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§1. Introduction. The main method for obtaining a sharp maximal
inequalities

§2. Maximal inequalities for standard Brownian motion and it’s modulus.
Martingale and «Stefan problem» approaches

§3. Maximal inequalities for skew Brownian motion. Solution to the
corresponding Stefan problem

§4. Maximal inequalities for Bessel processes. Solution to the
corresponding Stefan problem

§5. Doob maximal inequalities

3



TOPIC II: Sharp maximal inequalities for discrete
time processes

§1. Maximal inequalities for modulus of simple symmetric Random
walk

§2. Maximal inequalities for simple symmetric Random walk

4



TOPIC I: Sharp maximal inequalities for continuous
time processes

§1. Introduction. The main method for obtaining a sharp maximal
inequalities

Let X = (Xt)t>0 be a process on (Ω,F ,P) with natural filtration
F = (Ft)t>0, Ft = σ(Xs, s 6 t). For any Markov time τ w.r.t. (Ft)t>0
the inequalities

E

(
sup

06t6τ
Xt

)
6 CX · f(Eg(τ)) (∗)

are called maximal inequalities for X. Here CX is a constant, f(·)
and g(·) are some functions.

Markov times τ = τ(ω) usually belong to the set

M = {τ −Markov time w.r.t. (Ft)t>0, Eτ <∞}.
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The inequality (*) is called sharp maximal inequality if there exist a

non-trivial Markov time τ̂ ∈M such that E
(

sup
06t6τ̂

Xt

)
= CX ·f(Eg(τ̂)).

Examples of maximal inequalities for some well-known processes
include (Graversen, Peskir, Shiryaev 1998–2001):

• for geometric Brownian motion Xt = exp(σBt + (µ − σ2/2)t)
with µ < 0, σ > 0:

E
(

max
06t6τ

Xt

)
6 1−

σ2

2µ
+
σ2

2µ
exp

(
−

(σ2 − 2µ)2

2σ2
Eτ − 1

)
;

• for Ornstein-Uhlenbeck process (Xt)t>0 with dXt = −βXtdt+
dBt, β > 0:

C1√
β
E
√

ln(1 + βτ) 6 E
(

max
06t6τ

|Xt|
)
6

C2√
β
E
√

ln(1 + βτ),

where C1, C2 > 0 are some universal constants;
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• for “bang-bang process” (Xt)t>0 with dXt = −µ sgn(Xt)dt +

dBt, µ > 0:

E
(

max
06t6τ

|Xt|
)
6 Gµ(Eτ),

where Gµ(x) = inf
c>0

(
cx+

1

2µ
ln
(

1 +
µ

c

))
.
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Assume that X = (Xt)t>0 is the Markov process. For given measurable
functions L = L(x) and K = K(x) we define

It =
∫ t

0
L(Xs)ds, St = max

06s6t
K(Xs), t > 0.

s

x0

s = x

(Xt, St)

Consider the following optimal stopping problem:

V∗(c) = sup
τ

E (F(Iτ ,Xτ ,Sτ)− cG(Iτ ,Xτ ,Sτ)) , (1)

where F,G are given measurable functions, τ ∈ M, c > 0 is a
parameter.
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Suppose we solved the problem (1) and found the function V∗(c).
Then for any τ and c we have

EF (Iτ , Xτ , Sτ) 6 V∗(c) + c EG(Iτ , Xτ , Sτ))

Taking the infimum on both sides by c > 0 we obtain the inequality

EF(Iτ ,Xτ ,Sτ) 6 H(EG(Iτ ,Xτ ,Sτ)) := inf
c>0

(V∗(c) + c EG(Iτ ,Xτ ,Sτ))

(2)

which is true for any Markov time τ ∈ M. If infimum is minimum
and it is achieved on some c∗ > 0 then inequality (2) is sharp.

The corresponding solution τ∗(c) of problem (1) when c = c∗ is a
stopping time on which (2) becomes an equality.
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Consider the particular case F (x, y, z) = z, G(x, y, z) = x, L(x) =

c(x), K(x) = x. The function c = c(x) is assumed to be positive and
continuous and it is called cost for observations. We obtain the
following optimal stopping problem:

V∗(x, s) = sup
τ

Ex,s

(
Sτ −

τ∫
0
c(Xt)dt

)
,

(3)

where

• Es,x, s > x is expectation under the measure
Px,s = Law(X,S |P, X0 = x, S0 = s)

• τ is the optimal stopping time such that Ex,s

(
τ∫
0
c(Xt)dt

)
<∞
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In addition we assume that X = (Xt)t>0 is a diffusion process and
it is a solution of stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = 0,

where B = (Bt)t>0 is the Brownian motion on (Ω,F ,P). Diffusion
coefficient σ = σ(x) > 0 and drift coefficient b = b(x) are continuous.

We need to know a scale function R = R(x) and a speed measure
m = m(x) in order to obtain a solution of the problem (3). It is well
known that in the case of diffusion process X we have

R(x) =

x∫
exp

− y∫ 2b(u)

σ2(u)
du

 dy, x ∈ R,

m(dx) =
2dx

R
′(x)σ2(x)
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From the general optimal stopping theory we may decompose the
state space E = {(x, s) ∈ R2 : x 6 s, s > 0} of the process
(X,S), St = (max

u6t
Xu) ∨ s by

E = C∗ ∪D∗,

where

• C∗ = {(x, s) ∈ E : V∗(x, s) > s} is a continuation set. If (x, s) ∈
C∗ we need to continue our observations;

• D∗ = {(x, s) ∈ E : V∗(x, s) = s} is a stopping set. If (x, s) ∈ D∗
we need to stop our observations

Therefore if we start in C∗ we need to stop at the first time when the
process (X,S) reaches D∗. In other words, τ∗ = inf{t > 0 : (Xt, St) ∈
D∗}.

