)�(4.2)

for all "  
1

, where c = L for �  1 and c = sup
x2Rd

krp(x)k
2

for � > 1. In
contrast, the margin condition at � = 0 provides no bound on �d(�"

p

\ �
p

). The
complexity condition is a mild assumption which guarantees such type of bound.
For �  1, the relation (4.2) for � = 0 implies the complexity condition to the
exponent µ = ��. Note that the typical situation is indeed

�d(�"

p

\ �
p

)/" = O(1) and "/�d(�"

p

\ �
p

) = O(1)

as " ! 0. For instance, this holds true for any finite union of convex sets in Rd as
a consequence of the isoperimetric inequality (Theorem III.2.2, Chavel 2001) and
Theorem 3.1 (Bhattacharya and Rango Rao 1976). If it exists, the limit

lim
"&0

�d(�"

p

\ �
p

)

"

corresponds to the surface measure of the boundary if the latter is su�ciently
regular. Due to the relation ��  1 by Lemma 4.2 and the decomposition into
suitable subsets, the complexity condition relaxes this regularity condition on the
surface area substantially. The subset of Piso

d

(�, L) consisting of densities satisfying
the -margin condition to the exponent � with support fulfilling the ⇠-complexity
condition to the exponent µ = �� is denoted by Piso

d

(�, L, �,, ⇠).

Theorem 4.4 (Minimax lower bound). For any � > 0 and any margin expo-
nent � > 0 with ��  1, there exist c

4

(�, L) > 0, n
0

(�, L, �) 2 N and parameters
, ⇠ 2 (0,1)2, such that the minimax risk with respect to the measure of symmetric
di↵erence of sets is bounded from below by

inf
ˆ

�

n

sup
p2Piso

d

(�,L,�,,⇠)

E⌦n

p

h

d
�

(�̂
n

,�
p

)
i

� c
4

(�, L) · n� ��

�+d

for all n � n
0

(�, L, �).
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4.2. Minimax-optimal plug-in rule. We use the plug-in support estimator
with the kernel density estimator of Section 3. This density estimator improves
the rate of convergence in particular at the support boundary. For the isotropic
procedure, the index set J is restricted to bandwidths coinciding in all components.
We even simplify the ordering by estimated variances in condition (3.8) ”for all
m 2 J with �̂2

t

(m) � �̂2

t

(j)” by the classical order ”for all m 2 J with m � j”
as Lemma 5.2 shows that the relevant orderings are equivalent up to multiplicative
constants for 0 < �  2. Furthermore, under isotropic smoothness it is natural to
use a rotation invariant kernel, i.e. K(x) = K̃(kxk

2

) with K̃ supported on [0, 1] and
continuous on its support with K̃(0) > 0. The following theorem shows that the
corresponding plug-in rule

�̂
n

= {x 2 Rd : p̂
n

(x) > ↵
n

}

with o↵set level

↵
n

:= c
5

(�, L)

✓

(log n)3/2

n

◆

�

�+d

p

log n(4.3)

and constant c
5

(�, L) specified in the proof of the following theorem, is able to
recover the support with minimax optimal rate, up to a logarithmic factor.

Theorem 4.5 (Uniform upper bound). For any �  2, � > 0 with ��  1 and
, ⇠ 2 (0,1)2, there exist a constant c

6

= c
6

(�, L, �,, ⇠) > 0 and n
0

2 N, such that

sup
p2Piso

d

(�,L,�,,⇠)

E⌦n

p

h

d
�

⇣

�
p

, �̂
n

⌘i

 c
6

· n� ��

�+d (log n)2�

for all n � n
0

.

As the rate already indicates, it is getting apparent from the proof that this
result can be established only if the minimax optimal density estimator actually
adapts up to the fastest rate in regime (ii).

Remark 4.6. The results show the simultaneous optimality of the adaptive den-
sity estimator of Section 3 in the plug-in rule for support estimation. Correspond-
ingly, they are restricted to �  2. Whether the rate n���/(�+d) is minimax optimal
for � > 2 provided ��  1, and whether it can be attained by a plug-in rule in prin-
ciple, remains open for the moment.

Let us finally point out two consequences. We have shown that the optimal
minimax rates for support estimation are significantly faster than the corresponding
rates for level set estimation

n� ��

2�+d

under the margin condition (Rigollet and Vert 2009). Although any level set of a
fixed density satisfying the margin condition to the exponent � fulfills the com-
plexity condition to the exponent µ = �� as long as �  1, the hypotheses in the
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proof of the lower bounds of Rigollet and Vert (2009) do even satisfy this condi-
tion for some fixed ⇠, uniformly in n, as well. Hence, their optimal minimax rates
of convergence remain the same under our condition. On an intuitive level, this
phenomenon can be nicely motivated by comparing the Hellinger distance H(P,Q)
between the probability measure P with Lebesgue density p and Q whose Lebesgue
density q = p + p̃ is a perturbation of p with a small function p̃ around the level
↵ � 0, see Tsybakov (1997), Extension (E4). If ↵ > 0, then simple Taylor expansion
of

p
p+ p̃ yields H2(P,Q) ⇠

R

p̃2d�d, whereas H2(P,Q) ⇠
R

p̃ d�d in case ↵ = 0.
Thus, perturbations at the boundary (↵ = 0) can be detected with the higher ac-
curacy resulting in faster attainable rates for support estimation than for level set
estimation. Moreover, the rates for plug-in support estimators already established
in the literature by Cuevas and Fraiman (1997) turn out to be always suboptimal
in case of Hölder continuous densities of boundary regular support. To be precise,
Cuevas and Fraiman (1997) establish in Theorem 1 (c) a convergence rate under
the margin condition given in terms of ⇢

n

= n⇢ and the o↵set level ↵
n

= n�↵ (in
their notation), which are assumed to satisfy 0 < ↵ < ⇢ and their condition (R2),
namely

⇢
n

Z

|p̂
n

� p| d�d = oP(1) and ⇢
n

↵1+�

n

= o(1) as n ! 1.

As a consequence, ⇢
n

= o(n�/(2�+d)) for typical candidates p 2 Piso

d

(�, L), i.e. den-
sities p which are locally not smoother than (�, L)-regular. Under the margin con-
dition to the exponent � > 0, this limits their rate of convergence n�⇢+↵ to

d
�

(�
p

, �̂
n

) = oP
⇣

n� �

2�+d

�

1+�

⌘

,

which is substantially slower than the above established minimax rate. The crucial
point is that even with the improved density estimator of Section 3, the above
mentioned condition on ⇢

n

in (R2) cannot be improved, because any estimator can
possess the improved performance at lowest density regions only. For this reason,
the L

1

-speed of convergence of a density estimator is not an adequate quantity to
characterize the performance of the corresponding plug-in support estimator.

5. Lemma 5.1 - 5.7, Proofs of Theorem 3.3 and Theorem 3.4.
Due to space constraints, all remaining proofs are deferred to the supplemental
article [Patschkowski and Rohde (2015)]. In the proof of Theorem 3.3, we frequently
make use of the bandwidth

h̄
i

:= c
11

(�, L) ·max

8

<

:

✓

log n

n

◆

�̄

�̄+1

1
�

i

,

✓

p(t) log n

n

◆

�̄

2�̄+1

1
�

i

9

=

;

(5.1)

for i = 1, . . . , d, with constant c
11

(�, L) of Lemma 5.1, which can be thought of as
an optimal adaptive bandwidth. The truncation in the definition of h̄ results from
the necessary truncation in �2

t,trunc

. With the exponents

j̄
i

= j̄
i

(t) :=
j

log
2

✓

1

h̄
i

◆

k

+ 1, i = 1, . . . , n(5.2)
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the bandwidth 2�¯

j

i is an approximation of h̄
i

by the next smaller bandwidth on
the grid G such that h̄

i

/2  2�¯

j

i  h̄
i

for all i = 1, . . . , d.

Before turning to the proof of Theorem 3.3, we collect some technical ingredients.
First, recall the classical upper bound on the bias of a kernel density estimator.
With the notation provided in Section 2, and K of order max

i

�
i

at least, we obtain

b
t

(h) := p(t)� E⌦n

p

p̂
n,h

(t) =

Z

K(x)
⇣

p(t+ hx)� p(t)
⌘

d�d(x)

=
d

X

i=1

Z

K(x)
⇣

p([t, t+ hx]
i�1

)� p([t, t+ hx]
i

)
⌘

d�d(x),

using the notation [x, y]
0

= y, [x, y]
d

= x, [x, y]
i

= (x
1

, . . . , x
i

, y
i+1

, . . . , y
d

),
i = 1, . . . , d� 1 for two vectors x, y 2 Rd and denoting by hx = (h

1

x
1

, . . . , h
d

x
d

)
the componentwise product. Taylor expansions for those components i with �

i

� 1
lead to

p([t, t+ hx]
i�1

)� p([t, t+ hx]
i

) =

b�
i

c
X

k=1

p(k)
i,[t,t+hx]

i

(t
i

)
(h

i

x
i

)k

k!

+
⇣

p([t, t+ hx]
i�1

)� P
(p

i,[t,t+hx]
i

)

t

i

,b�
i

c (t
i

+ h
i

x
i

)
⌘

.

Hence,

|b
t

(h)|  L
d

X

i=1

c
12,i

(�)h�

i

i

=: B
t

(h)(5.3)

with constants c
12,i

(�) :=
R

|x
i

|�i |K(x)| d�d(x) < 1.

With a slight abuse of notation, dependencies on some bandwidth h = 2�j are
subsequently expressed in terms of the corresponding grid exponent j = (j

1

, . . . , j
d

),
i.e. B

t

(h) equals B
t

(j), etc. For any multiindex j, we use the abbreviation

|j| :=
d

X

i=1

j
i

.

The following lemmata are crucial ingredients for the proof of Theorem 3.3.

Lemma 5.1. (i) For any (�, L) with 0 < �
i

 2, p 2 P
d

(�, L), and for any
bandwidth h = (h

1

, . . . , h
d

) with h
i

 c
11

(�, L) p(t)1/�i , i = 1, . . . , d with

c
11

(�, L) := min
i=1,...,d

✓

2dL

kKk2
2

Z

|x
i

|�iK2(x)d�d(x)
◆�1/�

i

,

the following inequality chain holds true

1

2

kKk2
2

n
Q

d

i=1

h
i

p(t)  1

n
((K

h

)2 ⇤ p)(t)  3

2

kKk2
2

n
Q

d

i=1

h
i

p(t).
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(ii) For any constant c
27

> 0, there exists a constant c
23

(�, L) = c
23

(�, L, c
27

) > 0,
such that for any (�, L), 0 < �

i

< 1, i = 1, . . . , d, and p 2 P
d

(�, L),

c
23

(�, L)

n
Q

d

i=1

h
i

p(t)  1

n
((K

h

)2 ⇤ p)(t)

for every bandwidth h = (h
1

, . . . , h
d

) with h
i

 c
27

p(t)1/�i , i = 1, . . . , d.

(iii) For any density p with isotropic Hölder smoothness (�, L), 0 < � < 1 and
bandwidth h, we have

1

n
((K

h

)2 ⇤ p)(t)  LkKk2
2

nhd

⇣

h+ inf
y2�

c

p

kt� yk
2

⌘

�

,

where K is a rotation invariant kernel supported on the closed Euclidean unit ball.

