Albert N. Shiryaev

Steklov Mathematical Institute

On sharp maximal inequalities for stochastic processes

joint work with Yaroslav Lyulko, Higher School of Economics
email: albertsh@mi.ras.ru

TOPIC I: Sharp maximal inequalities for continuous time processes

TOPIC II: Sharp maximal inequalities for discrete time processes

TOPIC I: Sharp maximal inequalities for continuous time processes
§1. Introduction. The main method for obtaining a sharp maximal inequalities
§2. Maximal inequalities for standard Brownian motion and it's modulus. Martingale and <Stefan problem» approaches
§3. Maximal inequalities for skew Brownian motion. Solution to the corresponding Stefan problem
§4. Maximal inequalities for Bessel processes. Solution to the corresponding Stefan problem
§5. Doob maximal inequalities

TOPIC II: Sharp maximal inequalities for discrete time processes
§1. Maximal inequalities for modulus of simple symmetric Random walk
§2. Maximal inequalities for simple symmetric Random walk

TOPIC I: Sharp maximal inequalities for continuous time processes
§1. Introduction. The main method for obtaining a sharp maximal inequalities

Let $X=\left(X_{t}\right)_{t \geqslant 0}$ be a process on (Ω, \mathcal{F}, P) with natural filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geqslant 0}, \mathcal{F}_{t}=\sigma\left(X_{s}, s \leqslant t\right)$. For any Markov time τ w.r.t. $\left(\mathcal{F}_{t}\right)_{t \geqslant 0}$ the inequalities

$$
\begin{equation*}
E\left(\sup _{0 \leqslant t \leqslant \tau} X_{t}\right) \leqslant C_{X} \cdot f(E g(\tau)) \tag{*}
\end{equation*}
$$

are called maximal inequalities for X. Here C_{X} is a constant, $f(\cdot)$ and $g(\cdot)$ are some functions.

Markov times $\tau=\tau(\omega)$ usually belong to the set

$$
\mathfrak{M}=\left\{\tau-\text { Markov time w.r.t. }\left(\mathcal{F}_{t}\right)_{t \geqslant 0}, \mathrm{E} \tau<\infty\right\} .
$$

The inequality $(*)$ is called sharp maximal inequality if there exist a non-trivial Markov time $\widehat{\tau} \in \mathfrak{M}$ such that $\mathrm{E}\left(\sup _{0 \leqslant t \leqslant \widehat{\tau}} X_{t}\right)=C_{X} \cdot f(\mathrm{E} g(\widehat{\tau}))$. Examples of maximal inequalities for some well-known processes include (Graversen, Peskir, Shiryaev 1998-2001):

- for geometric Brownian motion $X_{t}=\exp \left(\sigma B_{t}+\left(\mu-\sigma^{2} / 2\right) t\right)$ with $\mu<0, \sigma>0$:

$$
\mathrm{E}\left(\max _{0 \leqslant \mathrm{t} \leqslant \tau} \mathrm{X}_{\mathrm{t}}\right) \leqslant 1-\frac{\sigma^{2}}{2 \mu}+\frac{\sigma^{2}}{2 \mu} \exp \left(-\frac{\left(\sigma^{2}-2 \mu\right)^{2}}{2 \sigma^{2}} \mathrm{E} \tau-1\right)
$$

- for Ornstein-Uhlenbeck process $\left(X_{t}\right)_{t \geqslant 0}$ with $d X_{t}=-\beta X_{t} d t+$ $d B_{t}, \beta>0$:

$$
\frac{\mathbf{C}_{1}}{\sqrt{\beta}} \mathrm{E} \sqrt{\ln (1+\beta \tau)} \leqslant \mathbf{E}\left(\max _{0 \leqslant \mathbf{t} \leqslant \tau}\left|\mathbf{X}_{\mathbf{t}}\right|\right) \leqslant \frac{\mathbf{C}_{\mathbf{2}}}{\sqrt{\beta}} \mathrm{E} \sqrt{\ln (1+\beta \tau)}
$$

where $C_{1}, C_{2}>0$ are some universal constants;

- for "bang-bang process" $\left(X_{t}\right)_{t \geqslant 0}$ with $d X_{t}=-\mu \operatorname{sgn}\left(X_{t}\right) d t+$ $d B_{t}, \mu>0$:

$$
\begin{aligned}
& \qquad \mathrm{E}\left(\max _{0 \leqslant \mathbf{t} \leqslant \tau}\left|\mathbf{X}_{\mathbf{t}}\right|\right) \leqslant \mathbf{G}_{\mu}(\mathrm{E} \tau), \\
& \text { where } G_{\mu}(x)=\inf _{c>0}\left(c x+\frac{1}{2 \mu} \ln \left(1+\frac{\mu}{c}\right)\right) .
\end{aligned}
$$

Assume that $X=\left(X_{t}\right)_{t \geqslant 0}$ is the Markov process. For given measurable functions $L=L(x)$ and $K=K(x)$ we define

$$
I_{t}=\int_{0}^{t} L\left(X_{s}\right) d s, \quad S_{t}=\max _{0 \leqslant s \leqslant t} K\left(X_{s}\right), \quad t \geqslant 0
$$

Consider the following optimal stopping problem:

$$
\begin{equation*}
\mathbf{V}_{*}(\mathbf{c})=\sup _{\tau} \mathrm{E}\left(\mathbf{F}\left(\mathbf{I}_{\tau}, \mathbf{X}_{\tau}, \mathbf{S}_{\tau}\right)-\mathbf{c} \mathbf{G}\left(\mathbf{I}_{\tau}, \mathbf{X}_{\tau}, \mathbf{S}_{\tau}\right)\right) \tag{1}
\end{equation*}
$$

where F, G are given measurable functions, $\tau \in \mathfrak{M}, c>0$ is a parameter.

Suppose we solved the problem (1) and found the function $V_{*}(c)$. Then for any τ and c we have

$$
\left.\mathrm{E} F\left(I_{\tau}, X_{\tau}, S_{\tau}\right) \leqslant V_{*}(c)+c \mathrm{E} G\left(I_{\tau}, X_{\tau}, S_{\tau}\right)\right)
$$

Taking the infimum on both sides by $c>0$ we obtain the inequality

$$
\begin{equation*}
\mathrm{EF}\left(\mathbf{I}_{\tau}, \mathbf{X}_{\tau}, \mathbf{S}_{\tau}\right) \leqslant \mathbf{H}\left(\mathrm{EG}\left(\mathbf{I}_{\tau}, \mathbf{X}_{\tau}, \mathbf{S}_{\tau}\right)\right):=\inf _{\mathbf{c}>0}\left(\mathbf{V}_{*}(\mathbf{c})+\mathbf{c} \mathrm{EG}\left(\mathbf{I}_{\tau}, \mathbf{X}_{\tau}, \mathbf{S}_{\tau}\right)\right) \tag{2}
\end{equation*}
$$

which is true for any Markov time $\tau \in \mathfrak{M}$. If infimum is minimum and it is achieved on some $c_{*}>0$ then inequality (2) is sharp.

The corresponding solution $\tau_{*}(c)$ of problem (1) when $c=c_{*}$ is a stopping time on which (2) becomes an equality.

Consider the particular case $F(x, y, z)=z, G(x, y, z)=x, L(x)=$ $c(x), K(x)=x$. The function $c=c(x)$ is assumed to be positive and continuous and it is called cost for observations. We obtain the following optimal stopping problem:

$$
\begin{equation*}
V_{*}(x, s)=\sup _{\tau} \mathrm{E}_{x, s}\left(S_{\tau}-\int_{0}^{\tau} c\left(X_{t}\right) d t\right) \tag{3}
\end{equation*}
$$

where

- $\mathrm{E}_{s, x}, s \geqslant x$ is expectation under the measure $\mathrm{P}_{x, s}=\operatorname{Law}\left(X, S \mid \mathrm{P}, X_{0}=x, S_{0}=s\right)$
- τ is the optimal stopping time such that $\mathrm{E}_{x, s}\left(\int_{0}^{\tau} c\left(X_{t}\right) d t\right)<\infty$

In addition we assume that $X=\left(X_{t}\right)_{t \geqslant 0}$ is a diffusion process and it is a solution of stochastic differential equation

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}, \quad X_{0}=0
$$

where $B=\left(B_{t}\right)_{t \geqslant 0}$ is the Brownian motion on ($\Omega, \mathcal{F}, \mathrm{P}$). Diffusion coefficient $\sigma=\sigma(x)>0$ and drift coefficient $b=b(x)$ are continuous.