Proposition 1.The diagonal {(x, s) ∈ E : x = s} does not belong
to the continuation set C∗.
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Reduce the problem V∗(x, s) = sup
τ

Ex,s

(
Sτ −

τ∫
0
c(Xt)dt

)
to the optimal

stopping problem in standard formulation. Consider the process

At = a+
∫ t

0
c(Xu)du, a > 0

and observe that Zt = (At, Xt, St), t > 0, Z0 = (a, x, s) is a Markov
process. Define the function G̃(a, x, s) = s− a and observe that the
initial problem takes the form

Ṽ∗(a,x, s) = sup
τ

Ea,x,sG̃(Zτ),

where times τ are such that EAτ < ∞. However since Ṽ∗(a, x, s) =
V∗(x, s) − a it is sufficient to find the function V∗(x, s) i.e. to solve
2-dimensional optimal stopping problem for (X,S).

The infinitesimal operator of the process Z = (Zt)t>0 equals

LZ = c(x)
∂

∂a
+ LX = c(x)

∂

∂a
+ b(x)

∂

∂x
+
σ2(x)

2

∂2

∂x2
if x < s.
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Since the cost for observations c(x) is positive we should not allow
the process X to decrease too fast when s is fixed. It means that
for given s there exist a point g(s) such that we should stop the
observations when (X,S) achieves a point (g(s), s). In other words

τ∗ = inf{t > 0 : Xt 6 g(St)}

The unknown function g = g(s) is called the boundary of the
stopping set D∗.
The function V∗(x, s), g(s) < x 6 s is a solution of the system

(LXV )(x, s) = c(x) if g(s) < x < s, (4)
∂V

∂s
(x, s)

∣∣∣∣
x=s−

= 0 (normal reflection), (5)

V (x, s)|x=g(s)+ = s (instanteneous stopping), (6)
∂V

∂x
(x, s)

∣∣∣∣
x=g(s)+

= 0 (smooth fit), (7)

which is called a Stefan problem with moving boundary g = g(s).
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Explain the meaning of each equation (4)-(7).

• According to the general optimal stopping theory, LZV (x, s) = 0

when (x, s) ∈ C∗. Thus we get the equation (4);

• The instanteneous stopping condition (6) follows from the
fact that V (x, s) = s when (x, s) ∈ D∗;

• The smooth fit condition (7) means that the derivative of the
function V (x, s) is contintinuous on the boundary of C∗ and D∗;

• Clarify the normal reflection condition.

Applying the Ito formula for semimartingales

df(Xt, St) = f
′
x(Xt, St)dXt + f

′
s(Xt, St)dSt +

1

2
f
′′
xx(Xt, St)d〈X,X〉t

to the process (f(Xt, St))t>0, taking the expectation Es,s on both
sides and multiplying on t−1 we get
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Es,sf(Xt, St)− f(s, s)

t
= Es,s

1

t

t∫
0

LXf(Xu, Su)du

+

Es,s

1

t

t∫
0

∂f

∂s
(Xu, Su)dSu

 −→ LXf(s, s) +
∂f

∂s
(s, s)

(
lim
t↓0

Es,s(St − s)
t

)

as t ↓ 0. Since the diffusion coefficient σ > 0 as t ↓ 0 we have

1

t
Es,s(St − s)→∞

Therefore the condition f
′
s(s, s) = 0 assures us that the limit LXf(s, s)+

∂f

∂s
(s, s)

(
lim
t↓0

Es,s(St − s)
t

)
is finite.
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Find the functions V (x, s) and g(s) – the solutions of system (4)-(7).
Denote

τg = inf{t > 0: Xt 6 g(St)}, τg(s),s = inf{t > 0: Xt /∈ (g(s), s)}

and consider the function

Vg(x, s) = Ex,s

Sτg −
τg∫

0

c(Xt)dt

 .
Using the strong Markov property of X w.r.t. time τg(s),s when
x ∈ (g(s), s) we have

Vg(x, s) = sPx,s(Xτg(s),s = g(s)) + Vg(s, s)Px,s(Xτg(s),s = s)−

Ex,s

τg(s),s∫
0

c(Xt)dt =
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= s
R(s)−R(x)

R(s)−R(g(s))
+ Vg(s, s)

R(x)−R(g(s))

R(s)−R(g(s))
−

s∫
g(s)

Gg(s),s(x, y)c(y)m(dy),

where Ga,b(x, y) is the Green function of X on the segment [a, b]:

Ga,b(x, y) =



(R(b)−R(x))(R(y)−R(a))

R(b)−R(a)
if a 6 y 6 x,

(R(b)−R(y))(R(x)−R(a))

R(b)−R(a)
if x 6 y 6 b.

Rewrite the expression for Vg(x, s) in the following form:

Vg(s, s)− s =
R(s)−R(g(s))

R(x)−R(g(s))

Vg(x, s)− s+

s∫
g(s)

Gg(s),s(x, y)c(y)m(dy)
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Suppose that Vg(x, s) satisfies the smooth fit condition. Then

lim
x↓g(s)

Vg(x, s)− s
R(x)−R(g(s))

=
1

R
′(g(s))

∂Vg

∂x
(x, s)

∣∣∣∣
x=g(s)+

= 0,

lim
x↓g(s)

R(s)−R(g(s))

R(x)−R(g(s))

s∫
g(s)

Gg(s),s(x, y)c(y)m(dy) =

s∫
g(s)

(R(s)−R(y))c(y)m(dy).