Lemma 5.2. There exists some constant c
13

(�, L) > 0, such that for any p 2
P

d

(�, L), 0 < �
i

 2, i = 1, . . . , d, and t 2 Rd the inequality

�2

t,trunc

(j ^m)  c
13

(�, L)
�

�2

t,trunc

(j) _ �2

t,trunc

(m)
�

holds true for all (non-random) indices j = (j
1

, . . . , j
d

) and m = (m
1

, . . . ,m
d

) with
j � j̄ componentwise. If additionally m � j componentwise, then

�2

t,trunc

(j)  c
13

(�, L)�2

t,trunc

(m).

The next lemma carefully analyzes the ratio of the truncated quantities �2

t,trunc

and �̃2

t,trunc

.

Lemma 5.3. For the quantities �2

t,trunc

(h) and �̃2

t,trunc

(h) defined in (3.6) and
any ⌘ � 0 holds

P⌦n

 

�

�

�

�

�

�̃2
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(h)

�2
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(h)
� 1

�

�

�

�

�

� ⌘

!

 2 exp

✓

� 3⌘2

2(3 + 2⌘) kKk2
sup

log2 n

◆

.

Lemma 5.4. For any (�, L) with 0 < �
i

 2, i = 1, . . . , d, there exist constants
c
15

(�, L) and c
21

(�, L) > 0 such that for the multiindex j̄ as defined in (5.2) and
the bias upper bound B

t

as given in (5.3),

B
t

(j̄)  c
15

(�, L)
q

�2

t,trunc

(j̄) log n(5.4)

q

�2
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(j̄)  c
21

(�, L)

8

<
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✓

log n

n

◆

�̄

�̄+1

_
✓

p(t) log n

n

◆

�̄

2�̄+1

9

=

;

.(5.5)
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Lemma 5.5. For any (non-random) index j = (j
1

, . . . , j
d

), the tail probabilities
of the random variable

Y :=
p̂
n,j

(t)� E⌦n

p

p̂
n,j

(t)
q

�2

t,trunc

(j) log n
,

are bounded by

P⌦n(|Y | � ⌘)  2 exp
⇣

� log n

4
· (⌘2 ^ ⌘)

⌘

for any ⌘ � 0, any t 2 Rd and n � n
0

with n
0

depending on kKk
sup

only.

Lemma 5.6. Let Z be some non-negative random variable satisfying

P(Z � ⌘)  2 exp
⇣

�A⌘
⌘

.

for some A > 0. Then

(EZm)1/m  c
28

m

A

for any m 2 N, where the constant c
28

does not depend on A and m.

Lemma 5.7 (Klutchniko↵ 2005). For all k, l 2 J , the absolute value of the
di↵erence of bias terms is bounded by

|b
t

(k ^ l)� b
t

(l)|  2B
t

(k)

for all t 2 Rd.

Proof of Theorem 3.3. Recall the notation of Section 3 and denote p̂
n,

ˆ

j

=
p̂
n

. In a first step, the risk
E⌦n

p

|p̂
n,

ˆ

j

(t)� p(t)|r

is decomposed as follows:

E⌦n

p

|p̂
n,

ˆ

j

(t)� p(t)|r = E⌦n

p

h

|p̂
n,

ˆ

j

(t)� p(t)|r · {�̂2

t
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t
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i

+ E⌦n

p

h

|p̂
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ˆ

j

(t)� p(t)|r · {�̂2

t

(ĵ) > �̂2

t

(j̄)}
i

=: R+ +R�.(5.6)

We start with R+, which is decomposed again as follows
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h
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¯

j

(t)� p(t)|r · {�̂2

t
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t

(j̄)}
i
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=: 3r�1(S
1

+ S
2

+ S
3

),(5.7)

where we used the inequality (x + y + z)r  3r�1(xr + yr + zr) for all x, y, z � 0.
This decomposition bears the advantage that only kernel density estimators with
well-ordered bandwidths are compared. We focus on the estimation of S

1

, S
2

and
S
3

and start with S
2

using the selection scheme’s construction. Clearly, ĵ 2 A as
defined in (3.7). As a consequence the following inequality holds true

S
2

 cr
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p

"
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�̂2

t
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r/2 ·
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t
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r/2 ·
(
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�̃2
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(j̄)
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)#

 2r/2cr
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(
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t,trunc
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kKk2

2

c
1

n2�|¯j|

)

log n

!

r/2

+ cr
14

✓
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2

c
1

n2�|¯j| log n

◆

r/2
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�̃2
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(j̄)

�2
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(j̄)
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�

�

�

�

�

� 1

!

,

where we used the condition in the indicator function in the first summand to bound
the estimated truncated variance �̃2

t,trunc

from above by 2�2

t,trunc

, and additionally
the upper truncation level in the second summand. By the deviation inequality of
Lemma 5.3, we can further estimate S

2

by

S
2

 2r/2cr
14

�

�2

t,trunc

(j̄) log n
�

r/2

+ cr
14

✓

kKk2
2

c
1

n2�|¯j| log n

◆

r/2

· 2 exp
✓

� 3

10kKk2
sup

log2 n

◆

.

The second term is always of smaller order than the first term because 2�|¯j|  1,
and therefore for n � 2,

✓

kKk2
2

c
1

n2�|¯j| log n

◆

r/2

· 2 exp
✓

� 3

10kKk2
sup

log2 n

◆

 c

 

log3 n

n2

�

2�|¯j|
�

2

!

r/2

for some constant c depending on c
1

, r and the kernel K only. Finally,

S
2

 c(�, L)
�

�2

t,trunc

(j̄) log n
�

r/2

.

We will now turn to S
3

, the third term in (5.7). We split the risk into bias and
stochastic error. It holds

S
3

 E⌦n

p

⇣

|p̂
n,

¯

j

(t)� E⌦n

p

p̂
n,

¯

j

(t)|+B
t

(j̄)
⌘

r

(5.8)

and by Lemma 5.4

B
t

(j̄)  c
15

(�, L)
q

�2

t,trunc

(j̄) log n.(5.9)
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Denoting by

Z
k

:=
p̂
n,k

(t)� E⌦n

p

p̂
n,k

(t)
q

�2

t,trunc

(k) log n
for k 2 J ,(5.10)

the decomposition (5.8), the bias variance relation (5.9) and the inequality (x +
y)r  2r�1(xr + yr), x, y � 0 together with Lemma 5.6 yields

S
3


�

�2
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(j̄) log n
�

r/2 · E⌦n

p

�

|Z
¯

j

|+ c
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(j̄) log n
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�
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¯

j

|r + c
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(�, L)r
�

 c(�, L)
�

�2
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(j̄) log n
�

r/2

.

It remains to show an analogous result for S
1

, the first term in (5.7). Clearly,

S
1


X

j2J
E⌦n

p

h⇣

�

�p̂
n,j

(t)� E⌦n

p

p̂
n,j

(t)
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⌘
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t
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.

(5.11)

By Lemma 5.7 and Lemma 5.4,

|b
t

(j ^ j̄)� b
t

(j)|  2B
t

(j̄)  2c
15

(�, L)
q

�2

t,trunc

(j̄) log n.

On account of this inequality and in view of (5.11), it su�ces to bound the expec-
tations in the following expression
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.
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A
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it follows
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=
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Applying Lemma 5.6 and Hölder’s inequality for any p > 1,
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By the constraint 2�|j| � log2 n/n for any j 2 J , there exists some constant c > 0
such that |J |  c (log n)d. Setting finally p = d log n, yields S
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 c(�⇤, L⇤). As
concerns S
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, by the Cauchy-Schwarz inequality,
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Via the lower and upper truncation levels in the definition of �2
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and the remaining expectation
P

j2J E⌦n
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At this point, we specify a lower bound on c
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. Precisely, c
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has to be chosen large
enough to guarantee that
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for any � in the range of adaptation. Finally, by means of Lemma 5.3,
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which is of smaller order than the bound in (5.15). Altogether, with this restriction
on c
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,
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By Lemma 5.2, the probability P⌦n(B
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Summarizing,
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Finally, by Lemma 5.4,
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This completes the proof of Theorem 3.3.

Proof of Theorem 3.4. Before we construct the densities p
n

and q
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, we first
specify their amplitudes �
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for
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converging to infinity. Note first that with this choice of %(n) it holds that
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to the Hölder exponent �
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To ensure that p
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and suitable constants L
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and L
2

independent of n. The construction of the hy-
potheses is depicted in Figure 3. Recall that the particular construction ofK( · ;h,�)
does not change the Hölder parameters and note that the classes [
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Fig 3. Construction of p
n

(dashed line) and q

n

(solid line)

Let T
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As in the proof of the constrained risk inequality in Cai, Low and Zhao (2007), by
reverse triangle inequality holds
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and it remains to show that Q⌦n
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SUPPLEMENTARY MATERIAL

Supplement A: Supplement to ”Adaptation to lowest density regions
with application to support recovery”
(doi: COMPLETED BY THE TYPESETTER; .pdf). Supplement A is organized
as follows. Section A.1 contains the proofs of Lemma 5.1 – Lemma 5.6, which are
central ingredients for the proof of Theorem 3.3. Section A.2 is concerned with the
remaining proofs of Section 3. Section A.3 contains the proofs of Section 4. Section
A.4 introduces a specific construction of a kernel function with prescribed Hölder
regularity, which is frequently used throughout the article.
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[35] Klemelä, J. (2004). Complexity penalized support estimation. J. Multivariate Anal-
ysis 88 274–297. MR2025614

[36] Klutchnikoff, N. (2005). Sur l’estimation adaptative de fonctions anisotropes.,
Ph.D.Thesis. Université Aix-Marseille I.
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SUPPLEMENT TO ”ADAPTATION TO LOWEST
DENSITY REGIONS WITH APPLICATION TO SUPPORT

RECOVERY”

By Tim Patschkowski and Angelika Rohde

Ruhr-Universität Bochum

Supplement A is organized as follows. Section A.1 contains the proofs of Lemma
5.1 – 5.7, which are central ingredients for the proof of Theorem 3.3. Section A.2 is
concerned with the remaining proofs of Section 3. Section A.3 contains the proofs
of Section 4. Section A.4 introduces a specific construction of a kernel function with
prescribed Hölder regularity, which is frequently used throughout the article.

For any A ⇢ Rd define

d(A, t) := inf
y2A

kt� yk
2

(0.1)

where k · k
2

denotes the Euclidean norm (on Rd).

A.1. Proofs of Lemma 5.1 – 5.6.

Proof of Lemma 5.1.

(i) Recall the decomposition

p(t+ hx) = p(t) +
d
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p([t, t+ hx]
i�1
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In both cases
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with

S
i

:=

Z

K2(x)
⇣

p([t, t+ hx]
i�1

)� p([t, t+ hx]
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)
⌘

d�d(x).
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inequality (0.2) implies
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(0.4)
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2d
.

For 1 < �
i

 2, in case of a product kernel (anisotropic smoothness) the i-th
factor K2

i

is of first order again as it remains symmetric. The same holds true for
a rotation invariant kernel (isotropic smoothness), because the function K

i,x

(as
defined in (2.1)) is symmetric for every x 2 Rd. Hence, the quantity
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which proves together with (0.3) the claim.