We need to know a scale function $R=R(x)$ and a speed measure $m=m(x)$ in order to obtain a solution of the problem (3). It is well known that in the case of diffusion process X we have

$$
\begin{gathered}
R(x)=\int^{x} \exp \left(-\int^{y} \frac{2 b(u)}{\sigma^{2}(u)} d u\right) d y, \quad x \in \mathbb{R}, \\
m(d x)=\frac{2 d x}{R^{\prime}(x) \sigma^{2}(x)}
\end{gathered}
$$

From the general optimal stopping theory we may decompose the state space $E=\left\{(x, s) \in \mathbb{R}^{2}: x \leqslant s, s \geqslant 0\right\}$ of the process $(X, S), S_{t}=\left(\max _{u \leqslant t} X_{u}\right) \vee s$ by

$$
E=C_{*} \cup D_{*}
$$

where

- $C_{*}=\left\{(x, s) \in E: V_{*}(x, s)>s\right\}$ is a continuation set. If $(x, s) \in$ C_{*} we need to continue our observations;
- $D_{*}=\left\{(x, s) \in E: V_{*}(x, s)=s\right\}$ is a stopping set. If $(x, s) \in D_{*}$ we need to stop our observations

Therefore if we start in C_{*} we need to stop at the first time when the process (X, S) reaches D_{*}. In other words, $\tau_{*}=\inf \left\{t \geqslant 0:\left(X_{t}, S_{t}\right) \in\right.$ $\left.D_{*}\right\}$.

Proposition 1. The diagonal $\{(x, s) \in E: x=s\}$ does not belong to the continuation set C_{*}.

Reduce the problem $V_{*}(x, s)=\sup _{\tau} \mathrm{E}_{x, s}\left(S_{\tau}-\int_{0}^{\tau} c\left(X_{t}\right) d t\right)$ to the optimal stopping problem in standard formulation. Consider the process

$$
A_{t}=a+\int_{0}^{t} c\left(X_{u}\right) d u, \quad a \geqslant 0
$$

and observe that $Z_{t}=\left(A_{t}, X_{t}, S_{t}\right), t>0, Z_{0}=(a, x, s)$ is a Markov process. Define the function $\widetilde{G}(a, x, s)=s-a$ and observe that the initial problem takes the form

$$
\widetilde{\mathbf{V}}_{*}(\mathrm{a}, \mathrm{x}, \mathrm{~s})=\sup _{\tau} \mathrm{E}_{\mathrm{a}, \mathrm{x}, \mathrm{~s}} \widetilde{\mathbf{G}}\left(\mathbf{Z}_{\tau}\right)
$$

where times τ are such that $\mathrm{E} A_{\tau}<\infty$. However since $\tilde{V}_{*}(a, x, s)=$ $V_{*}(x, s)-a$ it is sufficient to find the function $V_{*}(x, s)$ i.e. to solve 2-dimensional optimal stopping problem for (X, S).

The infinitesimal operator of the process $Z=\left(Z_{t}\right)_{t \geqslant 0}$ equals

$$
\mathbb{L}_{Z}=c(x) \frac{\partial}{\partial a}+\mathbb{L}_{X}=c(x) \frac{\partial}{\partial a}+b(x) \frac{\partial}{\partial x}+\frac{\sigma^{2}(x)}{2} \frac{\partial^{2}}{\partial x^{2}} \text { if } x<s
$$

Since the cost for observations $c(x)$ is positive we should not allow the process X to decrease too fast when s is fixed. It means that for given s there exist a point $g(s)$ such that we should stop the observations when (X, S) achieves a point $(g(s), s)$. In other words

$$
\tau_{*}=\inf \left\{t>0: X_{t} \leqslant g\left(S_{t}\right)\right\}
$$

The unknown function $g=g(s)$ is called the boundary of the stopping set D_{*}.
The function $V_{*}(x, s), g(s)<x \leqslant s$ is a solution of the system

$$
\begin{align*}
& \left(\mathbb{L}_{X} V\right)(x, s)=c(x) \quad \text { if } g(s)<x<s \tag{4}\\
& \left.\frac{\partial V}{\partial s}(x, s)\right|_{x=s-}=0 \quad \text { (normal reflection) } \tag{5}\\
& \left.V(x, s)\right|_{x=g(s)+}=s \quad \text { (instanteneous stopping) } \tag{6}\\
& \left.\frac{\partial V}{\partial x}(x, s)\right|_{x=g(s)+}=0 \quad \text { (smooth fit) } \tag{7}
\end{align*}
$$

which is called a Stefan problem with moving boundary $g=g(s)$.

Explain the meaning of each equation (4)-(7).

- According to the general optimal stopping theory, $\mathbb{L}_{Z} V(x, s)=0$ when $(x, s) \in C_{*}$. Thus we get the equation (4);
- The instanteneous stopping condition (6) follows from the fact that $V(x, s)=s$ when $(x, s) \in D_{*}$;
- The smooth fit condition (7) means that the derivative of the function $V(x, s)$ is contintinuous on the boundary of C_{*} and D_{*};
- Clarify the normal reflection condition.

Applying the Ito formula for semimartingales

$$
d f\left(X_{t}, S_{t}\right)=f_{x}^{\prime}\left(X_{t}, S_{t}\right) d X_{t}+f_{s}^{\prime}\left(X_{t}, S_{t}\right) d S_{t}+\frac{1}{2} f_{x x}^{\prime \prime}\left(X_{t}, S_{t}\right) d\langle X, X\rangle_{t}
$$

to the process $\left(f\left(X_{t}, S_{t}\right)\right)_{t \geqslant 0}$, taking the expectation $\mathrm{E}_{s, s}$ on both sides and multiplying on t^{-1} we get

$$
\begin{aligned}
& \frac{\mathrm{E}_{s, s} f\left(X_{t}, S_{t}\right)-f(s, s)}{t}=\mathrm{E}_{s, s}\left(\frac{1}{t} \int_{0}^{t} \mathbb{L}_{X} f\left(X_{u}, S_{u}\right) d u\right)+ \\
& \mathrm{E}_{s, s}\left(\frac{1}{t} \int_{0}^{t} \frac{\partial f}{\partial s}\left(X_{u}, S_{u}\right) d S_{u}\right) \longrightarrow \mathbb{L}_{X} f(s, s)+\frac{\partial f}{\partial s}(s, s)\left(\lim _{t \downarrow 0} \frac{\mathrm{E}_{s, s}\left(S_{t}-s\right)}{t}\right)
\end{aligned}
$$

as $t \downarrow 0$. Since the diffusion coefficient $\sigma>0$ as $t \downarrow 0$ we have

$$
\frac{1}{t} \mathrm{E}_{s, s}\left(S_{t}-s\right) \rightarrow \infty
$$

Therefore the condition $\mathrm{f}_{\mathrm{S}}^{\prime}(\mathrm{s}, \mathrm{s})=0$ assures us that the limit $\mathbb{L}_{X} f(s, s)+$ $\frac{\partial f}{\partial s}(s, s)\left(\lim _{t \downarrow 0} \frac{\mathrm{E}_{s, s}\left(S_{t}-s\right)}{t}\right)$ is finite.

Find the functions $V(x, s)$ and $g(s)$ - the solutions of system (4)-(7). Denote

$$
\tau_{g}=\inf \left\{t>0: X_{t} \leqslant g\left(S_{t}\right)\right\}, \quad \tau_{g(s), s}=\inf \left\{t>0: X_{t} \notin(g(s), s)\right\}
$$

and consider the function

$$
V_{g}(x, s)=\mathrm{E}_{x, s}\left(S_{\tau_{g}}-\int_{0}^{\tau_{g}} c\left(X_{t}\right) d t\right)
$$

Using the strong Markov property of X w.r.t. time $\tau_{g(s), s}$ when $x \in(g(s), s)$ we have

$$
\begin{aligned}
& V_{g}(x, s)=s \mathrm{P}_{x, s}\left(X_{\tau_{g(s), s}}=g(s)\right)+V_{g}(s, s) \mathrm{P}_{x, s}\left(X_{\tau_{g(s), s}}=s\right)- \\
& \mathrm{E}_{x, s} \int_{0}^{\tau_{g(s), s}} c\left(X_{t}\right) d t=
\end{aligned}
$$

$$
\begin{aligned}
& =s \frac{R(s)-R(x)}{R(s)-R(g(s))}+V_{g}(s, s) \frac{R(x)-R(g(s))}{R(s)-R(g(s))}- \\
& \int_{g(s)}^{s} G_{g(s), s}(x, y) c(y) m(d y),
\end{aligned}
$$

where $G_{a, b}(x, y)$ is the Green function of X on the segment $[a, b]$:

$$
G_{a, b}(x, y)= \begin{cases}\frac{(R(b)-R(x))(R(y)-R(a))}{R(b)-R(a)} & \text { if } a \leqslant y \leqslant x, \\ \frac{(R(b)-R(y))(R(x)-R(a))}{R(b)-R(a)} & \text { if } x \leqslant y \leqslant b .\end{cases}
$$

Rewrite the expression for $V_{g}(x, s)$ in the following form:

$$
V_{g}(s, s)-s=\frac{R(s)-R(g(s))}{R(x)-R(g(s))}\left(V_{g}(x, s)-s+\int_{g(s)}^{s} G_{g(s), s}(x, y) c(y) m(d y)\right)
$$

Suppose that $V_{g}(x, s)$ satisfies the smooth fit condition. Then

$$
\begin{aligned}
& \lim _{x \downarrow g(s)} \frac{V_{g}(x, s)-s}{R(x)-R(g(s))}=\left.\frac{1}{R^{\prime}(g(s))} \frac{\partial V_{g}}{\partial x}(x, s)\right|_{x=g(s)+}=0, \\
& \lim _{x \downarrow g(s)} \frac{R(s)-R(g(s))}{R(x)-R(g(s))} \int_{g(s)}^{s} G_{g(s), s}(x, y) c(y) m(d y)= \\
& \int_{g(s)}^{s}(R(s)-R(y)) c(y) m(d y) .
\end{aligned}
$$

Therefore we have

$$
V_{g}(s, s)=s+\int_{g(s)}^{s}(R(s)-R(y)) c(y) m(d y)
$$

Finally we obtain

$$
\begin{equation*}
V_{g}(x, s)=s+\int_{g(s)}^{x}(R(x)-R(y)) c(y) m(d y) \tag{8}
\end{equation*}
$$

for all $g(s) \leqslant x \leqslant s$.