Therefore we have

Vg(s, s) = s+

s∫
g(s)

(R(s)−R(y))c(y)m(dy),
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Finally we obtain

Vg(x, s) = s+
x∫

g(s)
(R(x)−R(y))c(y)m(dy),

(8)

for all g(s) 6 x 6 s.

Now suppose that the function Vg(x, s) is given by (8). Then it is
easy to show that Vg(x, s) is a solution of Stefan problem (4)-(7)
if and only if the boundary g = g(s) belongs to C1 and satisfies the
equation

g
′
(s) =

σ2(g(s))R
′
(g(s))

2c(g(s))(R(s)−R(g(s))
.

(9)
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Observe that the equation (9) has a whole family of solutions. We
need to specify the criteria which enables us to choose the solution
g∗ = g∗(s) – a boundary of the stopping set D∗.

We call the solution g(s) of the equation (9) an admissible solution
if g(s) < s for all s > 0.

Theorem [maximality principle]. The boundary g∗ = g∗(s) of the
stopping set D∗ in the problem

V∗(x, s) = sup
τ

Ex,s

Sτ − τ∫
0

c(Xt)dt

 (∗)

is a maximal admissible solution of the differential equation (9).
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Theorem. Consider the stopping problem (*) for diffusion process
X = (Xt)t>0 such that dXt = b(Xt)dt+σ(Xt)dBt. Supremum is taken
by all Markov times τ such that

Ex,s

 τ∫
0

c(Xt)dt

 <∞. (10)

Assume that there exist the maximal admissible solution g∗(s) of
(9). Then

1) The value function V∗(x, s) in problem (*) is finite and can be
determined on E by

V∗(x, s) =


s, if x 6 g∗(s),

s+
x∫

g∗(s)
(R(x)−R(y))c(y)m(dy), if g∗(s) 6 x 6 s.

2) The Markov time τ∗ = inf{t > 0: Xt 6 g∗(St)} is optimal in
problem (*) if it satisfies the condition (10);
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3) If there exist an optimal stopping time σ in problem (*) such

that Ex,s

(
σ∫
0
c(Xt)dt

)
<∞ then Px,s(τ∗ 6 σ) = 1 for all (x, s) and

time τ∗ is also optimal in problem (*).

If the equation (9) doesn’t have a maximal admissible solution then
V∗(x, s) = +∞ for all (x, s) and there is no optimal stopping time
in problem (*).

Theorem [verification theorem]. Assume that for the solution
V̂ = V̂ (x, s) of Stefan problem (4)-(7) the following statements are
true:

(i) V̂ (x, s) > s, (x, s) ∈ E;

(ii) V̂ (x, s) = Ex,s
(
Sτg −

∫ τg
0 c(Xt)dt

)
, (x, s) ∈ E for some Markov

time τg = inf{t > 0: Xt 6 g(St)} satisfying (10);

(iii) V̂ (x, s) > Ex,sV̂ (Xτ , Sτ) for any Markov time τ satisfying (10).

Then V̂ (x, s) coincides with the value function V∗(x, s) in problem
(*) and τg is optimal.
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§2. Maximal inequalities for standard Brownian motion and it’s
modulus. Martingale and «Stefan problem» approaches

Consider the standard Brownian motion B = (Bt)t>0, B0 = 0.
This was the first process for which sharp maximal inequalities were
established.

• “square root inequality”

E
(

max
06t6τ

Bt

)
6
√
Eτ

(11)

• “square root of two inequality”

E
(

max
06t6τ

|Bt|
)
6
√

2Eτ

(12)

Inequalities (11) and (12) are also called Dubins-Jacka-Schwarz-
Shiryaev inequalities.
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Denote St(B) = max
06u6t

Bu and St(|B|) = max
06u6t

|Bu|.

Martingale approach. First proof the inequality (11). Consider a
stochastic process

Zt = c((St(B)−Bt)2 − t) +
1

4c
, t > 0

when c > 0. Due to Levy theorem Law(S(B)−B) = Law(|B|) and the
process B2

t − t is a martingale. Therefore (Zt)t>0 is also martingale
w.r.t. natural filtration of B.
It is easy to see that (

√
cx − 1/(2

√
c))2 > 0. From this inequality it

follows that x − ct 6 c(x2 − t) + 1/(4c) for all x ∈ R. Thus for any
τ ∈M we get

E(Sτ∧t(B)− cτ ∧ t) = E(Sτ∧t(B)−Bτ∧t − cτ ∧ t) 6 EZτ∧t = EZ0 =
1

4c
Taking the limit as t→∞ from Doob’s optional sampling theorem
we have ESτ(B) 6 cEτ+1/(4c). Taking an infimum on c > 0 on both
sides we obtain (11).
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Prove that inequality ESτ(B) 6
√
Eτ is sharp. For each a > 0 consider

the time

τa = inf{t > 0: St(B)−Bt = a}

We see that ESτa(B) = E(Sτa(B) − Bτa) = a. Since Law(τa) =

Law(inf{t > 0: |Bt| = a}) from Wald identities we get a2 = EB2
τa =

Eτa.
Corollary. For any continuous local martingale M = (Mt)t>0, M0 =

0 we have

E

(
max

06t6T
Mt

)
6
√
E〈M〉T , (13)

for any T > 0. Here (〈M〉t)t>0 is a quadratic characteristic of M .