(ii) We prove the statement for d = 1. For higher dimension and product kernel,
the result follows by telescoping and Fubini’s Theorem. Denote by H

1

(�, L; I) the
Hölder class of functions from some interval I ⇢ R to R with parameters (�, L).
With the previously introduced notation, H

1

(�, L) = H
1

(�, L;R). The result has
been shown in Rohde (2008) for f 2 H

1

(�, L; [0, 1]) and t = argmax
x2[0,1]

|f(x)| and
is now generalized for arbitrary t. Since the kernel K is continuous on its support
with K(0) > 0, there exists an

" 2
 

0,

✓

1

2L

◆

1/�

^ 1

#

,

such that K(x) � K(0)/2 for all x 2 [�", "]. It is su�cient to prove the following
statement: For any f 2 {g 2 H

1

(�, L) : kgk
sup

 E} for some E > 0, and c
27

> 0,
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there exists a constant c
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(�, L) > 0, such that for every h  c
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|f(t)|1/� , there
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It remains to prove the existence of such an interval I
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(f, h) with properties (0.6)
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For any polynomial P (x) =
P

D
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a
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xk of degree D the norms

kPk
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4

are two norms on the (D + 1)-dimensional space of polynomials on [�1, 1] of de-
gree D, and these norms are equivalent. Consequently, there exists a constant
C

D,[�1,1]

depending on the degree D and on the interval [�1, 1], such that kPk
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. In particular, there exists a constant C = C
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� 1, inequality (0.9) holds also true on
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Since C � 1, we assume without loss of generality that [x
0

, x
0

+1/(4C+2�+1CL)]
is fully contained in [�1, 1]. By the triangle inequality and (0.9),

|f(z)| � 1

2
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Because |u
f
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0

)| � |u
f

(0)| and consequently |f(t + "hx
0

)| � |f(t)|, the result
follows.

The result of Rohde (2008) is established for isotropic smoothness and rotation in-
variant kernel in Rohde (2011). Our result analogously extends to isotropic smooth-
ness and rotation invariant kernel following the previous steps.

(iii) It holds
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where B
h

(t) denotes the closed Euclidean ball with radius h around t. We have for
any x with kx� tk
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Proof of Lemma 5.2. We define

J
1

:= {i 2 {1, . . . , d} : m
i

> j
i

} := {i
1

, . . . , i
s

}
J
2

:= {1, . . . , d} \ J
1

.

With x
1

:= (x
i

, i 2 J
1

) and x
2

:= (x
i

, i 2 J
2

), h
k

= (2�k

1 , . . . , 2�k

d) and
K2

i,h

k,i

(·) = h�1

k,i

K2

i

(·/h
k,i

) for k = j,m, and

M t

2

J

2

(x
1

) :=

8

<

:

Z

Y

i2J

2

K2

i,h

m,i

(t
i

� x
i

) p(x) d�d�s(x
2

) , if s < d

p(x) , if s = d,

we have the representation

�2

t

(j ^m) =
1

n
Q

d

i=1

(h
j,i

_ h
m,i

)

Z

Y

i2J

1

K2

i,h

j,i

(t
i

� x
i

)M t

2

J

2

(x
1

) d�s(x
1

),(0.10)

�2

t

(m) =
1

n
Q

d

i=1

h
m,i

Z

Y

i2J

1

K2

i,h

m,i

(t
i

� x
i

)M t

2

J

2

(x
1

) d�s(x
1

).

Note that M t

2

J

2

(·) 2 H
s

(�
J

1

, L c
J

2

), where

c
J

2

:=

⇢ kQ
i2J

2

K
i

k
sup

, if J
2

6= ;
1 , if J

2

= ;

and �
J

1

= (�
i

)
i2J

1

. If h
j

satisfies

h
j,i

 c
11

(�
J

1

, L c
J

2

) ·M t

2

J

2

(t
1

)
1

�

i for all i 2 J
1

,

then Lemma 5.1 (i) yields

1
Q

i2J

1

h
j,i

Z

Y

i2J

1

K2

i,h

j,i

(t
i

� x
i

)M t

2

J

2

(x
1

) d�s(x
1

)(0.11)



6

 3

2
· k

Q

i2J

1

K
i

k2
2

Q

i2J

1

h
j,i

M t

2

J

2

(t
1

)

 3

2
· k

Q

i2J

1

K
i

k2
2

Q

i2J

1

h
m,i

M t

2

J

2

(t
1

)

 3 · 1
Q

i2J

1

h
m,i

Z

Y

i2J

1

K2

i,h

m,i

(t
i

� x
i

)M t

2

J

2

(x
1

) d�s(x
1

),

which is equivalent to
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Due to the monotonicity of the truncation level in the product of the bandwidth’s
components, this implies
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since j � j̄ componentwise. The maximum in (0.12) is attained by its right hand
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With (0.10), we obtain by the same arguments as in (0.3), (0.4) and (0.5) applied
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which proves the first statement of Lemma 5.2. As concerns the second claim,
assume now that m � j and j � j̄ componentwise. We distinguish between the two
cases of a truncated and non-truncated reference bandwidth h̄, i.e.
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1

n
((K

¯

h

)2 ⇤ p)(t)  3
1

n
((K

h

j

)2 ⇤ p)(t)  9
1

n
((K

h

m

)2 ⇤ p)(t).

By the monotonicity of the truncation level the claim follows for non-truncated h̄.
If h̄ is truncated, that is

✓

p(t) log n

n

◆

¯

�

2

¯

�+1

<

✓

log n

n

◆

¯

�

¯

�+1

,

we have p(t)  (log n/n)
¯

�/(

¯

�+1). Thus, following the steps in (0.3), (0.4) and (0.5),
for any h  h̄ componentwise,

1

n
((K

h

)2 ⇤ p)(t)  kKk2
2

p(t)

n
Q

d

i=1

h
i

+
c(�, L)

n
Q

d

i=1

h
i

d

X

i=1

h�

i

i

 c(�, L)
log2 n

n2

Q

d

i=1

h2

i
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and therefore
log2 n

n2

Q

d

i=1

h2

i

 �2

t,trunc

(h)  c(�, L)
log2 n

n2

Q

d

i=1

h2

i

,

where the left and right hand side are monotone in the product of bandwidth
components.

Proof of Lemma 5.3. The proof is based on Bernstein’s inequality. First,

P⌦n

⇣

|�̃2

t,trunc

(h)� �2

t,trunc

(h)| � ⌘ �2

t,trunc

(h)
⌘

 P⌦n

⇣

|�̃2

t

(h)� �2

t

(h)| � ⌘ �2

t,trunc

(h)
⌘

.

The random variable �̃2

t

(h) � �2

t

(h) can be rewritten as a sum of centered and
independent random variables

Z
k

:=
1

n2

Q

d

i=1

h2

i

✓

K2

✓

t�X
k

h

◆

� E
p

K2

✓

t�X
k

h

◆◆

with the properties

|Z
k

|  2kKk2
sup

n2

Q

d

i=1

h2

i

and
n

X

k=1

Var (Z
k

)  1

n3

Q

d

i=1

h4

i

E
p

K4

✓

t�X
1

h

◆

 kKk2
sup

n2

Q

d

i=1

h2

i

�2

t,trunc

(h).

Hence, Bernstein’s inequality yields the following exponential tail bound

P⌦n

�|�̃2

t

(h)� �2

t

(h)| � ⌘ �2

t,trunc

(h)
�

 2 exp

0

@�1

2

⌘2�4

t,trunc

(h)
kKk2

sup

�

2

t,trunc

(h)

n

2

Q
d

i=1

h

2

i

�

1 + 2⌘

3

�

1

A(0.14)

 2 exp

✓

� 3⌘2

2(3 + 2⌘)kKk2
sup

log2 n

◆

.

Proof of Lemma 5.4. The inequalities are proven separately and both the

proofs distinguish between the cases p(t)  (log n/n)
¯

�/(

¯

�+1) and p(t) > (log n/n)
¯

�/(

¯

�+1).

Proof of (5.4): Recall the definition of the reference bandwidth in (5.1), which for

p(t)  (log n/n)
¯

�/(

¯

�+1) is equal to

h̄
i

= c
11

(�, L)

✓

log n

n

◆

¯

�

¯

�+1

1

�

i

, i = 1, . . . , d.(0.15)
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The corresponding truncation level satisfies

log2 n

n2

Q

d

i=1

h̄2

i

= c
11

(�, L)�2d

✓

log n

n

◆

2

¯

�

¯

�+1

.(0.16)

Consequently,

B
t

(j̄)  B
t

(h̄)

=

 

L

d

X

i=1

c
12,i

(�) c
11

(�, L)�i

!

✓

log n

n

◆

¯

�

¯

�+1

=

 

L

d

X

i=1

c
12,i

(�) c
11

(�, L)�i

!

c
11

(�, L)d
 

log2 n

n2

Q

d

i=1

h̄2

i

!

1/2


 

L

d

X

i=1

c
12,i

(�) c
11

(�, L)�i

!

c
11

(�, L)d
q

�2

t,trunc

(j̄).

For p(t) > (log n/n)
¯

�/(

¯

�+1), the reference bandwidth h̄ is defined as

h̄
i

= c
11

(�, L)

✓

p(t) log n

n

◆

¯

�

2

¯

�+1

1

�

i

, i = 1, . . . , d,(0.17)

and therefore

B
t

(j̄) 
 

L

d

X

i=1

c
12,i

(�) c
11

(�, L)�i

!

✓

p(t) log n

n

◆

¯

�

2

¯

�+1

=

 

L

d

X

i=1

c
12,i

(�) c
11

(�, L)�i

!

c
11

(�, L)d/2 ·
 

p(t) log n

n
Q

d

i=1

h̄
i

!

1/2


 

L

d

X

i=1

c
12,i

(�) c
11

(�, L)�i

!

c
11

(�, L)d/2 ·
✓

p(t) log n

n2�|¯j|

◆

1/2

.(0.18)

Since for p(t) � (log n/n)
¯

�/(

¯

�+1),

2�
¯

j

i  h̄
i

 c
11

(�, L) p(t)1/�i for all i = 1, . . . , d,(0.19)

Lemma 5.1 (i) yields

p(t) log n

n2�|¯j|  2

kKk2
2

· �2

t

(j̄) log n

and together with (0.18)

B
t

(j̄) 
 

L

d

X

i=1

c
12,i

(�) c
11

(�, L)�i

!

✓

2 c
11

(�, L)d

kKk2
2

◆

1/2

q

�2

t,trunc

(j̄) log n.
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Proof of (5.5): For p(t)  (log n/n)
¯

�/(

¯

�+1), the reference bandwidth h̄ is given by
(0.15). Hence by (0.16),

log2 n

n2(2�|¯j|)2
 22d

log2 n

n2

Q

d

i=1

h̄2

i

=

✓

2

c
11

(�, L)

◆

2d

✓

log n

n

◆

2

¯

�

¯

�+1

.(0.20)

Furthermore, by (0.3), (0.4) and (0.5),

�2

t

(j̄)  kKk2
2

p(t)

n2�|¯j| +
1

n2�|¯j|

d

X

i=1

L

Z

|x
i

|�iK2(x)d�d(x) ·
⇣

2�
¯

j

i

⌘

�

i

 c(�, L) · log n

n
Q

d

i=1

h̄
i

✓

log n

n

◆

¯

�

¯

�+1

= c(�, L) ·
✓

log n

n

◆

2

¯

�

¯

�+1

and finally for p(t)  (log n/n)
¯

�/(

¯

�+1),

q

�2

t,trunc

(j̄)  c(�, L)

✓

log n

n

◆

¯

�

¯

�+1

.(0.21)

For p(t) > (log n/n)
¯

�/(

¯

�+1), the reference bandwidth h̄ is given by (0.17) and hence

log2 n

n2

�

2�|¯j|
�

2

 22dc
11

(�, L)�d · log2 n

n2

Q

d

i=1

h̄
i

✓

p(t) log n

n

◆� 1

2

¯

�+1

 22dc
11

(�, L)�d · log n

n
Q

d

i=1

h̄
i

✓

log n

n

◆

¯

�

¯

�+1

 22dc
11

(�, L)�d · p(t) log n

n
Q

d

i=1

h̄
i

= 22dc
11

(�, L)�2d ·
✓

p(t) log n

n

◆

2

¯

�

2

¯

�+1

.