Now suppose that the function $V_{g}(x, s)$ is given by (8). Then it is easy to show that $V_{g}(x, s)$ is a solution of Stefan problem (4)-(7) if and only if the boundary $g=g(s)$ belongs to C^{1} and satisfies the equation

$$
\begin{equation*}
g^{\prime}(s)=\frac{\sigma^{2}(g(s)) R^{\prime}(g(s))}{2 c(g(s))(R(s)-R(g(s))} \tag{9}
\end{equation*}
$$

Observe that the equation (9) has a whole family of solutions. We need to specify the criteria which enables us to choose the solution $g_{*}=g_{*}(s)$ - a boundary of the stopping set D_{*}.

We call the solution $g(s)$ of the equation (9) an admissible solution if $g(s)<s$ for all $s \geqslant 0$.

Theorem [maximality principle]. The boundary $g_{*}=g_{*}(s)$ of the stopping set D_{*} in the problem

$$
\begin{equation*}
V_{*}(x, s)=\sup _{\tau} \mathrm{E}_{x, s}\left(S_{\tau}-\int_{0}^{\tau} c\left(X_{t}\right) d t\right) \tag{*}
\end{equation*}
$$

is a maximal admissible solution of the differential equation (9).

Theorem. Consider the stopping problem (*) for diffusion process $X=\left(X_{t}\right)_{t \geqslant 0}$ such that $d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}$. Supremum is taken by all Markov times τ such that

$$
\begin{equation*}
\mathrm{E}_{x, s}\left(\int_{0}^{\tau} c\left(X_{t}\right) d t\right)<\infty \tag{10}
\end{equation*}
$$

Assume that there exist the maximal admissible solution $g_{*}(s)$ of (9). Then

1) The value function $V_{*}(x, s)$ in problem (*) is finite and can be determined on E by

$$
V_{*}(x, s)= \begin{cases}s, & \text { if } x \leqslant g_{*}(s), \\ s+\int_{g_{*}(s)}^{x}(R(x)-R(y)) c(y) m(d y), & \text { if } g_{*}(s) \leqslant x \leqslant s\end{cases}
$$

2) The Markov time $\tau_{*}=\inf \left\{t>0: X_{t} \leqslant g_{*}\left(S_{t}\right)\right\}$ is optimal in problem (*) if it satisfies the condition (10);
3) If there exist an optimal stopping time σ in problem (*) such that $\mathrm{E}_{x, s}\left(\int_{0}^{\sigma} c\left(X_{t}\right) d t\right)<\infty$ then $\mathrm{P}_{x, s}\left(\tau_{*} \leqslant \sigma\right)=1$ for all (x, s) and time τ_{*} is also optimal in problem (*).
If the equation (9) doesn't have a maximal admissible solution then $V_{*}(x, s)=+\infty$ for all (x, s) and there is no optimal stopping time in problem (*).
Theorem [verification theorem]. Assume that for the solution $\widehat{V}=\widehat{V}(x, s)$ of Stefan problem (4)-(7) the following statements are true:
(i) $\hat{V}(x, s) \geqslant s, \quad(x, s) \in E$;
(ii) $\widehat{V}(x, s)=\mathrm{E}_{x, s}\left(S_{\tau_{g}}-\int_{0}^{\tau_{g}} c\left(X_{t}\right) d t\right),(x, s) \in E$ for some Markov time $\tau_{g}=\inf \left\{t \geqslant 0: X_{t} \leqslant g\left(S_{t}\right)\right\}$ satisfying (10);
(iii) $\widehat{V}(x, s) \geqslant \mathrm{E}_{x, s} \widehat{V}\left(X_{\tau}, S_{\tau}\right)$ for any Markov time τ satisfying (10).

Then $\widehat{V}(x, s)$ coincides with the value function $V_{*}(x, s)$ in problem (*) and τ_{g} is optimal.
§2. Maximal inequalities for standard Brownian motion and it's modulus. Martingale and «Stefan problem» approaches

Consider the standard Brownian motion $B=\left(B_{t}\right)_{t \geqslant 0}, B_{0}=0$. This was the first process for which sharp maximal inequalities were established.

- "square root inequality"

$$
\begin{equation*}
\mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau} B_{t}\right) \leqslant \sqrt{\mathrm{E} \tau} \tag{11}
\end{equation*}
$$

- "square root of two inequality"

$$
\begin{equation*}
\mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau}\left|B_{t}\right|\right) \leqslant \sqrt{2 \mathrm{E} \tau} \tag{12}
\end{equation*}
$$

Inequalities (11) and (12) are also called Dubins-Jacka-SchwarzShiryaev inequalities.

Denote $S_{t}(B)=\max _{0 \leqslant u \leqslant t} B_{u}$ and $S_{t}(|B|)=\max _{0 \leqslant u \leqslant t}\left|B_{u}\right|$.
Martingale approach. First proof the inequality (11). Consider a stochastic process

$$
Z_{t}=c\left(\left(S_{t}(B)-B_{t}\right)^{2}-t\right)+\frac{1}{4 c}, t \geqslant 0
$$

when $c>0$. Due to Levy theorem $\operatorname{Law}(S(B)-B)=\operatorname{Law}(|B|)$ and the process $B_{t}^{2}-t$ is a martingale. Therefore $\left(Z_{t}\right)_{t \geqslant 0}$ is also martingale w.r.t. natural filtration of B.

It is easy to see that $(\sqrt{c} x-1 /(2 \sqrt{c}))^{2} \geqslant 0$. From this inequality it follows that $x-c t \leqslant c\left(x^{2}-t\right)+1 /(4 c)$ for all $x \in \mathbb{R}$. Thus for any $\tau \in \mathfrak{M}$ we get
$\mathrm{E}\left(S_{\tau \wedge t}(B)-c \tau \wedge t\right)=\mathrm{E}\left(S_{\tau \wedge t}(B)-B_{\tau \wedge t}-c \tau \wedge t\right) \leqslant \mathrm{E} Z_{\tau \wedge t}=\mathrm{E} Z_{0}=\frac{1}{4 c}$
Taking the limit as $t \rightarrow \infty$ from Doob's optional sampling theorem we have $\mathrm{E} S_{\tau}(B) \leqslant c \mathrm{E} \tau+1 /(4 c)$. Taking an infimum on $c>0$ on both sides we obtain (11).

Prove that inequality $\mathrm{E} S_{\tau}(B) \leqslant \sqrt{\mathrm{E} \tau}$ is sharp. For each $a>0$ consider the time

$$
\tau_{a}=\inf \left\{t \geqslant 0: S_{t}(B)-B_{t}=a\right\}
$$

We see that $\mathrm{E} S_{\tau_{a}}(B)=\mathrm{E}\left(S_{\tau_{a}}(B)-B_{\tau_{a}}\right)=a$. Since $\operatorname{Law}\left(\tau_{a}\right)=$ $\operatorname{Law}\left(\inf \left\{t \geqslant 0:\left|B_{t}\right|=a\right\}\right)$ from Wald identities we get $a^{2}=\mathrm{E} B_{\tau_{a}}^{2}=$ $\mathrm{E} \tau_{a}$.
Corollary. For any continuous local martingale $M=\left(M_{t}\right)_{t \geqslant 0}, M_{0}=$ 0 we have

$$
\begin{equation*}
\mathrm{E}\left(\max _{0 \leqslant t \leqslant T} M_{t}\right) \leqslant \sqrt{\mathrm{E}\langle M\rangle_{T}} \tag{13}
\end{equation*}
$$

for any $T>0$. Here $\left(\langle M\rangle_{t}\right)_{t \geqslant 0}$ is a quadratic characteristic of M.

This inequality follows from (11) and Dambis-Dubins-Schwarz theorem. Indeed, $\mathrm{E}\left(\max _{t \leqslant T} M_{t}\right)=\mathrm{E}\left(\max _{t \leqslant T} B_{\langle M\rangle_{t}}\right)=\mathrm{E}\left(\max _{t \leqslant\langle M\rangle_{T}} B_{t}\right) \leqslant \sqrt{\mathrm{E}\langle M\rangle_{T}}$.