This inequality follows from (11) and Dambis-Dubins-Schwarz theorem.
Indeed, E(maxt6T Mt) = E(maxt6T B〈M〉t) = E(maxt6〈M〉T Bt) 6

√
E〈M〉T .
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Prove the inequality ESτ(|B|) 6
√

2Eτ . Consider a continuous martingale

Ut = E(|Bτ | − E|Bτ | | FBt∧τ), t > 0

Applying (13) to maxt6T Ut and taking T → +∞ we get E(maxt>0Ut) 6√
E(|Bτ | − E|Bτ |)2. Using this inequality we estimate ESτ(|B|) by

E
(

max
06t6τ

|Bt|
)

= E
(

max
t>0
|Bt∧τ |

)
= E

(
max
t>0
|E(Bτ | FBt∧τ)|

)
6

E
(

max
t>0

E(|Bτ | | FBt∧τ)
)

= E
(

max
t>0

Ut

)
+ E|Bτ | 6

√
E(|Bτ | − E|Bτ |)2 +

E|Bτ | =
√
Eτ − (E|Bτ |)2 + E|Bτ | 6

√
2Eτ .

In order to get the last inequality in this series we used a simple
inequality

√
A− x2 + x 6

√
2A when 0 < x <

√
A.

Now show that inequality ESτ(|B|) 6
√

2Eτ is sharp. Consider the
time

τ̂a = inf{t > 0: St(|B|)− |Bt| = a}

It turns out that Eτ̂a = 2a2 and E(maxt6τ̂a |Bt|) = 2a.
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«Stefan problem» approach. Basically the proof of (11) and (12)
is the application of the main theorem of §1 to the problem

V∗(x, s) = sup
τ

Ex,s

Sτ − τ∫
0

c(Xt)dt


in the case when c(Xt) ≡ c > 0, Xt = Bt or Xt = |Bt|.

First, prove the inequality ESτ(B) 6
√
Eτ . In the case of Brownian

motion R(x) = x, m(dx) = 2dx, x ∈ R. According to the theorem
the equation for boundary is

g
′
(s) =

1

2c(s− g(s))

The maximal admissible solution of this equation is g∗(s) = s −
1/(2c).
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Therefore the value function V∗(x, s) = supt6τ Ex,s(Sτ(B)−cτ) when
0 6 s− x 6 1/(2c) equals

V∗(x, s) = s+ 2c

x∫
g(s)

(x− y)dy = c(x− s)2 + x+
1

4c

Since we need the value V∗(0,0) for any τ ∈M we get

ESτ(B) 6 inf
c>0
{V∗(0,0) + cEτ} = inf

c>0
{1/(4c) + cEτ} =

√
Eτ

However we cannot apply directly the method from §1 in the case
of Xt = |Bt| and obtain the inequality ESτ(|B|) 6

√
2Eτ . The reason

is that we cannot represent Xt = |Bt| in the form dXt = b(Xt)dt +

σ(Xt)dBt with continuous b and σ. But we can consider the problem

W∗(x, s) = sup
τ

Ex,s

(
s ∨ max

06t6τ
|x+Bt| − cτ

)
and reduce it to the Stefan problem.
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Infinitesimal operator of |B| equals L = 1
2
d2

dx2, x > 0 with endpoint
x = 0. Thus Stefan problem in our case is

∂2W

∂x2
(x, s) = 2c, x 6= 0, g(s) < x 6 s,

∂W

∂x
(0+, s) = 0, s : g(s) < 0;

∂W

∂s
(x, s)

∣∣∣∣
x=s−

= 0; W (x, s)|x=g(s)+ = s;
∂W

∂x
(x, s)

∣∣∣∣
x=g(s)+

= 0.

The solution of this system is the function

W∗(x, s) =



s, s− x >
1

2c
,

c(x− s)2 + x+
1

4c
, s > 1/(2c), s− x 6 1/(2c),

cx2 +
1

2c
, 0 6 s 6

1

2c
Since W∗(0,0) = 1/(2c) for each τ ∈ M we have ESτ(|B|) 6

infc>0{1/(2c) + cEτ} =
√

2Eτ .
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§3. Maximal inequalities for skew Brownian motion. Solution
to the corresponding Stefan problem

The process Xα = (Xα
t )t>0 defined on probability space (Ω,F ,P)

is called a skew Brownian motion if it satisfies the stochastic
equation

Xα
t = Xα

0 +Bt + (2α− 1)L0
t (Xα),

(14)

where L0 = (L0
t (Xα))t>0 с L0

0(Xα) = 0 is the local time of Xα in
zero.

The skew Brownian motion with parameter α = 1/2 has the same
distribution as standard Brownian motion, with parameter α = 1
– as the modulus of standard Brownian motion.
Denote by Wα = (Wα

t )t>0 the unique strong solution of (14) such
that Wα

0 = 0.
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Consider the optimal stopping problem

V∗(x, s) = sup
τ

Ex,s

(
s ∨ max

06t6τ
(x+Wα

t )− cτ
)

(15)

with constant cost for observations c > 0. We cannot directly apply
the methods from §1 since Xt = x + Wα

t cannot be represented in
the form dXt = b(Xt)dt + σ(Xt)dBt with continuous b(·) and σ(·).
However we can write the analogue of Stefan problem (4)-(7) in
the case of optimal stopping problem.