Furthermore, since j̄ satisfies property (0.19), Lemma 5.1 (i) reveals

�2

t

(j̄)  3

2

kKk2
2

p(t)

n2�|¯j| = 3 · 2dkKk2
2

· c
11

(�, L)�d ·
✓

p(t) log n

n

◆

2

¯

�

2

¯

�+1

,

such that together with (0.21)

q

�2

t,trunc

(j̄)  c(�, L) ·

8

>

>

<

>

>

:

⇣

logn

n

⌘

¯

�

¯

�+1 , if p(t) 
⇣

logn

n

⌘

¯

�

¯

�+1

⇣

p(t) logn

n

⌘

¯

�

2

¯

�+1 , if p(t) >
⇣

logn

n

⌘

¯

�

¯

�+1
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= c(�, L) ·
8

<

:

✓

log n

n

◆

¯

�

¯

�+1 _
✓

p(t) log n

n

◆

¯

�

2

¯

�+1

9

=

;

.

Proof of Lemma 5.5. Observe first that Y can be expressed as a sum of cen-
tered and independent random variables Y =

P

n

i=1

Y
i

with

Y
i

:=

1

n2

�|j|

⇣

K
⇣

t

1

�X

i,1

2

�j

1

, . . . ,
t

d

�X

i,d

2

�j

d

⌘

� E
p

K
⇣

t

1

�X

i,1

2

�j

1

, . . . ,
t

d

�X

i,d

2

�j

d

⌘⌘

q

�2

t,trunc

(j) log n
.

For n � n
0

with n
0

depending on kKk
sup

only, it holds

1

3
|Y

i

|  2kKk
sup

3
p

log3 n
 1

log n
and

n

X

i=1

Var(Y
i

)  1

log n
.

Bernstein’s inequality yields

P⌦n(|Y | � ⌘)  2 exp

✓

�1

2

⌘2

1 + ⌘
log n

◆

,

leading to subgaussian and subexponential tail behavior for ⌘  1 and ⌘ > 1,
respectively.

Proof of Lemma 5.6. Fubini’s theorem and the classical moment bound for
the exponential distribution reveal

EZm =

Z 1

0

xmp
Z

(x)d�(x)

=

Z 1

0

Z

x

0

mtm�1d�(t) p
Z

(x)d�(x)

=

Z 1

0

mtm�1P(Z � t)d�(t)

 2m

Z 1

0

tm�1 exp(�At)d�(t)

 2m
(m� 1)!

Am

.

A.2. Remaining proofs of Section 3.

Proof of Theorem 3.1. The construction of the hypotheses requires func-
tions K

1

2 P
d

(�, L0) and K
2

2 P
d

(�, L � L0), integrating to one and compactly
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supported within a rectangle, say
Q

d

i=1

[�g
1,i

, g
1,i

] and
Q

d

i=1

[�g
2,i

, g
2,i

], respec-

tively, with K
1

(0) =
p

3/4 · c
1

(�, L0) and L0 < L chosen such that c
1

(�, L0) >
p

3/4 · c
1

(�, L). The auxiliary constant L0 is introduced to permit the construction
of perturbed hypotheses in P

d

(�, L) with value larger than 3/4 · c
1

(�, L) at the
point t. First observe that

inf
0<�c

1

(�,L)

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)�

E⌦n

p

 

|T
n

(t)� p(t)|
 n

p(t),�

!

r

= inf
0<�c

1

(�,L)/K

2

(0)

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)/K

2

(0)�

E⌦n

p

 

|T
n

(t)� p(t)|
 n

p(t),�

!

r

= min

8

>

<

>

:

inf
�n

�¯

�/(

¯

�+1)

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)/K

2

(0)�

E⌦n

p

 

|T
n

(t)� p(t)|
 n

p(t),�

!

r

,

inf
n

�¯

�/(

¯

�+1)

<�c

1

(�,L)/K

2

(0)

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)/K

2

(0)�

E⌦n

p

 

|T
n

(t)� p(t)|
 n

p(t),�

!

r

9

>

=

>

;

.

The two situations

(i) �  n
� ¯

�

¯

�+1 , (ii) n
� ¯

�

¯

�+1 < �  c
1

(�, L)/K
2

(0)(0.22)

are analyzed separately. In case (i), for any 
1

> 0 Markov’s inequality yields

inf
�n

�¯

�/(

¯

�+1)

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)/K

2

(0)�

E⌦n

p

 

|T
n

(t)� p(t)|
 n

p(t),�

!

r

� inf
�n

�¯

�/(

¯

�+1)

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)/K

2

(0)�

E⌦n

p

✓ |T
n

(t)� p(t)|
�K

2

(0)

◆

r

� inf
�n

�¯

�/(

¯

�+1)

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)/K

2

(0)�

r
1

· P⌦n

⇣

|T
n

(t)� p(t)| � 
1

· �K
2

(0)
⌘

.

Denote by h
n

the multidimensional bandwidth with components

h
n,i

:= �
1

�

i , i = 1, . . . , d,

chosen in a manner such that

K
2

(x;h
n

) :=

 

d

Y

i=1

h
n,i

!

¯

�

K
2

✓

x

h
n

◆
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attains the value � ·K
2

(0) at the point 0. Setting s
n

:= (t
1

+ h
n,1

+ g
1,1

, t
2

, . . . , t
d

),
we define the hypotheses

p
0,n

(x) := K
1

(x� s
n

) +
1

2

⇣

K
2

(x� t;h
n

)�K
2

(x� s
n

;h
n

)
⌘

p
1,n

(x) := K
1

(x� s
n

) +K
2

(x� t;h
n

)�K
2

(x� s
n

;h
n

).

Both hypotheses p
0,n

and p
1,n

have anisotropic Hölder smoothness with parameters
(�, L), since

 

d

Y

i=1

h
n,i

!

¯

�

= h�

i

n,i

for all i = 1, . . . , d

and L0 + (L�L0) = L. Moreover, they integrate to one, are positive for su�ciently
large n � n

0

(�, L) and attain the values p
0,n

(t) = � ·K
2

(0)/2 and p
1,n

(t) = � ·K
2

(0).
The absolute distance in t equals

|p
0,n

(t)� p
1,n

(t)| = � ·K
2

(0)

2
.

It remains to bound the distance between the associated product probability mea-
sures P⌦n

0,n

and P⌦n

1,n

. The squared Hellinger distance is bounded from above by 2,
so Bernoulli’s inequality yields the upper bound

H2(P⌦n

0,n

, P⌦n

1,n

) = 2

✓

1�
✓

1� H2(P
0,n

, P
1,n

)

2

◆

n

◆

 nH2(P
0,n

, P
1,n

),

which in turn is bounded by

n

Z

⇣

p

K
2

(x� t;h
n

)/2�
p

K
2

(x� t;h
n

)
⌘

2

d�d(x)

+ n

Z

⇣

p

K
1

(x� s
n

)�K
2

(x� s
n

;h
n

)/2

�
p

K
1

(x� s
n

)�K
2

(x� s
n

;h
n

)
⌘

2

d�d(x)

 n

Z

K
2

(x;h
n

) d�d(x)

= n �
¯

�+1

¯

� ,

where the inequality is due to
⇣

p

x� y/2�p
x� y

⌘

2

 y

2
for all 0  y  x.(0.23)

The last expression is bounded by 1 as �  n
� ¯

�

¯

�+1 . Finally, by Theorem 2.2 (Tsy-
bakov 2009) (Hellinger version) with 

1

= 1/4, we arrive for n � n
0

(�, L) at

inf
�n

�¯

�/(

¯

�+1)

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)/K

2

(0)�

E⌦n

p

 

|T
n

(t)� p(t)|
 n

p(t),�

!

r

� 4�r

2

 

1�
r

3

4

!

> 0.
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In case (0.22) (ii) the hypotheses have to be chosen in a di↵erent way. To this aim,
the interval

⇣

n�¯

�/(

¯

�+1), c
1

(�, L)/K
2

(0)
i

is decomposed again into

I
1

:=
⇣

n�¯

�/(

¯

�+1), c
7

(�, L)
i

and I
2

:=
⇣

c
7

(�, L), c
1

(�, L)/K
2

(0)
i

with a constant c
7

(�, L) specified later. Since

inf
n

�¯

�/(

¯

�+1)

<�c

1

(�,L)/K

2

(0)

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)/K

2

(0)�

E⌦n

p

 

|T
n

(t)� p(t)|
 n

p(t),�

!

r

= min
i=1,2

inf
�2I

i

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)/K

2

(0)�

E⌦n

p

 

|T
n

(t)� p(t)|
 n

p(t),�

!

r

,

it is su�cient to treat the infima over I
1

and I
2

separately. We start with I
2

. Again,
by Markov’s inequality, for any 

2

> 0,

inf
�2I

2

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)/K

2

(0)�

E⌦n

p

 

|T
n

(t)� p(t)|
 n

p(t),�

!

r

� inf
�2I

2

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)/K

2

(0)�

E⌦n

p

 

|T
n

(t)� p(t)|
(�K

2

(0)/n)¯�/(2¯�+1)

!

r

� inf
�2I

2

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)/K

2

(0)�

r
2

· P⌦n

⇣

|T
n

(t)� p(t)| � 
2

(�K
2

(0)/n)
¯

�/(2

¯

�+1)

⌘

.

As before, we construct a density shifted to an appropriate center s0
n

and perturbate
it. This time, the centering point s0

n

is chosen such that it fulfills the equation

K
1

(t� s0
n

) =
3

4
�K

2

(0)� 1

4
K

2

(0)

✓

�

n

◆

¯

�

2

¯

�+1

.(0.24)

This point exists since the functionK
1

is continuous and takes values between 0 and

kK
1

k
sup

� K
1

(0) =
p

3/4 · c
1

(�, L0) > 3/4 · c
1

(�, L) � 3/4 · �K
2

(0),

and K
1

(t� s0
n

) is larger than �K
2

(0)/2 due to (0.22) (ii). Define

h
n,i

:= c
8,i

(�, L)

✓

�

n

◆

¯

�

2

¯

�+1

1

�

i

, i = 1, . . . , d

with

c
8,i

(�, L) :=

✓

2L

kK
2

k2
2

Z

|x
i

|�iK2

2

(x) d�d(x)
◆�1/�

i

.
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The hypotheses can now be formulated as

p
0,n

(x) := K
1

(x� s0
n

)

p
1,n

(x) := K
1

(x� s0
n

) +K
2

(x� t;h
n

)�K
2

(x� s0
n

;h
n

).