Prove the inequality $\mathrm{E} S_{\tau}(|B|) \leqslant \sqrt{2 \mathrm{E} \tau}$. Consider a continuous martingale

$$
U_{t}=\mathrm{E}\left(\left|B_{\tau}\right|-\mathrm{E}\left|B_{\tau}\right| \mid \mathcal{F}_{t \wedge \tau}^{B}\right), t \geqslant 0
$$

Applying (13) to $\max _{t \leqslant T} U_{t}$ and taking $T \rightarrow+\infty$ we get $\mathrm{E}\left(\max _{t \geqslant 0} U_{t}\right) \leqslant$ $\sqrt{\mathrm{E}\left(\left|B_{\tau}\right|-\mathrm{E}\left|B_{\tau}\right|\right)^{2}}$. Using this inequality we estimate $\mathrm{E} S_{\tau}(|B|)$ by

$$
\begin{aligned}
& \mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau}\left|B_{t}\right|\right)=\mathrm{E}\left(\max _{t \geqslant 0}\left|B_{t \wedge \tau}\right|\right)=\mathrm{E}\left(\max _{t \geqslant 0}\left|\mathrm{E}\left(B_{\tau} \mid \mathcal{F}_{t \wedge \tau}^{B}\right)\right|\right) \leqslant \\
& \mathrm{E}\left(\max _{t \geqslant 0} \mathrm{E}\left(\left|B_{\tau}\right| \mid \mathcal{F}_{t \wedge \tau}^{B}\right)\right)=\mathrm{E}\left(\max _{t \geqslant 0} U_{t}\right)+\mathrm{E}\left|B_{\tau}\right| \leqslant \sqrt{\mathrm{E}\left(\left|B_{\tau}\right|-\mathrm{E}\left|B_{\tau}\right|\right)^{2}}+ \\
& \mathrm{E}\left|B_{\tau}\right|=\sqrt{\mathrm{E} \tau-\left(\mathrm{E}\left|B_{\tau}\right|\right)^{2}}+\mathrm{E}\left|B_{\tau}\right| \leqslant \sqrt{2 \mathrm{E} \tau} .
\end{aligned}
$$

In order to get the last inequality in this series we used a simple

Now show that inequality $\mathrm{E} S_{\tau}(|B|) \leqslant \sqrt{2 \mathrm{E} \tau}$ is sharp. Consider the time

$$
\widehat{\tau}_{a}=\inf \left\{t \geqslant 0: S_{t}(|B|)-\left|B_{t}\right|=a\right\}
$$

It turns out that $\mathrm{E} \widehat{\tau}_{a}=2 a^{2}$ and $\mathrm{E}\left(\max _{t \leqslant \hat{\tau}_{a}}\left|B_{t}\right|\right)=2 a$.
<Stefan problem» approach. Basically the proof of (11) and (12) is the application of the main theorem of $\S 1$ to the problem

$$
V_{*}(x, s)=\sup _{\tau} \mathrm{E}_{x, s}\left(S_{\tau}-\int_{0}^{\tau} c\left(X_{t}\right) d t\right)
$$

in the case when $c\left(X_{t}\right) \equiv c>0, X_{t}=B_{t}$ or $X_{t}=\left|B_{t}\right|$.

First, prove the inequality $\mathrm{E} S_{\tau}(B) \leqslant \sqrt{\mathrm{E} \tau}$. In the case of Brownian motion $R(x)=x, m(d x)=2 d x, x \in \mathbb{R}$. According to the theorem the equation for boundary is

$$
g^{\prime}(s)=\frac{1}{2 c(s-g(s))}
$$

The maximal admissible solution of this equation is $g_{*}(s)=s-$ $1 /(2 c)$.

Therefore the value function $V_{*}(x, s)=\sup _{t \leqslant \tau} \mathrm{E}_{x, s}\left(S_{\tau}(B)-c \tau\right)$ when $0 \leqslant s-x \leqslant 1 /(2 c)$ equals

$$
V_{*}(x, s)=s+2 c \int_{g(s)}^{x}(x-y) d y=c(x-s)^{2}+x+\frac{1}{4 c}
$$

Since we need the value $V_{*}(0,0)$ for any $\tau \in \mathfrak{M}$ we get

$$
\mathrm{E} S_{\tau}(B) \leqslant \inf _{c>0}\left\{V_{*}(0,0)+c \mathrm{E} \tau\right\}=\inf _{c>0}\{1 /(4 c)+c \mathrm{E} \tau\}=\sqrt{\mathrm{E} \tau}
$$

However we cannot apply directly the method from $\S 1$ in the case of $X_{t}=\left|B_{t}\right|$ and obtain the inequality $\mathrm{E} S_{\tau}(|B|) \leqslant \sqrt{2 \mathrm{E} \tau}$. The reason is that we cannot represent $X_{t}=\left|B_{t}\right|$ in the form $d X_{t}=b\left(X_{t}\right) d t+$ $\sigma\left(X_{t}\right) d B_{t}$ with continuous b and σ. But we can consider the problem

$$
W_{*}(x, s)=\sup _{\tau} \mathrm{E}_{x, s}\left(s \vee \max _{0 \leqslant t \leqslant \tau}\left|x+B_{t}\right|-c \tau\right)
$$

and reduce it to the Stefan problem.

Infinitesimal operator of $|B|$ equals $L=\frac{1}{2} \frac{d^{2}}{d x^{2}}, x>0$ with endpoint $x=0$. Thus Stefan problem in our case is

$$
\left\{\begin{array}{l}
\frac{\partial^{2} W}{\partial x^{2}}(x, s)=2 c, \quad x \neq 0, g(s)<x \leqslant s \\
\frac{\partial W}{\partial x}(0+, s)=0, \quad s: g(s)<0 \\
\left.\frac{\partial W}{\partial s}(x, s)\right|_{x=s-}=0 ;\left.W(x, s)\right|_{x=g(s)+}=s ;\left.\frac{\partial W}{\partial x}(x, s)\right|_{x=g(s)+}=0
\end{array}\right.
$$

The solution of this system is the function

$$
W_{*}(x, s)= \begin{cases}s, & s-x \geqslant \frac{1}{2 c} \\ c(x-s)^{2}+x+\frac{1}{4 c}, & s \geqslant 1 /(2 c), s-x \leqslant 1 /(2 c) \\ c x^{2}+\frac{1}{2 c}, & 0 \leqslant s \leqslant \frac{1}{2 c}\end{cases}
$$

Since $W_{*}(0,0)=1 /(2 c)$ for each $\tau \in \mathfrak{M}$ we have $E S_{\tau}(|B|) \leqslant$ $\inf _{c>0}\{1 /(2 c)+c \mathrm{E} \tau\}=\sqrt{2 \mathrm{E} \tau}$.
§3. Maximal inequalities for skew Brownian motion. Solution to the corresponding Stefan problem

The process $X^{\alpha}=\left(X_{t}^{\alpha}\right)_{t \geqslant 0}$ defined on probability space $(\Omega, \mathcal{F}, \mathrm{P})$ is called a skew Brownian motion if it satisfies the stochastic equation

$$
\begin{equation*}
X_{t}^{\alpha}=X_{0}^{\alpha}+B_{t}+(2 \alpha-1) L_{t}^{0}\left(X^{\alpha}\right) \tag{14}
\end{equation*}
$$

where $L^{0}=\left(L_{t}^{0}\left(X^{\alpha}\right)\right)_{t \geqslant 0} \subset L_{0}^{0}\left(X^{\alpha}\right)=0$ is the local time of X^{α} in zero.

The skew Brownian motion with parameter $\alpha=1 / 2$ has the same distribution as standard Brownian motion, with parameter $\alpha=1$ - as the modulus of standard Brownian motion.

Denote by $W^{\alpha}=\left(W_{t}^{\alpha}\right)_{t \geqslant 0}$ the unique strong solution of (14) such that $W_{0}^{\alpha}=0$.

Consider the optimal stopping problem

$$
\begin{equation*}
V_{*}(x, s)=\sup _{\tau} \mathrm{E}_{x, s}\left(s \vee \max _{0 \leqslant t \leqslant \tau}\left(x+W_{t}^{\alpha}\right)-c \tau\right) \tag{15}
\end{equation*}
$$

with constant cost for observations $c>0$. We cannot directly apply the methods from $\S 1$ since $X_{t}=x+W_{t}^{\alpha}$ cannot be represented in the form $d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}$ with continuous $b(\cdot)$ and $\sigma(\cdot)$. However we can write the analogue of Stefan problem (4)-(7) in the case of optimal stopping problem.

The infinitesimal operator for X equals $L=\frac{1}{2} \frac{d^{2}}{d x^{2}}$ and defined for functions

$$
\begin{aligned}
& \left\{f: f^{\prime \prime} \text { exists on } \mathbb{R} \backslash\{0\}, f^{\prime \prime}(0+)=f^{\prime \prime}(0-), \lim _{x \rightarrow \infty} f(x)=0\right. \\
& \text { and } \left.\alpha f^{\prime}(0+)=(1-\alpha) f^{\prime}(0-)\right\}
\end{aligned}
$$

Therefore we get the Stefan problem for value function

$$
\left\{\begin{array}{l}
\frac{\partial^{2} V}{\partial x^{2}}(x, s)=2 c, \quad x \neq 0, g(s)<x \leqslant s \\
\alpha \frac{\partial V}{\partial x}(0+, s)=(1-\alpha) \frac{\partial V}{\partial x}(0-, s), \quad s: g(s)<0 ; \\
\left.\frac{\partial V}{\partial s}(x, s)\right|_{x=s-}=0 ;\left.V(x, s)\right|_{x=g(s)+}=s ;\left.\frac{\partial V}{\partial x}(x, s)\right|_{x=g(s)+}=0
\end{array}\right.
$$

The solution of this system is given in the following

Theorem 1. The optimal stopping time τ_{c} in the problem (15) exists and equals

$$
\tau_{*}=\inf \left\{t \geqslant 0: X_{t} \leqslant g\left(S_{t}\right)\right\}
$$

The mapping $g=g(s), s \geqslant 0$ is given by

$$
s= \begin{cases}g+1 /(2 c), & \text { if } g \geqslant 0 \\ \frac{\beta^{2}-1}{2 c \beta^{2}} e^{2 c \beta g}+\frac{g}{\beta}+\frac{1}{2 c \beta^{2}}, & \text { if } g<0\end{cases}
$$

parameter $\beta=(1-\alpha) / \alpha$.

