Albert N. Shiryaev

Steklov Mathematical Institute

On sharp maximal inequalities for stochastic processes

joint work with Yaroslav Lyulko, Higher School of Economics

email: albertsh@mi.ras.ru

TOPIC I: Sharp maximal inequalities for continuous time processes

TOPIC II: Sharp maximal inequalities for discrete time processes

TOPIC I: Sharp maximal inequalities for continuous time processes

- §1. Introduction. The main method for obtaining a sharp maximal inequalities
- §2. Maximal inequalities for standard Brownian motion and it's modulus. Martingale and «Stefan problem» approaches
- §3. Maximal inequalities for skew Brownian motion. Solution to the corresponding Stefan problem
- §4. Maximal inequalities for Bessel processes. Solution to the corresponding Stefan problem
- **§5.** Doob maximal inequalities

TOPIC II: Sharp maximal inequalities for discrete time processes

- §1. Maximal inequalities for modulus of simple symmetric Random walk
- **§2.** Maximal inequalities for simple symmetric Random walk

TOPIC I: Sharp maximal inequalities for continuous time processes

§1. Introduction. The main method for obtaining a sharp maximal inequalities

Let $X = (X_t)_{t \ge 0}$ be a process on $(\Omega, \mathcal{F}, \mathsf{P})$ with natural filtration $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}, \ \mathcal{F}_t = \sigma(X_s, s \le t)$. For any Markov time τ w.r.t. $(\mathcal{F}_t)_{t \ge 0}$ the inequalities

$$\mathsf{E}\left(\sup_{0\leqslant t\leqslant \tau} \mathbf{X}_t\right) \leqslant \mathbf{C}_{\mathbf{X}} \cdot \mathbf{f}(\mathsf{Eg}(\tau)) \tag{\ast}$$

are called **maximal inequalities** for X. Here C_X is a constant, $f(\cdot)$ and $g(\cdot)$ are some functions.

Markov times $\tau = \tau(\omega)$ usually belong to the set

 $\mathfrak{M} = \{\tau - \text{Markov time w.r.t. } (\mathcal{F}_t)_{t \geq 0}, \, \mathsf{E}\tau < \infty\}.$

The inequality (*) is called **sharp maximal inequality** if there exist a non-trivial Markov time $\hat{\tau} \in \mathfrak{M}$ such that $\mathsf{E}\left(\sup_{0 \leq t \leq \hat{\tau}} X_t\right) = C_X \cdot f(\mathsf{E}g(\hat{\tau})).$

Examples of maximal inequalities for some well-known processes include (Graversen, Peskir, Shiryaev 1998–2001):

• for geometric Brownian motion $X_t = \exp(\sigma B_t + (\mu - \sigma^2/2)t)$ with $\mu < 0, \sigma > 0$:

$$\mathsf{E}\left(\max_{0\leqslant t\leqslant \tau} \mathbf{X}_t\right)\leqslant 1-\frac{\sigma^2}{2\mu}+\frac{\sigma^2}{2\mu}\exp\left(-\frac{(\sigma^2-2\mu)^2}{2\sigma^2}\mathsf{E}\tau-1\right);$$

• for Ornstein-Uhlenbeck process $(X_t)_{t \ge 0}$ with $dX_t = -\beta X_t dt + dB_t, \beta > 0$:

$$\frac{\mathbf{C_1}}{\sqrt{\beta}}\mathsf{E}\sqrt{\ln(1+\beta\tau)} \leqslant \mathbf{E}\left(\max_{\mathbf{0}\leqslant\mathbf{t}\leqslant\tau}|\mathbf{X_t}|\right) \leqslant \frac{\mathbf{C_2}}{\sqrt{\beta}}\mathsf{E}\sqrt{\ln(1+\beta\tau)},$$

where $C_1, C_2 > 0$ are some universal constants;

• for "bang-bang process" $(X_t)_{t \ge 0}$ with $dX_t = -\mu \operatorname{sgn}(X_t)dt + dB_t, \mu > 0$:

$$\mathsf{E}\left(\max_{0\leqslant t\leqslant \tau} |\mathbf{X}_{\mathbf{t}}|\right) \leqslant \mathsf{G}_{\mu}(\mathsf{E}\tau),$$

where $G_{\mu}(x) = \inf_{c>0}\left(cx + \frac{1}{2\mu}\ln\left(1 + \frac{\mu}{c}\right)\right).$

Assume that $X = (X_t)_{t \ge 0}$ is the Markov process. For given measurable functions L = L(x) and K = K(x) we define

Consider the following optimal stopping problem:

$$\mathbf{V}_{*}(\mathbf{c}) = \sup_{\tau} \mathsf{E}\left(\mathbf{F}(\mathbf{I}_{\tau}, \mathbf{X}_{\tau}, \mathbf{S}_{\tau}) - \mathbf{c} \, \mathbf{G}(\mathbf{I}_{\tau}, \mathbf{X}_{\tau}, \mathbf{S}_{\tau})\right), \tag{1}$$

where F, G are given measurable functions, $\tau \in \mathfrak{M}$, c > 0 is a parameter.