The infinitesimal operator for X equals L = 1
2
d2

dx2 and defined for
functions

{f : f
′′
exists on R \ {0}, f

′′
(0+) = f

′′
(0−), lim

x→∞ f(x) = 0

and αf
′
(0+) = (1− α)f

′
(0−)}
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Therefore we get the Stefan problem for value function

∂2V

∂x2
(x, s) = 2c, x 6= 0, g(s) < x 6 s,

α
∂V

∂x
(0+, s) = (1− α)

∂V

∂x
(0−, s), s : g(s) < 0;

∂V

∂s
(x, s)

∣∣∣∣
x=s−

= 0; V (x, s)|x=g(s)+ = s;
∂V

∂x
(x, s)

∣∣∣∣
x=g(s)+

= 0

The solution of this system is given in the following

Theorem 1.The optimal stopping time τc in the problem (15) exists
and equals

τ∗ = inf{t > 0 : Xt 6 g(St)}
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The mapping g = g(s), s > 0 is given by

s =


g + 1/(2c), if g > 0,

β2 − 1

2cβ2
e2cβg +

g

β
+

1

2cβ2
, if g < 0,

parameter β = (1− α)/α.

s

g0

0.5

−0.7
0.1

0.2

0.9

The boundary s = s(g) of the stopping set when
c = 1 and α = 0.1,0.2, . . . ,0.9.
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If we consider the sets D∗ = {(x, s) ∈ E : x 6 g(s)}, C∗ = E \D∗ then
the value function equals

V∗(x, s) =



s+ c(x− g(s))2, (x, s) ∈ C∗, x > 0, s >
1

2c

or x < 0, s <
1

2c
,

s+ c(x− g(s))2 + 2c(1− β)xg(s), (x, s) ∈ C∗, x > 0, s <
1

2c
,

s, (x, s) ∈ D∗
The proof of the theorem is based on finding the solution to Stefan
problem. Particularly the equation for boundary g = g(s) is

g
′
(s) =


1

2c(s− g(s))
, s : g(s) > 0,

1

2c(βs− g(s))
, s : g(s) < 0

The general solution of this equation is s(g) = a0e
2cg + g + 1/(2c)

when g > 0 and s(g) = b0e
2cβg + g/β + 1/(2cβ2) when g < 0.
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In order to prove that the solution of Stefan problem V (x, s) coincides
with the value function V∗(x, s) = supτ Ex,s

(
s ∨max06t6τ(x+Wα

t )− cτ
)

we use the following analogue of Ito formula:

V̂ (Xt, St) = V̂ (X0, S0) +

t∫
0

V̂
′
x(Xu, Su)dBu +

t∫
0

V̂
′
s(Xu, Su)dSu +

2α− 1

2

t∫
0

(V̂
′
x(0+, Su) + V̂

′
x(0−, Su))dL0

u +
1

2

t∫
0

(V̂
′
x(0+, Su)

−V̂
′
x(0−, Su))dL0

u +
1

2

t∫
0

V̂
′′
xx(Xu, Su)I(Xu 6= 0)du
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Once we know the value V∗(0,0) it is possible to obtain the maximal
inequalities.
Theorem 2 (Lyulko’2012). For any Markov time τ ∈ M and for
any α ∈ (0,1) the following inequality holds:

E
(

max
06t6τ

Wα
t

)
6Mα

√
Eτ ,

(16)

where Mα = α(1 +Aα)/(1−α) and Aα is the unique solution of the
equation

Aαe
Aα+1 =

1− 2α

α2
,

such that Aα > −1.

The inequality (16) is sharp i.e. for any T > 0 there exist a Markov
time τ with Eτ = T such that

E
(

max
06t6τ

Wα
t

)
= Mα

√
Eτ .
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The inequalities like (16) can be obtained not only for maximum
max

06t6τ
Wα
t . Thus in [Zhitlukhin’2012] there were stated the following

inequalities for range of skew Brownian motion:

E
(

max
06t6τ

Wα
t − min

06t6τ
Wα
t

)
6
√
KαEτ ,

where Kα = Cα + C1−α,

Cα =
α

1− α

(
αD2

α

1− α
− 2Dα − 2α

∫ 0

Dα

αx+ α− 1

(2α− 1)ex − α
dx

)
and Dα is the unique negative solution of the equation

(2α− 1)α−2eDα − 1 = Dα

Mα

α
0

10.5

1

√
2

0 1

2

3

1/2 1α

Kα
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§4. Maximal inequalities for Bessel processes. Solution to the
corresponding Stefan problem

A continuous nonnegative Markov process X = (Xt(x))t>0, x > 0 is
called a Bessel process of dimension γ ∈ R (X ∈ Besγ(x)) if it’s
infinitesimal operator equals

LX =
1

2

(
γ − 1

x

d

dx
+

d2

dx2

)

The endpoint x = 0 is called trap if γ 6 0, instantaneously
reflecting if γ ∈ (0,2) and entrance if γ > 2.
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In the case α = n ∈ N the Bessel process can be realized as a radial
part of n-dimensional Brownian motion

Xt(x) =

 n∑
i=1

(Bit + ai)
2

1/2

,

where a = (a1, a2, . . . , an) is a vector in Rn with norm x =
√
a2

1 + . . .+ a2
n.

B1, B2, . . . , Bn are independent Brownian motions starting from zero.
The Bessel process of dimension γ = 1 is a modulus of standard
Brownian motion x+ |Bt|.