The boundary $s=s(g)$ of the stopping set when

$$
c=1 \text { and } \alpha=0.1,0.2, \ldots, 0.9
$$

If we consider the sets $D_{*}=\{(x, s) \in E: x \leqslant g(s)\}, C_{*}=E \backslash D_{*}$ then the value function equals
$V_{*}(x, s)= \begin{cases}s+c(x-g(s))^{2}, & (x, s) \in C_{*}, x \geqslant 0, s \geqslant \frac{1}{2 c} \\ & \text { or } x<0, s<\frac{1}{2 c}, \\ s+c(x-g(s))^{2}+2 c(1-\beta) x g(s), & (x, s) \in C_{*}, x \geqslant 0, s<\frac{1}{2 c}, \\ s, & (x, s) \in D_{*}\end{cases}$
The proof of the theorem is based on finding the solution to Stefan problem. Particularly the equation for boundary $g=g(s)$ is

$$
g^{\prime}(s)= \begin{cases}\frac{1}{2 c(s-g(s))}, & s: g(s) \geqslant 0 \\ \frac{1}{2 c(\beta s-g(s))}, & s: g(s)<0\end{cases}
$$

The general solution of this equation is $s(g)=a_{0} e^{2 c g}+g+1 /(2 c)$ when $g \geqslant 0$ and $s(g)=b_{0} e^{2 c \beta g}+g / \beta+1 /\left(2 c \beta^{2}\right)$ when $g<0$.

In order to prove that the solution of Stefan problem $V(x, s)$ coincides with the value function $V_{*}(x, s)=\sup _{\tau} \mathrm{E}_{x, s}\left(s \vee \max _{0 \leqslant t \leqslant \tau}\left(x+W_{t}^{\alpha}\right)-c \tau\right)$ we use the following analogue of Ito formula:

$$
\begin{aligned}
\widehat{V}\left(X_{t}, S_{t}\right)= & \widehat{V}\left(X_{0}, S_{0}\right)+\int_{0}^{t} \widehat{V}_{x}^{\prime}\left(X_{u}, S_{u}\right) d B_{u}+\int_{0}^{t} \widehat{V}_{s}^{\prime}\left(X_{u}, S_{u}\right) d S_{u}+ \\
& \frac{2 \alpha-1}{2} \int_{0}^{t}\left(\widehat{V}_{x}^{\prime}\left(0+, S_{u}\right)+\widehat{V}_{x}^{\prime}\left(0-, S_{u}\right)\right) d L_{u}^{0}+\frac{1}{2} \int_{0}^{t}\left(\widehat{V}_{x}^{\prime}\left(0+, S_{u}\right)\right. \\
& \left.-\widehat{V}_{x}^{\prime}\left(0-, S_{u}\right)\right) d L_{u}^{0}+\frac{1}{2} \int_{0}^{t} \widehat{V}_{x x}^{\prime \prime}\left(X_{u}, S_{u}\right) \mathbb{I}\left(X_{u} \neq 0\right) d u
\end{aligned}
$$

Once we know the value $V_{*}(0,0)$ it is possible to obtain the maximal inequalities.
Theorem 2 (Lyulko'2012). For any Markov time $\tau \in \mathfrak{M}$ and for any $\alpha \in(0,1)$ the following inequality holds:

$$
\begin{equation*}
\mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau} W_{t}^{\alpha}\right) \leqslant M_{\alpha} \sqrt{\mathrm{E} \tau} \tag{16}
\end{equation*}
$$

where $M_{\alpha}=\alpha\left(1+A_{\alpha}\right) /(1-\alpha)$ and A_{α} is the unique solution of the equation

$$
A_{\alpha} e^{A_{\alpha}+1}=\frac{1-2 \alpha}{\alpha^{2}}
$$

such that $A_{\alpha}>-1$.
The inequality (16) is sharp i.e. for any $T>0$ there exist a Markov time τ with $\mathrm{E} \tau=T$ such that

$$
\mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau} W_{t}^{\alpha}\right)=M_{\alpha} \sqrt{\mathrm{E} \tau}
$$

The inequalities like (16) can be obtained not only for maximum $\max _{0 \leqslant t \leqslant \tau} W_{t}^{\alpha}$. Thus in [Zhitlukhin'2012] there were stated the following $0 \leqslant t \leqslant \tau$ inequalities for range of skew Brownian motion:

$$
\mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau} W_{t}^{\alpha}-\min _{0 \leqslant t \leqslant \tau} W_{t}^{\alpha}\right) \leqslant \sqrt{K_{\alpha} \mathrm{E} \tau}
$$

where $K_{\alpha}=C_{\alpha}+C_{1-\alpha}$,

$$
C_{\alpha}=\frac{\alpha}{1-\alpha}\left(\frac{\alpha D_{\alpha}^{2}}{1-\alpha}-2 D_{\alpha}-2 \alpha \int_{D_{\alpha}}^{0} \frac{\alpha x+\alpha-1}{(2 \alpha-1) e^{x}-\alpha} d x\right)
$$

and D_{α} is the unique negative solution of the equation
$(2 \alpha-1) \alpha^{-2} e^{D \alpha}-1=D_{\alpha}$

§4. Maximal inequalities for Bessel processes. Solution to the corresponding Stefan problem

A continuous nonnegative Markov process $X=\left(X_{t}(x)\right)_{t \geqslant 0}, x \geqslant 0$ is called a Bessel process of dimension $\gamma \in \mathbb{R}\left(X \in \operatorname{Bes}^{\gamma}(x)\right)$ if it's infinitesimal operator equals

$$
\mathbb{L}_{X}=\frac{1}{2}\left(\frac{\gamma-1}{x} \frac{d}{d x}+\frac{d^{2}}{d x^{2}}\right)
$$

The endpoint $x=0$ is called trap if $\gamma \leqslant 0$, instantaneously reflecting if $\gamma \in(0,2)$ and entrance if $\gamma \geqslant 2$.

In the case $\alpha=n \in \mathbb{N}$ the Bessel process can be realized as a radial part of n-dimensional Brownian motion

$$
X_{t}(x)=\left(\sum_{i=1}^{n}\left(B_{t}^{i}+a_{i}\right)^{2}\right)^{1 / 2}
$$

where $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a vector in \mathbb{R}^{n} with norm $x=\sqrt{a_{1}^{2}+\ldots+a_{n}^{2}}$. $B^{1}, B^{2}, \ldots, B^{n}$ are independent Brownian motions starting from zero. The Bessel process of dimension $\gamma=1$ is a modulus of standard Brownian motion $x+\left|B_{t}\right|$.

Consider the optimal stopping problem

$$
\begin{equation*}
V_{*}(x, s)=\sup _{\tau} \mathrm{E}_{x, s}\left(s \vee \max _{0 \leqslant t \leqslant \tau} X_{t}(x)-c \tau\right) \tag{*}
\end{equation*}
$$

where Markov times $\tau \in \mathfrak{M}$.

Theorem 3. Let $X \in \operatorname{Bes}^{\gamma}(x)$ where the dimension $\gamma \in \mathbb{R}$ and $c>0$. The optimal stopping time τ_{*} in problem (*) exists and equals

$$
\tau_{*}=\inf \left\{t \geqslant 0:\left(X_{t}, S_{t}\right) \in D_{*}\right\}
$$

with $X_{t}=X_{t}(x), S_{t}=S_{t}(x, s)=s \vee \max _{0 \leqslant u \leqslant t} X_{u}$ and stopping set $D_{*}=\left\{(x, s): s_{*} \leqslant s, x \leqslant g_{*}(s)\right\}$ where $g_{*}=g_{*}(s)$ is the unique nonnegative solution of the equation

$$
\begin{equation*}
\frac{2 c}{\gamma-2} g^{\prime}(s) g(s)\left(1-\left(\frac{g(s)}{s}\right)^{\gamma-2}\right)=1 \tag{17}
\end{equation*}
$$

such that $g(s) \leqslant s$ when $s \geqslant 0$ and

$$
\lim _{s \rightarrow \infty} \frac{g_{*}(s)}{s}=1
$$

and s_{*} is the root of the equation $g_{*}(s)=0$. When $\gamma=2$ the equation (17) has the form $2 c g^{\prime}(s) g(s) \ln (s / g)=1$.