Note that
lim sup
n!1

sup
�2I

1

[I

2

K
1

(t� s0
n

) < K
1

(0)

and hence the perturbations’ supports do not intersect for n � n
1

(�, L) for su�-
ciently large n

1

(�, L) 2 N (not depending on � 2 I
1

[ I
2

). Again, both hypotheses
are contained in P

d

(�, L). Furthermore, as for p
0,n

, the hypothesis p
1,n

is bounded
from above by �K

2

(0) in t and bounded from below by K
1

(t � s0
n

) � �K
2

(0)/2.
The hypotheses’ distance in t

|p
0,n

(t)� p
1,n

(t)| = K
2

(0;h
n

) =

 

d

Y

i=1

c
8,i

(�, L)

!

¯

�

✓

�

n

◆

¯

�

2

¯

�+1

K
2

(0)

determines the choice of


2

=
1

2

 

d

Y

i=1

c
8,i

(�, L)

!

¯

�

K
2

(0)
¯

�+1

2

¯

�+1 .

Furthermore, with K(., .) denoting the Kullback-Leibler divergence,

K(P⌦n

1,n

,P⌦n

0,n

) = nK(P
1,n

,P
0,n

)

= n

Z

log

✓

p
1,n

(x)

p
0,n

(x)

◆

p
1,n

(x) d�d(x)

 n

Z

⇢

K
2

(x� t;h
n

)�K
2

(x� s0
n

;h
n

)

K
1

(x� s0
n

)
(0.25)

·
⇣

K
1

(x� s0
n

) +K
2

(x� t;h
n

)�K
2

(x� s0
n

;h
n

)
⌘

�

d�d(x)

= n

Z

(K
2

(x� t;h
n

)�K
2

(x� s0
n

;h
n

)) d�d(x)

+ n

Z

(K
2

(x� t;h
n

)�K
2

(x� s0
n

;h
n

))2

K
1

(x� s0
n

)
d�d(x)

= n

Z

(K
2

(x� t;h
n

)�K
2

(x� s0
n

;h
n

))2

K
1

(x� s0
n

)
d�d(x)

= n

Z

K2

2

(x� t;h
n

)

K
1

(x� s0
n

)
d�d(x) + n

Z

K2

2

(x� s0
n

;h
n

)

K
1

(x� s0
n

)
d�d(x)

 2n

Z

K2

2

(x� t;h
n

)

K
1

(x� s0
n

)
d�d(x)

 2n

 

min
x2

Q
d

i=1

[�g

2,i

h

n,i

, g

2,i

h

n,i

]

K
1

(x+ t� s0
n

)

!�1

Z

K2

2

(x;h
n

) d�d(x)
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 2n

✓

c
7

(�, L)

4

◆�1

kK
2

k2
2

 

d

Y

i=1

h
n,i

!

2

¯

�+1

,(0.26)

for n � n
2

(�, L) for su�ciently large n
2

(�, L) 2 N (not depending on � 2 I
2

). Here,
inequality (0.25) is due to the inequality log(1+x)  x for x > �1 and (0.26) holds
true for n � n

2

(�, L) because c
7

(�, L) does not depend on n while h
n

tends to zero.
Next, the latter expression (0.26) is bounded from above by

8kK
2

k2
2

c
7

(�, L)

 

d

Y

i=1

c
8,i

(�, L)

!

2

¯

�+1

¯

�

�  8c
1

(�, L) kK
2

k2
2

c
7

(�, L

 

d

Y

i=1

c
8,i

(�, L)

!

2

¯

�+1

¯

�

=: ↵.

Combining all results, we obtain by Theorem 2.2 in Tsybakov (2009) (Kullback
version) for n � (n

1

(�, L) _ n
2

(�, L))

inf
�2I

2

inf
T

n

(t)

sup
p2P

d

(�,L)

�/2p(t)�

E⌦n

p

 

|T
n

(t)� p(t)|
 n

p(t),�

!

r

� r
2

·max

(

exp (�↵)
4

,
1�p↵/2

2

)

.

For the remaining infimum over I
1

, we use for K
1

the specific choice of the prod-
uct kernel as described in Section A.4 with factors specified in (0.54), rescaled
and normed such that it integrates to one and has the prescribed Hölder regular-
ity (�, L). The corresponding norming constant of the i’th factor in the resulting
product kernel is denoted by c

9,i

(�, L), and at this point, we specify the choice

c
7

(�, L) := kK
1

k
sup

.

By symmetry of K
1

we may assume without loss of generality s0
n,i

� t
i

for all
i = 1, . . . , d. The proof is conducted in complete analogy to the case I

2

except
for the bound (0.26), which is too rough for the case under consideration now.
Instead, define

h
n,i

:= c
10,i

(�, L)

✓

�

n

◆

¯

�

2

¯

�+1

1

�

i

, i = 1, . . . , d

with

c
10,i

(�, L) :=

 

min
j=1,...,d

K
2

(0)

2

✓

c
9,j

(�
j

, L)�j

�2

2�
j

◆

�

j

!

1

�

i

.

Since K
1

(t � s0
n

) as given in (0.24) is bounded from below by �/2 ·K
2

(0) for any
� 2 I

1

due to (0.22) (ii),

h
n,i

 c
9,i

(�
i

, L)�i

�2

2�
i

✓

K
2

(0)

2

◆

1

�

i

�
1

�

i

 c
9,i

(�
i

, L)�i

�2

2�
i

✓

K
2

(0)

2

◆

1

�

i

✓

2

K
2

(0)
K

1

(t
i

� s0
n,i

)

◆

1

�

i
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=
c
9,i

(�
i

, L)�i

�2

2�
i

K
1

(t
i

� s0
n,i

)
1

�

i .

By the mean value theorem, for any 0  ⌘  g
2,i

h
n,i

,

�

�

�

�

�

✓

1� t
i

� s0
n,i

g
2,i

◆

�

i

�
✓

1� t
i

� s0
n,i

+ ⌘

g
2,i

◆

�

i

�

�

�

�

�

=

�

�

�

�

�

��
i

✓

1� ⇠
n,i

g
2,i

◆

�

i

�1

⌘

g
2,i

�

�

�

�

�

 �
i

✓

1� t
i

� s0
n,i

g
2,i

◆

�

i

�1

⌘

g
2,i

= �
i

c
9,i

(�
i

, L)1��

i

K
1

(t
i

� s0
n,i

)

K
1

(t
i

� s0
n,i

)1/�i

⌘

g
2,i

 1

2c
9,i

(�
i

, L)
K

1

(t
i

� s0
n,i

),

where ⇠
n,i

2 [t
i

�s0
n,i

, t
i

�s0
n,i

+g
2,i

h
n,i

] denotes some suitably chosen intermediate
point. Consequently, for all i = 1, . . . , d,

K
1

(t
i

� s0
n,i

+ ⌘) � 1

2
K

1

(t
i

� s0
n,i

) for all |⌘|  g
2,i

h
n,i

,

such that applied to the bound in (0.26),

K(P⌦n

1,n

,P⌦n

0,n

)  2kK
2

k2
2

�

2�d K
1

(t� s0
n

)

 

d

Y

i=1

c
8,i

(�, L)

!

2

¯

�+1

¯

�

 2kK
2

k2
2

�

2�d �K
2

(0)/2

 

d

Y

i=1

c
8,i

(�, L)

!

2

¯

�+1

¯

�

=
2d+2kK

2

k2
2

K
2

(0)

 

d

Y

i=1

c
8,i

(�, L)

!

2

¯

�+1

¯

�

,

and we conclude as before.

Proof of Remark 3.2.1. Let p̂
n

be the adaptive estimator as defined in Sub-
section 3.2. In case of isotropic Hölder regularity with known exponent � 2 (0, 2]
define the threshold

↵̃
n

:= n� �

�+d (log n)⇣1

for some constant

⇣
1

>
2� + d

2� + 2d
.

Recall that the construction of p̂
n

makes use of an upper bound on the second
parameter L⇤ of the Hölder class. Hence, since P

d

(�, L) ⇢ P
d

(�, L0) whenever
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0 < L < L0, we may assume without loss of generality that both, � and L, are
given. It has to be shown that the estimator p̂

n

(t) {p̂
n

(t) � ↵̃
n

} attains the bound

lim sup
n

sup
p2P

d

(�,L)

sup
t2Rd

:

p(t)>n

��/(�+d)

�

E⌦n

p

|p̂
n

(t) · {p̂
n

(x) > ↵̃
n

}� p(t)|r�1/r

#n

p(t),�

(log n)
3

2

_⇣

1

< 1.

We distinguish between the two cases p(t) > n��/(�+d) and p(t)  n��/(�+d). For
any p(t) > n��/(�+d), elementary algebra reveals

(E⌦n

p

|p̂
n

(t) {p̂
n

(t) � ↵̃
n

}� p(t)|r)1/r
 (E⌦n

p

(|p̂
n

(t)� p(t)|r {p̂
n

(t) � ↵̃
n

}))1/r + (E⌦n

p

p(t)r {p̂
n

(t) < ↵̃
n

})1/r
 (E⌦n

p

(|p̂
n

(t)� p(t)|r))1/r + (E⌦n

p

|p(t)� p̂
n

(t)|r {p̂
n

(t) < ↵̃
n

})1/r
+ (E⌦n

p

|p̂
n

(t)|r {p̂
n

(t) < ↵̃
n

})1/r
 2(E⌦n

p

(|p̂
n

(t)� p(t)|r))1/r + ↵̃
n

.

That is, the threshold does not a↵ect the performance of the estimator in regime
(ii) (up to a logarithmic term).
The case p(t)  n��/(�+d) is more involved. We show the bound

lim sup
n

sup
p2P

d

(�,L)

sup
t2Rd

:

p(t)n

��/(�+d)

�

E⌦n

p

|p̂
n

(t) · {p̂
n

(x) > ↵̃
n

}� p(t)|r�1/r

#n

p(t),�

(log n)
3

2

_⇣

1

< 1.

By Minkowski’s inequality it su�ces to prove

lim sup
n

sup
p2P

d

(�,L)

sup
t2Rd

:

p(t)n

��/(�+d)

�

E⌦n

p

p̂
n

(t)r · {p̂
n

(x) > ↵̃
n

}�1/r

#n

p(t),�

(log n)
3

2

_⇣

1

< 1.