Consider the optimal stopping problem

V∗(x, s) = sup
τ

Ex,s

(
s ∨ max

06t6τ
Xt(x)− cτ

)
(∗)

where Markov times τ ∈M.
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Theorem 3. Let X ∈ Besγ(x) where the dimension γ ∈ R and c > 0.
The optimal stopping time τ∗ in problem (*) exists and equals

τ∗ = inf{t > 0: (Xt, St) ∈ D∗}

with Xt = Xt(x), St = St(x, s) = s ∨ max
06u6t

Xu and stopping set

D∗ = {(x, s): s∗ 6 s, x 6 g∗(s)} where g∗ = g∗(s) is the unique
nonnegative solution of the equation

2c

γ − 2
g
′
(s)g(s)

1−
(
g(s)

s

)γ−2
 = 1

(17)

such that g(s) 6 s when s > 0 and

lim
s→∞

g∗(s)

s
= 1,

and s∗ is the root of the equation g∗(s) = 0. When γ = 2 the
equation (17) has the form 2cg

′
(s)g(s) ln(s/g) = 1.
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Moreover if we denote

C1
∗ = {(x, s) ∈ R+ × R+ : s > s∗, g∗(s) < x 6 s},

C2
∗ = {(x, s) ∈ R+ × R+ : 0 6 x 6 s 6 s∗}

and define a continuation set by C∗ = C1
∗ ∪ C2

∗ then depending on
the value of parameter γ the value function V∗(x, s) equals

if α > 0

V∗(x, s) =



s, (x, s) ∈ D∗,

s+
c

γ
(x2 − g2

∗(s)) +
2cg2
∗(s)

γ(γ − 2)

(g∗(s)
x

)γ−2

− 1

 , (x, s) ∈ C1
∗ ,

c

γ
x2 + s∗, (x, s) ∈ C2

∗ ;
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if α = 0

V∗(x, s) =


s, (x, s) ∈ D∗,
s+

c

2
(g2
∗(s)− x2) + cx2 ln

x

g∗(s)
, (x, s) ∈ C∗;

if α < 0

V∗(x, s) =


s, (x, s) ∈ D∗,

s+
c

γ
(x2 − g2

∗(s)) +
2cg2
∗(s)

γ(γ − 2)

(g∗(s)
x

)γ−2

− 1

 , (x, s) ∈ C∗.
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Using this theorem we can obtain the maximal inequalities for Bessel
processes.

• if γ 6 0 then the point x = 0 is a trap. Therefore Xt(x) ≡ 0 if
t > 0 and maximal inequalities do not make sense

• if γ > 0 then from theorem it follows that V∗(0,0) = s∗. Denote
V∗(x, s) = V

γ
c (x, s), s∗ = sc(γ)

Since Bessel processes are self-similar

Law(Xt(x), t > 0) = Law(c−1/2Xct(c
1/2x))

the value function V γc (x, s) is also self-similar, i.e. cV γc (x, s) = V
γ

1 (cx, cs).
Hence sc(γ) = s1(γ)/c. Therefore we get the inequalties

E
(

max
06t6τ

Xt(0)
)
6 inf
c>0
{V∗(0,0) + cEτ} =

inf
c>0
{s1(γ)/c+ cEτ} =

√
4s1(γ)Eτ
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Theorem 4 (Dubins-Shepp-Shiryaev’1993). Let X ∈ Besγ(0),

γ > 0. Then for any Markov time τ ∈M the following sharp maximal
inequality holds:

E
(

max
06t6τ

Xt(0)
)
6
√

4s1(γ)Eτ ,

where s1(γ) is the root of equation g∗(s) = 0 such that

s1(γ)

γ
−→

1

4

as γ ↑ ∞.

Observe that in the case γ = 1 we have s1(1) = 1/2 and therefore
we get the maximal inequality for modulus of standard Brownian

motion E
(

max
06t6τ

|Bt|
)
6
√

2Eτ .

45



§5. Doob maximal inequalities

Theorem 5. Let M = (Mt)t>0 be a local martingale on a filtered
probability space (Ω, (Ft)t>0,P). Then for any p > 0 there exist a
universal constants cp и Cp such that

cpE([M ]
p/2
τ ) 6 E

(
max

06t6τ
|Mt|p

)
6 CpE([M ]

p/2
τ ),

(18)

where ([M ]t)t>0 is called a quadratic variation of M .

The inequalities (18) are called Burkholder-Davis-Gundy inequalities.
In the case when Mt = Bt is standard Brownian motion we get

cpEτp/2 6 E
(

max
06t6τ

|Bt|p/2
)
6 CpEτp/2,

(19)

Note that if p 6= 2 the exact values of the constants cp and Cp
when inequalities (19) become sharp are still not known.
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Some particular cases of Burkholder-Davis-Gundy inequalities:

• Davis inequalities (p = 1):

c1E
√
τ 6 E

(
max

06t6τ
|Bt|

)
6 C1E

√
τ

• Doob inequalities (p = 2):

c2Eτ 6 E
(

max
06t6τ

B2
t

)
6 C2Eτ

Consider the case p = 1. One of the possible ways to obtain the
exact values of c1, C1 is to solve the optimal stopping problem

V (c) = sup
τ

E
(

max
06t6τ

|Bt| − c
√
τ

)
, (20)

where c > 0, τ is the Markov time such that E
√
τ <∞.
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The problem (20) can be formulated in a standard way for 3-
dimensional Markov process

Zt = (t,Xt, St), Xt = |Bt|, St = max
u6t
|Bu|

But this problem is nonlinear and we cannot decrease it’s dimensionality.
The same situation happens when p 6= 2.