Moreover if we denote

$$
\begin{aligned}
& C_{*}^{1}=\left\{(x, s) \in \mathbb{R}_{+} \times \mathbb{R}_{+}: s>s_{*}, g_{*}(s)<x \leqslant s\right\} \\
& C_{*}^{2}=\left\{(x, s) \in \mathbb{R}_{+} \times \mathbb{R}_{+}: 0 \leqslant x \leqslant s \leqslant s_{*}\right\}
\end{aligned}
$$

and define a continuation set by $C_{*}=C_{*}^{1} \cup C_{*}^{2}$ then depending on the value of parameter γ the value function $V_{*}(x, s)$ equals
if $\alpha>0$

$$
V_{*}(x, s)= \begin{cases}s, & (x, s) \in D_{*} \\ s+\frac{c}{\gamma}\left(x^{2}-g_{*}^{2}(s)\right)+\frac{2 c g_{*}^{2}(s)}{\gamma(\gamma-2)}\left(\left(\frac{g_{*}(s)}{x}\right)^{\gamma-2}-1\right), & (x, s) \in C_{*}^{1} \\ \frac{c}{\gamma} x^{2}+s_{*}, & (x, s) \in C_{*}^{2}\end{cases}
$$

if $\alpha=0$

$$
V_{*}(x, s)= \begin{cases}s, & (x, s) \in D_{*} \\ s+\frac{c}{2}\left(g_{*}^{2}(s)-x^{2}\right)+c x^{2} \ln \frac{x}{g_{*}(s)}, & (x, s) \in C_{*}\end{cases}
$$

if $\alpha<0$

$$
V_{*}(x, s)= \begin{cases}s, & (x, s) \in D_{*} \\ s+\frac{c}{\gamma}\left(x^{2}-g_{*}^{2}(s)\right)+\frac{2 c g_{*}^{2}(s)}{\gamma(\gamma-2)}\left(\left(\frac{g_{*}(s)}{x}\right)^{\gamma-2}-1\right), & (x, s) \in C_{*}\end{cases}
$$

Using this theorem we can obtain the maximal inequalities for Bessel processes.

- if $\gamma \leqslant 0$ then the point $x=0$ is a trap. Therefore $X_{t}(x) \equiv 0$ if $t \geqslant 0$ and maximal inequalities do not make sense
- if $\gamma>0$ then from theorem it follows that $V_{*}(0,0)=s_{*}$. Denote $V_{*}(x, s)=V_{c}^{\gamma}(x, s), s_{*}=s_{c}(\gamma)$

Since Bessel processes are self-similar

$$
\operatorname{Law}\left(X_{t}(x), t \geqslant 0\right)=\operatorname{Law}\left(c^{-1 / 2} X_{c t}\left(c^{1 / 2} x\right)\right)
$$

the value function $V_{c}^{\gamma}(x, s)$ is also self-similar, i.e. $c V_{c}^{\gamma}(x, s)=V_{1}^{\gamma}(c x, c s)$. Hence $s_{c}(\gamma)=s_{1}(\gamma) / c$. Therefore we get the inequalties

$$
\begin{aligned}
& \mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau} X_{t}(0)\right) \leqslant \inf _{c>0}\left\{V_{*}(0,0)+c \mathrm{E} \tau\right\}= \\
& \inf _{c>0}\left\{s_{1}(\gamma) / c+c \mathrm{E} \tau\right\}=\sqrt{4 s_{1}(\gamma) \mathrm{E} \tau}
\end{aligned}
$$

Theorem 4 (Dubins-Shepp-Shiryaev'1993). Let $X \in \operatorname{Bes}^{\gamma}(0)$, $\gamma>0$. Then for any Markov time $\tau \in \mathfrak{M}$ the following sharp maximal inequality holds:

$$
\mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau} X_{t}(0)\right) \leqslant \sqrt{4 s_{1}(\gamma) \mathrm{E} \tau}
$$

where $s_{1}(\gamma)$ is the root of equation $g_{*}(s)=0$ such that

$$
\frac{s_{1}(\gamma)}{\gamma} \longrightarrow \frac{1}{4}
$$

as $\gamma \uparrow \infty$.

Observe that in the case $\gamma=1$ we have $s_{1}(1)=1 / 2$ and therefore we get the maximal inequality for modulus of standard Brownian motion $\mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau}\left|B_{t}\right|\right) \leqslant \sqrt{2 \mathrm{E} \tau}$.

§5. Doob maximal inequalities

Theorem 5. Let $M=\left(M_{t}\right)_{t \geqslant 0}$ be a local martingale on a filtered probability space $\left(\Omega,\left(\mathcal{F}_{t}\right)_{t \geqslant 0}, \mathrm{P}\right)$. Then for any $p>0$ there exist a universal constants c_{p} и C_{p} such that

$$
\begin{equation*}
c_{p} \mathrm{E}\left([M]_{\tau}^{p / 2}\right) \leqslant \mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau}\left|M_{t}\right|^{p}\right) \leqslant C_{p} \mathrm{E}\left([M]_{\tau}^{p / 2}\right) \tag{18}
\end{equation*}
$$

where $\left([M]_{t}\right)_{t \geqslant 0}$ is called a quadratic variation of M.
The inequalities (18) are called Burkholder-Davis-Gundy inequalities. In the case when $M_{t}=B_{t}$ is standard Brownian motion we get

$$
\begin{equation*}
c_{p} \mathrm{E} \tau^{p / 2} \leqslant \mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau}\left|B_{t}\right|^{p / 2}\right) \leqslant C_{p} \mathrm{E} \tau^{p / 2} \tag{19}
\end{equation*}
$$

Note that if $p \neq 2$ the exact values of the constants c_{p} and C_{p} when inequalities (19) become sharp are still not known.

Some particular cases of Burkholder-Davis-Gundy inequalities:

- Davis inequalities $(p=1)$:

$$
c_{1} \mathrm{E} \sqrt{\tau} \leqslant \mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau}\left|B_{t}\right|\right) \leqslant C_{1} \mathrm{E} \sqrt{\tau}
$$

- Doob inequalities $(p=2)$:

$$
c_{2} \mathrm{E} \tau \leqslant \mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau} B_{t}^{2}\right) \leqslant C_{2} \mathrm{E} \tau
$$

Consider the case $p=1$. One of the possible ways to obtain the exact values of c_{1}, C_{1} is to solve the optimal stopping problem

$$
\begin{equation*}
V(c)=\sup _{\tau} \mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau}\left|B_{t}\right|-c \sqrt{\tau}\right) \tag{20}
\end{equation*}
$$

where $c>0, \tau$ is the Markov time such that $\mathrm{E} \sqrt{\tau}<\infty$.

The problem (20) can be formulated in a standard way for 3dimensional Markov process

$$
Z_{t}=\left(t, X_{t}, S_{t}\right), X_{t}=\left|B_{t}\right|, S_{t}=\max _{u \leqslant t}\left|B_{u}\right|
$$

But this problem is nonlinear and we cannot decrease it's dimensionality. The same situation happens when $p \neq 2$.

In the case $p=2$ the corresponding optimal stopping problem

$$
\sup _{\tau} \mathrm{E}\left(\max _{t \leqslant \tau} B_{t}^{2}-c \tau\right)
$$

is linear and we can get the solution explicitly. As a consequence we obtain the Doob maximal inequalities

$$
\begin{equation*}
\mathrm{E} \tau \leqslant \mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau} B_{t}^{2}\right) \leqslant 4 \mathrm{E} \tau \tag{21}
\end{equation*}
$$

where τ is the Markov time such that $\mathrm{E} \tau<\infty$.

Prove the inequality (21) and show that it is sharp. Denote $S_{t}\left(B^{2}\right)=$ $\max _{0 \leqslant u \leqslant t} B_{u}^{2}$. The lower bound for $\mathrm{E} S_{\tau}\left(B^{2}\right)$ follows from the Wald identity:

$$
\mathrm{E} S_{\tau}\left(B^{2}\right) \geqslant \mathrm{E} B_{\tau}^{2}=\mathrm{E} \tau
$$

To show that this inequality is sharp it is enough to consider the time $\tau_{*}(T)=\inf \left\{t \geqslant 0:\left|B_{t}\right|=\sqrt{T}\right\}$. Then $\mathrm{E} \tau_{*}(T)=\mathrm{E} B_{\tau_{*}(T)}^{2}=T$ and $\mathrm{E} S_{\tau_{*}(T)}\left(B^{2}\right)=T$.

In order to prove the upper bound $\mathrm{E}\left(\max _{0 \leqslant t \leqslant \tau} B_{t}^{2}\right) \leqslant 4 \mathrm{E} \tau$ consider the sequence of stopping times

$$
\sigma_{\lambda, \varepsilon}=\inf \left\{t>0: \max _{0 \leqslant s \leqslant t}\left|B_{s}\right|-\lambda\left|B_{t}\right| \geqslant \varepsilon\right\},
$$

where $\lambda, \varepsilon>0$. It is known that $\mathrm{E}\left(\sigma_{\lambda, \varepsilon}\right)^{p / 2}<\infty$ if and only if $\lambda<p /(p-1)$.