Recall from the construction of the density estimator in Subsection 3.2, that in case
of isotropic Hölder smoothness we simplify the method by replacing the ordering
by estimated variances in condition (3.8) ”for all m 2 J with �̂2

t

(m) � �̂2

t

(j)” by
the classical order ”for all m 2 J with m � j” as the componentwise ordering is
the same for all components. We decompose

�

E⌦n

p

(p̂
n

(t)r · {p̂
n

(t) > ↵̃
n

}) �1/r = S
1

+ S
2

with

S
1

=
⇣

E⌦n

p

h

p̂
n

(t)r · {p̂
n

(t) > ↵̃
n

} {ĥ > h̄}
i⌘

1/r

S
2

=
⇣

E⌦n

p

h

p̂
n

(t)r · {p̂
n

(t) > ↵̃
n

} {ĥ  h̄}
i⌘

1/r

,
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with h̄ as defined in (0.46). As concerns S
1

,

S
1

 c
1

⇢

P⌦n

✓

p̂
n

(t)� p̂
n,

¯

h

(t) >
1

2
↵̃
n

, ĥ > h̄

◆

+ P⌦n

✓

p̂
n,

¯

h

(t) >
1

2
↵̃
n

◆�

1/r

since p̂
n

 c
1

by construction. Using the selection procedure in the first probability
and the bound

E⌦n

p

p̂
n,

¯

h

(t)  b
t

(h̄) + p(t)  c(�, L)h̄� + n� �

�+d ,

which is bounded by ↵̃
n

/4 for all n � n
0

and suitable n
0

2 N not depending on p
since ⇣

1

> �/(� + d). Thus, the term S
1

is for n � n
0

bounded by

c
1

⇢

P⌦n

✓

q

�̂2

t,trunc

(h̄) log n >
1

2
↵̃
n

◆

+ P⌦n

✓

p̂
n,

¯

h

(t)� E⌦n

p

p̂
n,

¯

h

(t) >
1

4
↵̃
n

◆�

1/r

.

Denoting

A
¯

h

:=

(

�

�

�

�

�

�̃2

t,trunc

(h̄)

�2

t,trunc

(h̄)
� 1

�

�

�

�

�

<
1

2

)

,

we obtain

P⌦n

✓

q

�̂2

t,trunc

(h̄) log n >
1

2
↵̃
n

◆

 P⌦n(Ac

¯

h

) + P⌦n

 

r

3

2
�2

t,trunc

(h̄) log n >
1

2
↵̃
n

!

.

The second term in the last inequality vanishes by Lemma 5.4 and the choice of ⇣
1

,
while

P⌦n(Ac

¯

h

)  2 exp

✓

3

32kKk
sup

log2 n

◆

according to Lemma 5.3. As concerns S
2

,

S
2

 c
1

P⌦n(ĥ  h̄)1/r.

If ĥ > h̄, then h̄ cannot be an admissible bandwidth, see (3.7), because ĥ had not
been chosen in the minimization problem (3.9) otherwise. Hence, by definition there
exists a bandwidth h 2 G with h  h̄ such that

|p̂
n,

¯

h

(t)� p̂
n,h

(t)| > c
14

q

�̂2

t

(h) log n.

Following the lines for the bound on R� in the proof of Theorem 3.3, we obtain

P⌦n(ĥ  h̄) 
X

h2G

⇣

P⌦n(B
1,h

) + P⌦n(B
2,h

\A
h,

¯

h

) + P⌦n(Ac

h,

¯

h

)
⌘

,
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where

B
1,h

:=

(

�

�

�

p̂
n,

¯

h

(t)� E⌦n

p

p̂
n,

¯

h

(t)
�

�

�

>
1

2

✓

c
14

q

�̂2

t

(h) log n� 2c
15

(�, L)
q

�2

t,trunc

(h̄) log n

◆

, h  h̄

)

,

B
2,h

:=

(

�

�

�

p̂
n,h

(t)� E⌦n

p

p̂
n,h

(t)
�

�

�

>
1

2

✓

c
14

q

�̂2

t

(h) log n� 2c
15

(�, L)
q

�2

t,trunc

(h̄) log n

◆

, h  h̄

)

,

A
h,

¯

h

:=

(

�

�

�

�

�

�̃2

t,trunc

(h)

�2

t,trunc

(h)
� 1

�

�

�

�

�

<
1

2
and

�

�

�

�

�

�̃2

t,trunc

(h̄)

�2

t,trunc

(h̄)
� 1

�

�

�

�

�

<
1

2

)

.

The cardinality of G is of logarithmic size in n, while all probabilities can be bounded
by n�c with a constant c depending monotonously increasing on the constant c

14

of the bandwidth selection rule. Alltogether,

sup
p2P

d

(�,L)

sup
t2Rd

E⌦n

p

✓ |p̂
n

(t)� p(t)|
#n

p(t),�

(log n)
3

2

_⇣

1

◆

r

< 1.

Theorem A.1 (Fast adaptive convergence rate at the support boundary). For
any [�⇤

l

,�⇤
u

] ⇢ (0,1), [L⇤
l

, L⇤
u

] ⇢ (0,1) and r � 1, there exists a constant
c
3

(�⇤, L⇤, r) > 0, such that the new density estimator p̂
n

based on a compactly
supported kernel of order d�⇤

u

e with adaptively chosen bandwidth according to (3.9)
satisfies

sup
(�,L)2R(�

⇤
,L

⇤
)

sup
p2Piso

d

(�,L)

sup
t2Rd

:

d(�

c

p

,t) ( log n

n

)
1

�+d

E⌦n

p

✓ |p̂
n

(t)� p(t)|
⌧̃n
�

◆

r

 c
3

(�⇤, L⇤, r),

where ⌧̃n
�

:= n� �

�+d (log n)3/2.

Note that p̂
n

requires no a priori information about @�
p

. The result likewise
extends to the anisotropic setting because the Euclidean norm on Rd (in the def-
inition of d(�c

p

, t)) and the maximum norm kt � yk
max

= max
i=1,...,d

|t
i

� y
i

| are
equivalent.

Proof of Theorem A.1. The proof follows the same lines as the proof of The-
orem 3.3 except for the following modifications. We write

E⌦n

p

|p̂
n,

ˆ

j

(t)� p(t)|r = E⌦n

p

h

|p̂
n,

ˆ

j

(t)� p(t)|r · {ĵ  j̄}
i
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+ E⌦n

p

h

|p̂
n,

ˆ

j

(t)� p(t)|r · {ĵ > j̄}
i

=: R̃+ + R̃�,

where this time R̃+ is decomposed as

R̃+  2r�1

✓

E⌦n

p

h

|p̂
n,

ˆ

j

(t)� p̂
n,

¯

j

(t)|r · {ĵ  j̄}
i

+E⌦n

p

h

|p̂
n,

¯

j

(t)� p(t)|r · {ĵ  j̄}
i

◆

=: 2r�1(S̃
1

+ S̃
3

).(0.27)

Here, j̄ corresponds to the reference bandwidth h̄ defined in (0.46). We need to
verify the bounds

B
t

(j̄)  c(�, L)
q

�2

t,trunc

(j̄) log n(0.28)

q

�2

t,trunc

(j̄)  c(�, L)

✓

log n

n

◆

�

�+d

(0.29)

for isotropic Hölder smoothness of arbitrary � > 0 and d(�c

p

, t)  (log n/n)1/(�+d).

Since for any x 2 Rd the corresponding value of p is bounded by p(x)  Ld(�c

p

, x)�

and in particular p(t)  L (log n/n)�/(�+d), we obtain

h̄  c(�, L)

✓

log n

n

◆

1

�+d

The first bound (0.28) is a consequence of the classical upper bound on the bias for
higher order kernels, whereas the second bound (0.29) follows by Lemma 5.1 (iii).
The terms S̃

1

and S̃
3

in (0.27) then require no further arguments. As concerns R̃�,
it remains to investigate

P⌦n

⇣

ĵ > j̄
⌘


X

m>

¯

j

P⌦n

✓

|p̂
n,

¯

j

� p̂
n,m

(t)| > c
14

q

�̂2

t

(m) log n

◆

.

Note that only indices m > j̄ are taken into account. In order to line up with the
previously developed arguments, it is su�cient to prove

�2

t,trunc

(j̄)  c(�, L)�2

t,trunc

(m)(0.30)

for all m > j̄. Since p(t)  Ld(�c

p

, t)�  L(log n/n)�/(�+d), the reference bandwidth
h̄ satisfies

c
11

(�, L)

✓

log n

n

◆

1

�+d

 h̄  c
26

(�, L)

✓

log n

n

◆

1

�+d
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for some constant c
26

(�, L) > c
11

(�, L). By Lemma 5.1 (iii),

�2

t

(h̄)  LkKk2
2

nh̄d

(c
26

(�, L) + 1)�
✓

log n

n

◆

�

�+d

 c(�, L)
log2 n

n2h̄2d

,

which is for h < h̄ smaller than

log2 n

n2h2d

 �2

t,trunc

(h),

that is, (0.30) is verified. The further proof can then be conducted as before for
Theorem 3.3.

A.3. Proofs of Section 4.

Theorem (Theorem III.2.2, Chavel 2001) Given any compact set K ⇢ Rd, let
D denote the closed d-disc of the same measure as K, i.e. �d(D) = �d(K). Then

�d(D")  �d(K")

for all " > 0.

Proof of Lemma 4.2. We first show the necessity of ��  1. Let p 2 Piso

d

(�, L),
and let y be an arbitrary point in the open set �c

p

. Then p is constant zero in a
neighborhood of y, i.e. all derivatives are zero in y and thus

p(x) =
�

�

�

p(x)� P
(p)

y,b�c(x)
�

�

�

 Lkx� yk�
2

for any x 2 Rd and therefore

p(x)  L (d(@�
p

, x))�

with d as defined in (0.1). Consequently,

�d
⇣

{x 2 Rd | 0 < p(x)  "}
⌘

� �d
⇣

{x 2 �
p

| 0 < L (d(@�
p

, x))�  "}
⌘

= �d
⇣

{x 2 �
p

| 0 < d(@�
p

, x)  ("/L)1/�}
⌘

.

It remains to prove that

lim inf
"&0

�d
⇣

{x 2 �
p

| 0 < d(@�
p

, x)  ("/L)1/�}
⌘

"1/�
> 0.

Let K
⌘

denote the closed Euclidean ball with volume

�d
�

��⌘

p

�

, ⌘ > 0.
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For � = ("/L)1/� ,

�d
�

�
p

\ ���

p

� � �d
⇣

�

���

p

�

� \ ���

p

⌘

= �d
⇣

�

���

p

�

�

⌘

� �d
�

���

p

�

� �d
�

(K
�

)�
�� �d

�

���

p

�

(0.31)

= �d
�

(K
�

)� \K
�

�

,

where the isoperimetric inequality for the Minkowski area of compact sets (Theorem
III.2.2, Chavel 2001) is applied in inequality (0.31). Since �

p

has non-empty interior,
because it is the support of a continuous Lebesgue density, there exists some �

0

> 0
such that

�d
�

���

0

p

�

> 0.

Finally,
�d

�

(K
�

)� \K
�

� � �d
�

(K
�

0

)� \K
�

0

�

for all �  �
0

, while

lim inf
�&0

�d
�

(K
�

0

)� \K
�

0

�

�
> 0,

which implies ��  1.
Finally, we need to show that for any � > 0, � > 0 with ��  1, there exists a
compactly supported density p 2 Piso

d

(�, L) which satisfies the margin condition to
the exponent �. For this aim, it remains to verify that the density K(·,�) of (0.55)
in Section A.4 satisfies the margin condition to any exponent �  1/�, which is
shown in the proof of Theorem 4.4.

Let K
g

(·) = g�dK(·/g) with g = g
�,L/2,d

be the specific kernel given by (0.55)
in Section A.4, and define K(· ;h,�) := h�K(·/h;�). The proof of Theorem 4.4
requires sharp estimates of the Lebesgue volume

⇤
d

(K
g

(· ;h,�), ") := �d
⇣

{x 2 Rd : 0 < K
g

(x;h,�)  "}
⌘

(0.32)

of complementary level sets of K
g

(· ;h,�), provided by the following lemma.