In the case p = 2 the corresponding optimal stopping problem

sup
τ

E(max
t6τ

B2
t − cτ)

is linear and we can get the solution explicitly. As a consequence
we obtain the Doob maximal inequalities

Eτ 6 E
(

max
06t6τ

B2
t

)
6 4Eτ,

(21)

where τ is the Markov time such that Eτ <∞.
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Prove the inequality (21) and show that it is sharp. Denote St(B2) =

max
06u6t

B2
u. The lower bound for ESτ(B2) follows from the Wald identity:

ESτ(B2) > EB2
τ = Eτ

To show that this inequality is sharp it is enough to consider the
time τ∗(T ) = inf{t > 0: |Bt| =

√
T}. Then Eτ∗(T ) = EB2

τ∗(T ) = T and

ESτ∗(T )(B2) = T .

In order to prove the upper bound E
(

max
06t6τ

B2
t

)
6 4Eτ consider the

sequence of stopping times

σλ,ε = inf{t > 0: max
06s6t

|Bs| − λ|Bt| > ε},

where λ, ε > 0. It is known that E(σλ,ε)
p/2 < ∞ if and only if

λ < p/(p− 1).
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Therefore if λ ∈ (0,2) we have

E

(
max

06t6σλ,ε
B2
t

)
= λ2E|Bσλ,ε|

2 + 2λεE|Bσλ,ε|+ ε2 6 KE|Bσλ,ε|
2 (22)

for some constant K > 0. Divide the both sides of (22) on E|Bσλ,ε|2

and take λ ↑ 2. Since E|Bσλ,ε|2 = Eσλ,ε → ∞ and E|Bσλ,ε|/E|Bσλ,ε|2 6

1/
√
Eσλ,ε → 0 if λ ↑ 2 then from (22) we get

K > λ2 + 2λε
E|Bσλ,ε|
EB|σλ,ε|

2
+

ε2

E|Bσλ,ε|2
−→ 4.

Therefore K = 4 is the best possible constant in the upper bound
for ESτ(B2).
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TOPIC II: Sharp maximal inequalities for discrete
time processes

§1. Maximal inequalities for modulus of simple symmetric
Random walk

In this section time t will take discrete values i.e. t = n = 0,1,2, . . .

Consider the simple symmetric Random walk
Xn = Sn = ξ1 + . . . + ξn, X0 = S0 = 0, where ξ1, . . . , ξn, . . . are i.i.d.
random variables, P(ξ1 = 1) = P(ξ1 = −1) = 1/2

Denote the current maximums of X and |X| by Mn(S) = max
06k6n

Sk

and Mn(|S|) = max
06k6n

|Sk|.
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In order to obtain the maximal inequalities for (Sn)n>0 and (|Sn|)n>0

consider the following optimal stopping problems:

V∗(c) = sup
τ∈M

E

(
max

06k6τ
Sk − cτ

)
(∗)

and

W∗(c) = sup
τ∈M

E

(
max

06k6τ
|Sk| − cτ

)
(∗∗)

For any nonnegative integer l define the stopping times

τl =

inf{k > n : Mk(|S|)− |Sk| = l}, if m− s < l,

n, if m− s > l

σl =

inf{k > n : Sk 6= 0, Mk(|S|)− |Sk| = l}, if m− s < l,

n, if m− s > l
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and a function Ql = Ql(n, s,m, c) such that

Ql(n, s,m, c) = sup
τ∈Ml

Es,m (Mτ(|S|)− cτ) ,

where the set of stopping times equals Ml = {τl, σl : l ∈ Z+}.

If the conditions

1) Ql(n, s,m, c) > m− cn,

2) Ql(n, s,m, c) > EQl(n+1, s+ξn+1,max{m, s+ξn+1}, c) (excessivity)

are satisfied then Ql(n, s,m, c) = supτ>n Es,m (Mτ(|S|)− cτ) i.e. the
supremum on all stopping times is achieved on the stopping times
of the special form τl and σl. Namely if l ∈ [1/(2c) − 1/2,1/(2c)]

then supremum is achieved on τl. If l ∈ [1/(2c) − 1,1/(2c) − 1/2]

then supremum is achieved on σl.
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Take an arbitrary l ∈ N and compute Eτl and EMτl(|S|). Represent τl
as a sum τl = τ(1) + τ(2) where

τ(1) = inf{k > 0 : |Sk| = l},

τ(2) = inf{k > 0 : max
06i6k

(S
i+τ(1) − Sτ(1))− (S

k+τ(1) − Sτ(1)) = l}

Due to Wald identities for Random walk we have Eτ(1) = ES2
τ(1) =

l2. Also note that the distribution law of τ(2) coincides with distribution
law of the time inf{k > 0 : Mk(S) − Sk = l}. This Markov time can
be represented as a sum of M

τ(2)(S) + 1 i.i.d. random variables with
distribution of τ−l,1 = inf{k > 0 : Sk = −l or Sk = 1}.
Therefore since EM

τ(2)(S) = E(M
τ(2)(S)− S

τ(2)) = l we get

Eτ(2) = (EM
τ(2) + 1)Eτ−l,1 = l(l + 1)

Here we used Wald identities ESτ−l,1 = 0, ES2
τ−l,1 = Eτ−l,1 in order

to prove that Eτ−l,1 = l.
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Finally we have Eτl = Eτ(1) + Eτ(2) = l2 + l(l + 1) = l(2l + 1) and
EMτl(|S|) = E( max

06k6τ(1)
|Sk|) + E( max

06k6τ(2)
Sk) = 2l i.e.