Therefore if $\lambda \in(0,2)$ we have

$$
\begin{equation*}
\mathrm{E}\left(\max _{0 \leqslant t \leqslant \sigma_{\lambda, \varepsilon}} B_{t}^{2}\right)=\lambda^{2} \mathrm{E}\left|B_{\sigma_{\lambda, \varepsilon}}\right|^{2}+2 \lambda \varepsilon \mathrm{E}\left|B_{\sigma_{\lambda, \varepsilon}}\right|+\varepsilon^{2} \leqslant K \mathrm{E}\left|B_{\sigma_{\lambda, \varepsilon}}\right|^{2} \tag{22}
\end{equation*}
$$

for some constant $K>0$. Divide the both sides of (22) on $\mathrm{E}\left|B_{\sigma_{\lambda, \varepsilon}}\right|^{2}$ and take $\lambda \uparrow 2$. Since $\mathrm{E}\left|B_{\sigma_{\lambda, \varepsilon}}\right|^{2}=\mathrm{E} \sigma_{\lambda, \varepsilon} \rightarrow \infty$ and $\mathrm{E}\left|B_{\sigma_{\lambda, \varepsilon}}\right| / \mathrm{E}\left|B_{\sigma_{\lambda, \varepsilon}}\right|^{2} \leqslant$ $1 / \sqrt{E \sigma_{\lambda, \varepsilon}} \rightarrow 0$ if $\lambda \uparrow 2$ then from (22) we get

$$
K \geqslant \lambda^{2}+2 \lambda \varepsilon \frac{\mathrm{E}\left|B_{\sigma_{\lambda, \varepsilon}}\right|}{\left.\mathrm{E} B_{\mid \sigma_{\lambda, \varepsilon}}\right|^{2}}+\frac{\varepsilon^{2}}{\mathrm{E}\left|B_{\sigma_{\lambda, \varepsilon}}\right|^{2}} \longrightarrow 4 .
$$

Therefore $K=4$ is the best possible constant in the upper bound for $\mathrm{E} S_{\tau}\left(B^{2}\right)$.

TOPIC II: Sharp maximal inequalities for discrete time processes
§1. Maximal inequalities for modulus of simple symmetric Random walk

In this section time t will take discrete values i.e. $t=n=0,1,2, \ldots$ Consider the simple symmetric Random walk $X_{n}=S_{n}=\xi_{1}+\ldots+\xi_{n}, X_{0}=S_{0}=0$, where $\xi_{1}, \ldots, \xi_{n}, \ldots$ are i.i.d. random variables, $\mathrm{P}\left(\xi_{1}=1\right)=\mathrm{P}\left(\xi_{1}=-1\right)=1 / 2$

Denote the current maximums of X and $|X|$ by $M_{n}(S)=\max _{0 \leqslant k \leqslant n} S_{k}$ and $M_{n}(|S|)=\max _{0 \leqslant k \leqslant n}\left|S_{k}\right|$.

In order to obtain the maximal inequalities for $\left(S_{n}\right)_{n \geqslant 0}$ and $\left(\left|S_{n}\right|\right)_{n \geqslant 0}$ consider the following optimal stopping problems:

$$
\begin{equation*}
V_{*}(c)=\sup _{\tau \in \mathfrak{M}} \mathrm{E}\left(\max _{0 \leqslant k \leqslant \tau} S_{k}-c \tau\right) \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{*}(c)=\sup _{\tau \in \mathfrak{M}} \mathrm{E}\left(\max _{0 \leqslant k \leqslant \tau}\left|S_{k}\right|-c \tau\right) \tag{**}
\end{equation*}
$$

For any nonnegative integer l define the stopping times

$$
\begin{aligned}
& \tau_{l}= \begin{cases}\inf \left\{k>n: M_{k}(|S|)-\left|S_{k}\right|=l\right\}, & \text { if } m-s<l \\
n, & \text { if } m-s \geqslant l\end{cases} \\
& \sigma_{l}= \begin{cases}\inf \left\{k>n: S_{k} \neq 0, M_{k}(|S|)-\left|S_{k}\right|=l\right\}, & \text { if } m-s<l \\
n, & \text { if } m-s \geqslant l\end{cases}
\end{aligned}
$$

and a function $Q_{l}=Q_{l}(n, s, m, c)$ such that

$$
Q_{l}(n, s, m, c)=\sup _{\tau \in \mathfrak{M}_{l}} \mathrm{E}_{s, m}\left(M_{\tau}(|S|)-c \tau\right)
$$

where the set of stopping times equals $\mathfrak{M}_{l}=\left\{\tau_{l}, \sigma_{l}: l \in \mathbb{Z}_{+}\right\}$.

If the conditions

1) $Q_{l}(n, s, m, c) \geqslant m-c n$,
2) $Q_{l}(n, s, m, c) \geqslant \mathrm{E} Q_{l}\left(n+1, s+\xi_{n+1}, \max \left\{m, s+\xi_{n+1}\right\}, c\right)$ (excessivity)
are satisfied then $Q_{l}(n, s, m, c)=\sup _{\tau \geqslant n} \mathrm{E}_{s, m}\left(M_{\tau}(|S|)-c \tau\right)$ i.e. the supremum on all stopping times is achieved on the stopping times of the special form τ_{l} and σ_{l}. Namely if $l \in[1 /(2 c)-1 / 2,1 /(2 c)]$ then supremum is achieved on τ_{l}. If $l \in[1 /(2 c)-1,1 /(2 c)-1 / 2]$ then supremum is achieved on σ_{l}.

Take an arbitrary $l \in \mathbb{N}$ and compute $\mathrm{E} \tau_{l}$ and $\mathrm{E} M_{\tau_{l}}(|S|)$. Represent τ_{l} as a sum $\tau_{l}=\tau^{(1)}+\tau^{(2)}$ where

$$
\begin{aligned}
& \tau^{(1)}=\inf \left\{k \geqslant 0:\left|S_{k}\right|=l\right\} \\
& \tau^{(2)}=\inf \left\{k \geqslant 0: \max _{0 \leqslant i \leqslant k}\left(S_{i+\tau^{(1)}}-S_{\tau^{(1)}}\right)-\left(S_{k+\tau^{(1)}}-S_{\tau^{(1)}}\right)=l\right\}
\end{aligned}
$$

Due to Wald identities for Random walk we have $\mathrm{E} \tau^{(1)}=\mathrm{E} S_{\tau^{(1)}}^{2}=$ l^{2}. Also note that the distribution law of $\tau^{(2)}$ coincides with distribution law of the time $\inf \left\{k \geqslant 0: M_{k}(S)-S_{k}=l\right\}$. This Markov time can be represented as a sum of $M_{\tau^{(2)}}(S)+1$ i.i.d. random variables with distribution of $\tau_{-l, 1}=\inf \left\{k \geqslant 0: S_{k}=-l\right.$ or $\left.S_{k}=1\right\}$.
Therefore since $\mathrm{E} M_{\tau^{(2)}}(S)=\mathrm{E}\left(M_{\tau^{(2)}}(S)-S_{\tau^{(2)}}\right)=l$ we get

$$
\mathrm{E} \tau^{(2)}=\left(\mathrm{E} M_{\tau^{(2)}}+1\right) \mathrm{E} \tau_{-l, 1}=l(l+1)
$$

Here we used Wald identities $\mathrm{E} S_{\tau_{-l, 1}}=0, \mathrm{E} S_{\tau_{-l, 1}}^{2}=\mathrm{E} \tau_{-l, 1}$ in order to prove that $\mathrm{E} \tau_{-l, 1}=l$.

Finally we have $\mathrm{E} \tau_{l}=\mathrm{E} \tau^{(1)}+\mathrm{E} \tau^{(2)}=l^{2}+l(l+1)=l(2 l+1)$ and $\mathrm{E} M_{\tau_{l}}(|S|)=\mathrm{E}\left(\max _{0 \leqslant k \leqslant \tau^{(1)}}\left|S_{k}\right|\right)+\mathrm{E}\left(\max _{0 \leqslant k \leqslant \tau^{(2)}} S_{k}\right)=2 l$ i.e.

$$
\left\{\begin{array}{l}
\mathrm{E} \tau_{l}=l(2 l+1), \\
\mathrm{E} M_{\tau_{l}}(|S|)=2 l
\end{array}\right.
$$

From this system we find that $\mathrm{E} M_{\tau_{l}}(|S|)=\left(\sqrt{8 \mathrm{E} \tau_{l}+1}-1\right) / 2$.
Theorem 6 (Dubins-Schwarz'1988). For any Markov time $\tau \in \mathfrak{M}$ the following sharp maximal inequality holds:

$$
\begin{equation*}
\mathrm{E}\left(\max _{0 \leqslant n \leqslant \tau}\left|S_{n}\right|\right) \leqslant \frac{\sqrt{8 \mathrm{E} \tau+1}-1}{2} \tag{23}
\end{equation*}
$$

If we consider the Markov time

$$
\tau_{*}=\inf \left\{n \geqslant 0: \max _{0 \leqslant k \leqslant n}\left|S_{k}\right|-\left|S_{n}\right|=N\right\}
$$

for any $N \in \mathbb{N}$ then (23) becomes an equality.