Lemma 0.1. There exists a constant c
29

(�) > 0, such that for any bandwidths
g, h, and any

"  c
29

(�)h�g�d,

the volume of the complementary level set defined in (0.32) is upper bounded by

⇤
d

(K
g

(· ;h,�), ")  c
29

(�)�
1

� dV
d

· (gh)d�1g
�+d

� "
1

� ,

where V
d

denotes the volume of the d-dimensional unit ball.
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Proof. Since K(·,�) is uniformly bounded away from zero on B
�

(0) for any
� < 1,

"
0

(�) := inf
z2B

1

2

(0)

K(z,�) > 0.

Hence, since w(x) (with w specified in (0.55)) is monotonously increasing in kxk
2

,

n

x 2 Rd : 0 < K(x,�)  "
o

⇢
n

x 2 Rd : 0 < c
30

(�)w(1/2)(1� kxk
2

)�
+

 "
o

for 0 < " < "
0

. Consequently, whenever " < h�g�d"
0

,

n

x 2 Rd : 0 < K
g

(x;h,�)  "
o

⇢ �

x 2 Rd : 0 < Q
g,h

(·,�)  "
 

with

Q
g,h

(·,�) := c
30

(�)w(1/2)
h�

gd

✓

1�
w

w

w

w

·
gh

w

w

w

w

2

◆

�

+

.

It remains to bound ⇤
d

(Q
g,h

(·,�), ") for any " < h�g�d"
0

. Note first that both, the
support and the level sets ofQ

g,h

(·,�) are concentric balls, and hence ⇤
d

(Q
g,h

(·,�), ")
is for

" < h�g�d

(

"
0

^
✓

1

2

◆

�

c
30

(�)w(1/2)

)

(0.33)

the volume of a spherical shell with inner radius larger than the radius gh/2. The
volume of a d-dimensional spherical shell with outer radius R and inner radius
r  R equals

�d(B
R

(0))� �d(B
r

(0)) = V
d

(Rd � rd) = V
d

(R� r)
d�1

X

j=0

rjRd�1�j ,(0.34)

which in turn is directly upper bounded by dV
d

Rd�1(R�r). Since Q
g,h

(·,�) attains
" on the sphere with radius

gh� [c
30

(�)w(1/2)]�
1

� g
�+d

� "
1

�

for " satisfying (0.33),

⇤
d

(K
g

(· ;h,�), ")  [w(1/2)c
30

(�)]�
1

� dV
d

· (gh)d�1g
�+d

� "
1

� .

Proof of Theorem 4.4. Since we measure the risk with respect to the L
1

-type
distance d

�

it does not su�ce to reduce the problem to two hypotheses. Instead,
we use Assouad’s hypercube technique where the hypotheses constitute an m-
dimensional hypercube and thereby reduce the problem of testing m problems to m
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problems of testing two hypotheses. As before, we construct a Hölder smooth den-
sity with prescribed regularity (�, L) using the functionK

g

(x;�) and a perturbation
based on K

g

(x;h
n

,�) with bandwidth

h
n

:= (2n)�
1

�+d .(0.35)

Recall that K
g

(·;h
n

,�) implicitly depends on L via g. Furthermore, choose

m
n

= bh���d

n

c+ 1.(0.36)

Again, denote by B
r

(x) the closed Euclidean ball with radius r around x. Now
choose points z

i

= (z
i,1

, . . . , z
i,d

), i = 1, . . . ,m
n

in B
g/2

(0) separated in each coor-
dinate by at least 2gh

n

, which is possible for n large enough since the total support
volume of all perturbations is of the order m

n

(gh
n

)d and tends to zero. These points
are shifted outside the support of K

g

and the new points are denoted by

z0
i,1

= z
i,1

+ 2g,

z0
i,j

= z
i,j

, j = 2, . . . , d

for i = 1, . . . ,m
n

. Then, for ! = (!
1

, . . . ,!
m

n

) 2 ⌦ := {0, 1}mn denote the hy-
potheses by

p
!,n

(x) = K
g

(x;�) +
m

n

X

k=1

!
k

[K
g

(x� z0
k

;h
n

,�)�K
g

(x� z
k

;h
n

,�)] ,

their supports by �
p

!,n

and the corresponding probability measures by P
!,n

. Obvi-
ously, p

!,n

is for su�ciently large n a density again and is contained in P
d

(�, L).
We will now show that p

!,n

has the right margin exponent as well. For su�ciently
large n it holds

⇤
d

(p
!,n

, ") ⇤
d

(K
g

, ")

+m
n

⇤
d

(K
g

(· ;h
n

,�), ")
�
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(�)h�

n

g�d

 

+ 2m
n

V
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· (gh
n

)d
�

" > c
29

(�)h�
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g�d

 

.

(0.37)

Now, because m
n

 h���d

n

+ 1  2h���d

n

, Lemma 0.1 yields

m
n

⇤
d

(K
g

(· ;h
n

,�), ") · �

"  c
29

(�)h�

n

g�d

 

(0.38)

 c(�, L) · h���d

n

hd�1

n

"
1

� · �

"  c
29

(�)h�

n

g�d

 

= c(�, L) · h���1

n

"
1

� · �

"  c
29

(�)h�

n

g�d

 

 c(�, L) · "�� 1

� "
1

� · �

"  c
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(�)h�

n

g�d

 

= c(�, L) · "� · �

"  c
29

(�)h�

n

g�d

 

,(0.39)

where the last inequality is due to the property ��  1. Furthermore, since m
n

hd

n


2h��

n

, we can derive a similar bound for the last term in (0.37)

2m
n

V
d

· (gh
n

)d · �

" > c
29

(�)h�

n

g�d
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 c(�, L, �) · "� · �

" > c
29

(�)h�

n

g�d

 

.(0.40)

Clearly, for "  c
29

(�)h�

n

g�d ^ 1, Lemma 0.1 also yields

⇤
d

(K
g

, ")  c(�, L) · " 1

�  c(�, L) · "�(0.41)

using the property ��  1 again. In summary, inequality (0.37) simplifies with
(0.38), (0.40) and (0.41) for "  c

29

(�)h�

n

g�d ^ 1 to

⇤
d

(p
!,n

, ")  c(�, L, �) · "� ,
i.e. there exist constants 

1

= 
1

(�, L) and 
2

= 
2

(�, L, �) such that p
!,n

fulfills
the -margin condition.
It remains to show that p

!,n

also satisfies the complexity condition to the expo-
nent µ = ��. To check this condition, two di↵erent types of decompositions are
considered, depending on whether "  gh

n

or " > gh
n

. For "  gh
n

we consider
the canonical disjoint decomposition �

p

!,n

= �
p

!,n

[ ; =: A
1,"

[ A
2,"

. Clearly, by
formula (0.34),
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⇣
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 dV
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 c(�, L, �, d) · "��(0.42)

where inequality (0.42) follows from ��  1. For " > gh
n

let ⇠
1

be an arbitrary
constant and choose the following decomposition for the complexity condition

�
p

!,n
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(0) [
[

k :!

k
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B
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(z0
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(0.43)

Then for all "  ⇠
1

similar calculations as before yield

�d (B
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(0)" \ B
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(0))  dV
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· (g + ")d�1"

 dV
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· (g + ⇠
1

)d�1⇠1���

1

"�� ,

where the last inequality again follows from ��  1. To check the complexity
condition it remains to upper bound the Lebesgue volume of the second part in the
decomposition (0.43). For gh

n

< "  ⇠
1

,
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 2V
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i.e. there exist constants ⇠
1

= ⇠
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(�, L, �) and ⇠
2

= ⇠
2

(�, L, �) such that �
p

!

n

satisfies
the ⇠-complexity condition to the exponent µ = ��. The further proof accomplishes
two tasks. Firstly, the minimax risk will be reduced to the form
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!̂

sup
!2⌦

E⌦n

!,n

⇢(!̂,!),

where ⇢ is the Hamming distance and expectation is taken with respect to P⌦n

!,n

.
Afterwards, Assouad’s lemma can be applied and it remains to bound a suitable
distance of all neighboring probability measures with Hamming distance one. For
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and due to the non-negativity of the integrand this expression can be estimated
from below by
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which in turn simplifies to
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where the infimum runs over all measurable !̂ = !̂(X
1

, . . . , X
n

) with values in
{0, 1}mn . Now we use the Hellinger version of Assouad’s lemma, cf. Theorem 2.12
(iii) in Tsybakov (2009), to bound the expression on the right-hand side of (0.44).
For this purpose, the squared Hellinger distance between two arbitrary probability
measures P

!,n

and P
!

0
,n

with !,!0 2 ⌦ and ⇢(!,!0) = 1 has to be bounded and
we use inequality (0.23) for this purpose. Of course, ! and !0 coincide except for
one component, say j. Again, by Bernoulli’s inequality
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By the choice of h
n

in (0.35), this distance is bounded by one which yields together
with (0.36) and inequality (0.44), see Tsybakov (2009),
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For the proof of Theorem 4.5 we need the following lemma, which is based on
the work of Tsybakov (2004) and has been formulated for the problem of level set
estimation by Rigollet and Vert (2009), Proposition A.1. The proof likewise holds for
the support estimation problem and is transferred without any major modifications.
However, we additionally need to verify that the bound holds uniformly over the
class of densities satisfying the -margin condition to the exponent �.

Lemma 0.2. For any density p which satisfies the -margin condition with ex-
ponent � > 0, there exists a constant c

18

(, �) such that the Lebesgue volume of a
measurable subset G of �

p

is bounded by

�d(G)  c
18
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✓

Z
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p(x) d�d(x)
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.
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Proof. First note that for any p satisfying the -margin condition to the expo-
nent � > 0,
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Plugging this specific " in (0.45) yields
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We now turn to the proof of the upper bound on the support estimator’s risk, which
can be proved for c

5

satisfying

c
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Proof of Theorem 4.5. We prove an upper bound on the risk with respect
to the symmetric di↵erence of sets for some p 2 P

d

(�, L, �,, ⇠). All constants hold
uniformly in p over this class. For notational convenience, we write p̂

n

(x) = p̂
n,

ˆ

j

(x)

and denote by j̄ = j̄(x) the exponent corresponding to the reference bandwidth
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with h̄(x)/2  2�¯

j(x)  h̄(x). We decompose the error into the two di↵erent kinds
of errors
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and start with E
1

. We split E
1

again

E
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(0.48)

We start with E
1,1

. Since
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(x) again denoting the Euclidean ball with radius r around x. The support
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is assumed to satisfy the complexity condition 4.3 to the exponent µ = ��. Note
that �
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1

for su�ciently large n � n
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). We denote by �
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and �
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related disjoint decomposition of �
p

. Then,
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The expectation of the first Lebesgue volume is immediately controlled by the
complexity condition
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The expectation of the second Lebesgue volume is also controlled by the complexity
condition
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where V
d

again denotes the volume of the d-dimensional unit ball. Considering the
third expectation in (0.49), let z be some point with p(z) > ↵

n

and y any point in
the open set �c

p

. Then p is constant zero in a neighborhood of y, i.e. all derivatives
are zero in y and thus
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. Therefore, the third expectation vanishes and finally

E
1,1

 c(�, L, ⇠
2

)

✓

log n

n

◆

��

�+d

(log n)2.