Eτl = l(2l + 1),

EMτl(|S|) = 2l

From this system we find that EMτl(|S|) = (
√

8Eτl + 1− 1)/2.
Theorem 6 (Dubins-Schwarz’1988). For any Markov time τ ∈M

the following sharp maximal inequality holds:

E
(

max
06n6τ

|Sn|
)
6

√
8Eτ + 1− 1

2
(23)

If we consider the Markov time

τ∗ = inf{n > 0 : max
06k6n

|Sk| − |Sn| = N}

for any N ∈ N then (23) becomes an equality.
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§2. Maximal inequalities for simple symmetric Random walk

Consider the optimal stopping problem

V∗(c) = sup
τ∈M

E

(
max

06k6τ
Sk − cτ

)
(∗)

Theorem 7. The optimal stopping time τ∗(c) and value function
V∗(c) in problem (∗) equal

τ∗(c) =


inf{k > 0 :

∣∣∣Sk − 1
2

∣∣∣ =
⌊

1
2c + 1

2

⌋
− 1

2}, if
⌊

1
2c + 1

2

⌋
> 1

2c,

inf{k > 0 :
∣∣∣Sk − 1

2

∣∣∣ =
⌊

1
2c + 1

2

⌋
+ 1

2}, if
⌊

1
2c + 1

2

⌋
< 1

2c.

V∗(c) =


⌊

1

2c
+

1

2

⌋
− c

(⌊
1

2c
+

1

2

⌋
−

1

2

)2
+
c

4
− 1, if

⌊
1

2c
+

1

2

⌋
>

1

2c
,⌊

1

2c
+

1

2

⌋
− c

(⌊
1

2c
+

1

2

⌋
+

1

2

)2
+
c

4
, if

⌊
1

2c
+

1

2

⌋
<

1

2c
,

where bxc is the integer part of x.
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Proof. According to the discrete version of Levy theorem [Fujita,
Mischenko]

Law (maxS − S, maxS) = Law
(∣∣∣∣S − 1

2

∣∣∣∣− 1

2
, L(S)

)
,

where L(S) = (Ln(S))n>0, Ln(S) is the number of crossings of the
level 1/2 by Random walk on [0, n].
Rewriting the problem (∗) and using Wald identities we have

E(Mτ(S)− cτ) = E(Mτ(S)− Sτ)− cES2
τ = E

(
|Sτ − 1/2| − 1/2− cS2

τ − 1/2
)

Since S2
τ = (Sτ −1/2)2 +Sτ −1/4 we can rewrite the last expression

E
(
|Sτ − 1/2| − cS2

τ − 1/2
)

= E
(
|Sτ − 1/2| − c|Sτ − 1/2|2

)
+ c/4− 1/2

(24)

Observe that the resulting expression does not depend on τ explicitly,
there is only dependence on |Sτ − 1/2|. That’s why the method we
use is called the method of space change.
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Consider the function f(x) = x − cx2, x > 0. It attains a maximum
at the point c0 = 1/(2c) and therefore x − cx2 6 f( 1

2c) = 1/(4c).
Hence from (24) we get

sup
τ∈M

E
(

max
06n6τ

Sn − cτ
)
6

1

4c
+
c

4
−

1

2

However this inequality can be not sharp if
1

2c
does not belong to

the values set E = {k + 1/2}k>0 of the process |S − 1/2|.

f(x)

x
0

1

4c
V∗(c)

1

2c

1

c

i0 − 0.5 i0 + 0.5

∆1 ∆2
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Nevertheless it is clear that the maximum of |Sτ−1/2|−c|Sτ−1/2|2 is
attained at the closest point to 1/(2c) i.e. at the point i0 =

⌊
1
2 + 1

2c

⌋
.

The values of optimal stopping time τ∗(c) and value function V∗(c)
depend on the relation between 2 distances ∆1 = 1/(2c)− i0 + 1/2

and ∆2 = i0 + 1/2− 1/(2c):

τ∗(c) =

inf{k > 0 :
∣∣∣Sk − 1

2

∣∣∣ = i0 − 1
2}, if ∆1 6 ∆2,

inf{k > 0 :
∣∣∣Sk − 1

2

∣∣∣ = i0 + 1
2}, if ∆1 > ∆2

V∗(c) =


f(i0 −

1

2
) +

c

4
−

1

2
, if ∆1 6 ∆2,

f(i0 +
1

2
) +

c

4
−

1

2
, if ∆1 > ∆2
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Theorem 8. For any Markov time τ ∈ M the following inequality
holds:

E
(

max
06n6τ

Sn

)
6

√
4Eτ + 1− 1

2
(25)

If for any N ∈ N we consider the Markov time

τ∗ = inf{n > 0 : max
06k6n

Sk − Sn = N}

then (25) becomes an equality.

Proof. Use the inequality (24) which we already proved:

E
(

max
06n6τ

Sn

)
6 inf
c>0

{
c

(
Eτ +

1

4

)
+

1

4c
−

1

2

}
=

√
4Eτ + 1− 1

2

which gives us exactly (25).
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Now show that (25) is sharp. Due to the discrete version of Levy
theorem the time τ∗ = inf{n > 0 : max

06k6n
Sk − Sn = N} coincides by

distribution with

inf{n > 0 : |Sn − 1/2| − 1/2 = N} =

inf{n > 0 : Sn = −N or Sn = N + 1} = τ−N,N+1

Using Wald identities we can check that

Eτ∗ = Eτ−N,N+1 = N(N + 1)

On the other hand

EMτ∗ = E(Mτ∗ − Sτ∗) = N =

√
4N(N + 1) + 1− 1

2
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