§2. Maximal inequalities for simple symmetric Random walk

Consider the optimal stopping problem

$$
\begin{equation*}
V_{*}(c)=\sup _{\tau \in \mathfrak{M}} \mathrm{E}\left(\max _{0 \leqslant k \leqslant \tau} S_{k}-c \tau\right) \tag{*}
\end{equation*}
$$

Theorem 7. The optimal stopping time $\tau_{*}(c)$ and value function $V_{*}(c)$ in problem (*) equal

$$
\begin{gathered}
\tau_{*}(c)= \begin{cases}\inf \left\{k \geqslant 0:\left|S_{k}-\frac{1}{2}\right|=\left\lfloor\frac{1}{2 c}+\frac{1}{2}\right\rfloor-\frac{1}{2}\right\}, & \text { if }\left\lfloor\frac{1}{2 c}+\frac{1}{2}\right\rfloor \geqslant \frac{1}{2 c}, \\
\inf \left\{k \geqslant 0:\left|S_{k}-\frac{1}{2}\right|=\left\lfloor\frac{1}{2 c}+\frac{1}{2}\right\rfloor+\frac{1}{2}\right\}, & \text { if }\left\lfloor\frac{1}{2 c}+\frac{1}{2}\right\rfloor<\frac{1}{2 c} .\end{cases} \\
V_{*}(c)= \begin{cases}\left\lfloor\frac{1}{2 c}+\frac{1}{2}\right\rfloor-c\left(\left\lfloor\frac{1}{2 c}+\frac{1}{2}\right\rfloor-\frac{1}{2}\right)^{2}+\frac{c}{4}-1, & \text { if }\left\lfloor\frac{1}{2 c}+\frac{1}{2}\right\rfloor \geqslant \frac{1}{2 c}, \\
\left\lfloor\frac{1}{2 c}+\frac{1}{2}\right\rfloor-c\left(\left\lfloor\frac{1}{2 c}+\frac{1}{2}\right\rfloor+\frac{1}{2}\right)^{2}+\frac{c}{4}, & \text { if }\left\lfloor\frac{1}{2 c}+\frac{1}{2}\right\rfloor<\frac{1}{2 c},\end{cases}
\end{gathered}
$$

where $\lfloor x\rfloor$ is the integer part of x.

Proof. According to the discrete version of Levy theorem [Fujita, Mischenko]

$$
\operatorname{Law}(\max S-S, \max S)=\operatorname{Law}\left(\left|S-\frac{1}{2}\right|-\frac{1}{2}, L(S)\right)
$$

where $L(S)=\left(L_{n}(S)\right)_{n \geqslant 0}, L_{n}(S)$ is the number of crossings of the level $1 / 2$ by Random walk on $[0, n$].
Rewriting the problem (*) and using Wald identities we have

$$
\mathrm{E}\left(M_{\tau}(S)-c \tau\right)=\mathrm{E}\left(M_{\tau}(S)-S_{\tau}\right)-c \mathrm{E} S_{\tau}^{2}=\mathrm{E}\left(\left|S_{\tau}-1 / 2\right|-1 / 2-c S_{\tau}^{2}-1 / 2\right)
$$

Since $S_{\tau}^{2}=\left(S_{\tau}-1 / 2\right)^{2}+S_{\tau}-1 / 4$ we can rewrite the last expression

$$
\begin{equation*}
\mathrm{E}\left(\left|S_{\tau}-1 / 2\right|-c S_{\tau}^{2}-1 / 2\right)=\mathrm{E}\left(\left|S_{\tau}-1 / 2\right|-c\left|S_{\tau}-1 / 2\right|^{2}\right)+c / 4-1 / 2 \tag{24}
\end{equation*}
$$

Observe that the resulting expression does not depend on τ explicitly, there is only dependence on $\left|S_{\tau}-1 / 2\right|$. That's why the method we use is called the method of space change.

Consider the function $f(x)=x-c x^{2}, x \geqslant 0$. It attains a maximum at the point $c_{0}=1 /(2 c)$ and therefore $x-c x^{2} \leqslant f\left(\frac{1}{2 c}\right)=1 /(4 c)$. Hence from (24) we get

$$
\sup _{\tau \in \mathfrak{M}} \mathrm{E}\left(\max _{0 \leqslant n \leqslant \tau} S_{n}-c \tau\right) \leqslant \frac{1}{4 c}+\frac{c}{4}-\frac{1}{2}
$$

However this inequality can be not sharp if $\frac{1}{2 c}$ does not belong to the values set $E=\{k+1 / 2\}_{k \geqslant 0}$ of the process $|S-1 / 2|$.

Nevertheless it is clear that the maximum of $\left|S_{\tau}-1 / 2\right|-c\left|S_{\tau}-1 / 2\right|^{2}$ is attained at the closest point to $1 /(2 c)$ i.e. at the point $i_{0}=\left\lfloor\frac{1}{2}+\frac{1}{2 c}\right\rfloor$. The values of optimal stopping time $\tau_{*}(c)$ and value function $V_{*}(c)$ depend on the relation between 2 distances $\Delta_{1}=1 /(2 c)-i_{0}+1 / 2$ and $\Delta_{2}=i_{0}+1 / 2-1 /(2 c)$:

$$
\begin{aligned}
& \tau_{*}(c)= \begin{cases}\inf \left\{k \geqslant 0:\left|S_{k}-\frac{1}{2}\right|=i_{0}-\frac{1}{2}\right\}, & \text { if } \Delta_{1} \leqslant \Delta_{2} \\
\inf \left\{k \geqslant 0:\left|S_{k}-\frac{1}{2}\right|=i_{0}+\frac{1}{2}\right\}, & \text { if } \Delta_{1}>\Delta_{2}\end{cases} \\
& V_{*}(c)= \begin{cases}f\left(i_{0}-\frac{1}{2}\right)+\frac{c}{4}-\frac{1}{2}, & \text { if } \Delta_{1} \leqslant \Delta_{2} \\
f\left(i_{0}+\frac{1}{2}\right)+\frac{c}{4}-\frac{1}{2}, & \text { if } \Delta_{1}>\Delta_{2}\end{cases}
\end{aligned}
$$

Theorem 8. For any Markov time $\tau \in \mathfrak{M}$ the following inequality holds:

$$
\begin{equation*}
\mathrm{E}\left(\max _{0 \leqslant n \leqslant \tau} S_{n}\right) \leqslant \frac{\sqrt{4 \mathrm{E} \tau+1}-1}{2} \tag{25}
\end{equation*}
$$

If for any $N \in \mathbb{N}$ we consider the Markov time

$$
\tau_{*}=\inf \left\{n \geqslant 0: \max _{0 \leqslant k \leqslant n} S_{k}-S_{n}=N\right\}
$$

then (25) becomes an equality.

Proof. Use the inequality (24) which we already proved:

$$
\mathrm{E}\left(\max _{0 \leqslant n \leqslant \tau} S_{n}\right) \leqslant \inf _{c>0}\left\{c\left(\mathrm{E} \tau+\frac{1}{4}\right)+\frac{1}{4 c}-\frac{1}{2}\right\}=\frac{\sqrt{4 \mathrm{E} \tau+1}-1}{2}
$$

which gives us exactly (25).

Now show that (25) is sharp. Due to the discrete version of Levy theorem the time $\tau_{*}=\inf \left\{n \geqslant 0: \max _{0 \leqslant k \leqslant n} S_{k}-S_{n}=N\right\}$ coincides by distribution with

$$
\begin{aligned}
& \inf \left\{n \geqslant 0:\left|S_{n}-1 / 2\right|-1 / 2=N\right\}= \\
& \inf \left\{n \geqslant 0: S_{n}=-N \text { or } S_{n}=N+1\right\}=\tau_{-N, N+1}
\end{aligned}
$$

Using Wald identities we can check that

$$
\mathrm{E} \tau_{*}=\mathrm{E} \tau_{-N, N+1}=N(N+1)
$$

On the other hand

$$
\mathrm{E} M_{\tau_{*}}=\mathrm{E}\left(M_{\tau_{*}}-S_{\tau_{*}}\right)=N=\frac{\sqrt{4 N(N+1)+1}-1}{2}
$$

References

[1] Peskir G., Shiryaev A. Optimal stopping and free-boundary problems. Basel: Birkhauser, 2006
[2] Dubins L., Shepp L., Shiryaev A. Optimal Stopping Rules and Maximal Inequalities for Bessel Processes // Theory Probab. Appl. 1994. 38(2), pp. 226-261
[3] Lyulko Ya. Exact inequalities for the maximum of a skew Brownian motion // Moscow University Mathematics Bulletin. 2012. 67 (4), pp. 164-169
[4] Dubins L., Schwarz G. A sharp inequality for sub-martingales and stopping times // Asterisque. 1988. v. 157-158. pp. 129-145
[5] Zhitlukhin M. V. A maximal inequality for skew Brownian motion // Statist. Decisions. 2009. 27. pp. 261-280
[6] Graversen S. E, Peskir G. On Doob's maximal inequality for Brownian motion // Stoch. Processes Appl. 1997. 69. pp. 111-125
[7] Peskir G., Shiryaev A. Maximal inequalities for reflected Brownian motion with drift // Theory Probab. Math. Statist. 2001. 63. pp. 137143
[8] Fujita T. A random walk analogue of Levy's theorem // Studia Scientiarum Mathematicarum Hungarica. 2008. 45(2). pp. 223233