32

Regarding E
1,2

in (0.48), only the points x 2 Rd that belong to (
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The second part of the proof is partially based on the proof for density level sets of
Rigollet and Vert (2009). The second type of error E

2

in (0.47) has to be estimated.
Since �
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is a subset of the support �
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, Jensen’s inequality and Lemma 0.2
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Furthermore, the support can be decomposed as follows
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For x 2 �
0

we estimate p(x) from above and use the margin condition such that
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For q � 1, we distinguish between the error of stopping too late and stopping too
early, leading to the following decomposition
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We start with the first probability in (0.50)
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Furthermore, x 2 �
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A.4. (�, L)-regular kernels. The proofs of Theorem 3.1, Theorem 3.4
and Theorem 4.4 make use of the following specific constructions of functions with
prescribed Hölder regularity (�, L). The first construction, which is appealing due
to its simplicity, is taken from Rigollet and Vert (2009). Note that it works for
�  2 only because the second derivative is not continuous. Define the function
K : Rd ! R by
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(0.54)

with the normalizing constant c
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(�) ensuring that K integrates to one, and f
+

=
max{f, 0} the positive part for a real-valued function f .
The second construction is a pointwise convex combination
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and the normalizing constant c
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(�). The idea behind is that (1� kxk
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)�
+

is domi-
nating when kxk

2

is close to one, while the choice of u and of the weight w guaran-
tees that K(·,�) remains b�c-times di↵erentiable at zero. Note that u has Hölder
regularity to the exponent � for every � > 0, see Tsybakov (2009), Section 2.5.

Lemma 0.3. For any � > 0, the kernel K(·,�) in (0.55) is Hölder continuous
to the exponent �.
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For both constructions, (0.54) and (0.55), the dependence of K(·,�) on � is
omitted when there is no ambiguity. The function K(·,�) is supported on the
closed Euclidean unit ball B

1

(0), integrates to one (by definition of c
17

(�) and
c
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(�), respectively) and has Hölder regularity (�, L̃) for a constant L̃ = L̃(�).
Recall that K(x;h,�) := h�K(x/h;�) has the same Hölder regularity as K, but
does not necessarily integrate to one, whereas K

h

(x;�) := h�dK(x/h;�) is the
rescaled kernel having the same Hölder parameter � but not necessarily the same
parameter L̃ and is still integrating to one. With the choice
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d

(�, L).

In case of anisotropic smoothness we frequently use the product kernelK =
Q

d

i=1

K
i

with factors K
i

= K
g

�

i

,L,1

.

Proof of Lemma 0.3. Rewriting

K(x;�) = c
30

(�) (w(x)d(x) + u(x)) ,

with d(x) = (1� kxk
2

)�
+

� u(x), it remains to prove that w · d has the Hölder
exponent �. For �  1, this is an easy consequence of

|w(x)d(x)� w(y)d(y)|  |w(x)| · |d(x)� d(y)|+ |d(y)| · |w(x)� w(y)|
because both w and d are uniformly bounded on B

1

(0), while being Hölder contin-
uous to the exponent �.

We now treat the case � > 1.

Case 1: (kxk
2

� 1 and kyk
2

� 1) Condition (4.1) obviously holds.

Case 2: (kxk
2

� 1 and kyk
2

< 1) The expression (w · d)(x) equals zero. Using the
definition of the derivative via the di↵erence quotient, w ·d is shown to be b�c-times
continuously di↵erentiable at y = 0 with value zero. Hence, its Taylor polynomial

P
(wd)

0,b�c vanishes. If y 6= 0, both d and w are b�c-times di↵erentiable in y and

�

�

�

(w · d)(x)� P
(wd)

y,b�c(x)
�

�

�

=
�

�

�

P
(wd)

y,b�c(x)
�

�

�

with the Taylor polynomial

P
(wd)

y,b�c(x) =
X

|n|b�c

�
n

(y)(x
1

� y
1

)n1 · · · (x
d

� y
d

)nd(0.56)

and the coe�cients

�
n

(y) =
X

k+l=n

1

|k|! |l|!
✓ |k|
k
1

, . . . , k
d

◆✓ |l|
l
1

, . . . , l
d

◆

Dkw(y)Dld(y),
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where
✓ |k|
k
1

, . . . , k
d

◆

=
|k|!

k
1

! · · · k
d

!

denotes the multinomial coe�cient. For l 2 Nd with 1  |l|  b�c,

Dld(y) = �(� � 1) · · · (� � |l|+ 1) (1� kyk
2

)��|l|
d

Y

i=1

(� sgn y
i

)li {y
i

6= 0}�Dlu(y)

where Dlu(·) is of the form

Dlu(y) = u(y) ·
|l|
X

k=1

Q
k

(y)

(1� kyk2
2

)
k+1

with polynomials Q
k

, k = 1, . . . , |l| in at most d variables of degree at most |l|.
Using the representation of 1/(1 � kyk2

2

) as geometric series as well as the series
expansion of the logarithm, we get

p

u(y)

(1� kyk
2

)m
+

= exp

✓

�1

2

1

1� kyk2
2

�m log
⇣

(1� kyk
2

)
+

⌘

◆

! 0(0.57)

for any m 2 N, as kyk
2

approaches one from below. Hence, there exists a constant
c
31

(�) 2 (0, 1), such that
p

u(y)  (1�kyk
2

)��m

+

for all 1  m  b�c and for all y
with kyk

2

� c
31

(�). For any y with kyk
2

< c
31

(�),

p

u(y)  1
p

exp(1)
 1

(1� c
31

(�))�
p

exp(1)
(1� kyk

2

)��m

+

for any 1  m  b�c. Summarizing,

|Dlu(y)| 
 

1

(1� c
31

(�))�
p

exp(1)
_ 1

!

(1� kyk
2

)��|l|
+

0

@

p

u(y) ·
|l|
X

k=1

|Q
k

(y)|
(1� kyk2

2

)
k+1

+

1

A

 C

 

1

(1� c
31

(�))�
p

exp(1)
_ 1

!

(1� kyk
2

)��|l|
+

,

with a constant

C = sup
y:kyk

2

<1

0

@

p

u(y) ·
|l|
X

k=1

|Q
k

(y)|
(1� kyk2

2

)
k+1

+

1

A ,

which is due to (0.57) and the uniform boundedness of the polynomials Q
k

, k =
1, . . . , |l|, on the closed unit ball. Finally,

c
d

= sup
y:0<kyk

2

<1

|Dld(y)|
(1� kyk

2

)��|l|
+

< 1.
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Furthermore,
c
w

= max
k:1|k|b�c

sup
y:kyk<1

|Dkw(y)| < 1,

because the partial derivatives are products of w(y) and rational functions with a
pole in zero only. Summarizing,

|�
n

(y)| 
X

k+l=n

1

|k|! |l|!
✓ |k|
k
1

, . . . , k
d

◆✓ |l|
l
1

, . . . , l
d

◆

c
d

c
w

(1� kyk
2

)��|l|
+

 (1� kyk
2

)��|n|
+

c
d

c
w

X

k+l=n

1

|k|! |l|!
✓ |k|
k
1

, . . . , k
d

◆✓ |l|
l
1

, . . . , l
d

◆

 kx� yk��|n|
2

c
d

c
w

X

k+l=n

1

|k|! |l|!
✓ |k|
k
1

, . . . , k
d

◆✓ |l|
l
1

, . . . , l
d

◆

as kxk
2

� 1. Together with (0.56), this proves

sup
x,y:kxk

2

�1,kyk
2

<1

�

�

�

(w · d)(x)� P
(wd)

y,b�c(x)
�

�

�

kx� yk�
2

= sup
x,y:kxk

2

�1,kyk
2

<1

|P (wd)

y,b�c(x)|
kx� yk�

2

< 1.

Case 3: (kxk
2

< 1 and kyk
2

� 1) The Taylor polynomial P (wd)

y,b�c(x) vanishes, such
that

�

�

�

(w · d)(x)� P
(wd)

y,b�c(x)
�

�

�

= |(w · d)(x)|  |d(x)|  (1� kxk
2

)�
+

+ u(x).

By the same arguments as in (0.57) and below, there exists a constant c
32

(�) 2
(0, 1), such that u(x)  (1� kxk

2

)�
+

and hence
�

�

�

(w · d)(x)� P
(wd)

y,b�c(x)
�

�

�

 2 (1� kxk
2

)�
+

for all x with kxk
2

� c
32

(�). For x with kxk
2

< c
32

(�), note first that w · d is by
triangle inequality uniformly bounded from above by 1 + exp(�1), implying

�

�

�

(w · d)(x)� P
(wd)

y,b�c(x)
�

�

�

<
1 + exp(�1)

(1� c
32

(�))�
(1� kxk

2

)�
+

for all x with kxk
2

< c
31

(�). Summarizing,
�

�

�

(w · d)(x)� P
(wd)

y,b�c(x)
�

�

�

 c (1� kxk
2

)�
+

 c (kyk
2

� kxk
2

)�  c kx� yk�
2

for

c = max

⇢

2,
1 + exp(�1)

(1� c
31

(�))�

�

.

Case 4: (kxk
2

< 1 and kyk
2

< 1) If y = 0, then P
(wd)

y,b�c vanishes and it remains to
note that

sup
x:0<kxk

2

<1

|(wd)(x)|
kxk�

2

< 1.



40

From now on we assume y 6= 0. By the triangle inequality
�

�

�

(w · d)(x)� P
(wd)

y,b�c(x)
�

�

�

(0.58)

 kwk
sup

�

�

�

d(x)� P
(d)

y,b�c(x)
�

�

�

+ kP (d)

y,b�c(·)ksup
�

�

�

w(x)� P
(w)

y,b�c(x)
�

�

�

+
�

�

�

P
(w)

y,b�c(x)P
(d)

y,b�c(x)� P
(wd)

y,b�c(x)
�

�

�

(0.59)

with the Taylor polynomial P (wd)

y,b�c as defined in (0.56). As concerns the product

P
(w)

y,b�c(x) · P (d)

y,b�c(x) =
X

|n|2b�c

�̃
n

(y)(x
1

� y
1

)n1 · · · (x
d

� y
d

)nd ,

we have �
n

(y) = �̃
n

(y) for 0  |n|  b�c. For b�c < |n|  2b�c, the coe�cient
�̃
n

is a linear combination of products Djw(y)Dj

0
d(y) with 0  j, j0  b�c, which

are uniformly bounded in y 2 Rd \ {0}. For d, this can be easily checked via the
explicit form of the derivatives (note that d is not di↵erentiable at zero), while w
is b�c-times continuously di↵erentiable and of compact support. Hence, (0.59) is
bounded by

X

b�c<|n|2b�c

sup
0<kzk

2

<1

|�̃
n

(z)| max
i=1,...,d

|x
i

� y
i

||n|


X

b�c<|n|2b�c

sup
0<kzk

2

<1

|�̃
n

(z)| 2|n|
✓kx� yk

2

2

◆|n|


✓kx� yk

2

2

◆

�

X

b�c<|n|2b�c

sup
0<kzk

2

<1

|�̃
n

(z)| 22b�c

= kx� yk�
2

X

b�c<|n|2b�c

sup
0<kzk

2

<1

|�̃
n

(z)| 22b�c�� .

Therefore, (0.58) is bounded by kx � yk�
2

times a constant, the latter uniformly
bounded in x, y 2 B

1

(0).

Combining Case 1-4 implies that wd 2 H iso

d

(�, L̃) for some constant L̃ > 0.
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