Suppose we solved the problem (1) and found the function $V_*(c)$. Then for any τ and c we have

$$\mathsf{E}F(I_{\tau}, X_{\tau}, S_{\tau}) \leqslant V_*(c) + c \, \mathsf{E}G(I_{\tau}, X_{\tau}, S_{\tau}))$$

Taking the infimum on both sides by c > 0 we obtain the inequality

$$\mathsf{EF}(\mathbf{I}_{\tau}, \mathbf{X}_{\tau}, \mathbf{S}_{\tau}) \leqslant \mathsf{H}(\mathsf{EG}(\mathbf{I}_{\tau}, \mathbf{X}_{\tau}, \mathbf{S}_{\tau})) := \inf_{\mathbf{c} > 0} \left(\mathbf{V}_{*}(\mathbf{c}) + \mathbf{c} \, \mathsf{EG}(\mathbf{I}_{\tau}, \mathbf{X}_{\tau}, \mathbf{S}_{\tau}) \right)$$
(2)

which is true for any Markov time $\tau \in \mathfrak{M}$. If infimum is minimum and it is achieved on some $c_* > 0$ then inequality (2) is sharp.

The corresponding solution $\tau_*(c)$ of problem (1) when $c = c_*$ is a stopping time on which (2) becomes an equality.

Consider the particular case F(x, y, z) = z, G(x, y, z) = x, L(x) = c(x), K(x) = x. The function c = c(x) is assumed to be positive and continuous and it is called **cost for observations**. We obtain the following optimal stopping problem:

$$V_*(x,s) = \sup_{\tau} \mathsf{E}_{x,s} \left(S_{\tau} - \int_0^{\tau} c(X_t) dt \right),$$
(3)

where

• $E_{s,x}, s \ge x$ is expectation under the measure $P_{x,s} = Law(X, S | P, X_0 = x, S_0 = s)$

• τ is the optimal stopping time such that $\mathsf{E}_{x,s}\left(\int_{0}^{\tau} c(X_t)dt\right) < \infty$

In addition we assume that $X = (X_t)_{t \ge 0}$ is a diffusion process and it is a solution of stochastic differential equation

$$\left| dX_t = b(X_t)dt + \sigma(X_t)dB_t, \quad X_0 = 0, \right|$$

where $B = (B_t)_{t \ge 0}$ is the Brownian motion on $(\Omega, \mathcal{F}, \mathsf{P})$. Diffusion coefficient $\sigma = \sigma(x) > 0$ and drift coefficient b = b(x) are **continuous**.

We need to know a scale function R = R(x) and a speed measure m = m(x) in order to obtain a solution of the problem (3). It is well known that in the case of diffusion process X we have

$$R(x) = \int^{x} \exp\left(-\int^{y} \frac{2b(u)}{\sigma^{2}(u)} du\right) dy, \quad x \in \mathbb{R},$$

$$m(dx) = \frac{2dx}{R'(x)\sigma^2(x)}$$

1	1
т	Т

From the general optimal stopping theory we may decompose the **state space** $E = \{(x,s) \in \mathbb{R}^2 : x \leq s, s \geq 0\}$ of the process $(X,S), S_t = (\max_{u \leq t} X_u) \lor s$ by

$$E = C_* \cup D_*,$$

where

- $C_* = \{(x,s) \in E : V_*(x,s) > s\}$ is a continuation set. If $(x,s) \in C_*$ we need to continue our observations;
- $D_* = \{(x,s) \in E : V_*(x,s) = s\}$ is a **stopping set**. If $(x,s) \in D_*$ we need to stop our observations

Therefore if we start in C_* we need to stop at the first time when the process (X, S) reaches D_* . In other words, $\tau_* = \inf\{t \ge 0 : (X_t, S_t) \in D_*\}$.

Proposition 1. The diagonal $\{(x,s) \in E : x = s\}$ does not belong to the continuation set C_* .

Reduce the problem $V_*(x,s) = \sup_{\tau} \mathsf{E}_{x,s} \left(S_{\tau} - \int_{0}^{\tau} c(X_t) dt \right)$ to the optimal stopping problem in standard formulation. Consider the process

$$A_t = a + \int_0^t c(X_u) du, \quad a \ge 0$$

and observe that $Z_t = (A_t, X_t, S_t), t > 0, Z_0 = (a, x, s)$ is a Markov process. Define the function $\tilde{G}(a, x, s) = s - a$ and observe that the initial problem takes the form

$$\widetilde{\mathbf{V}}_*(\mathbf{a}, \mathbf{x}, \mathbf{s}) = \sup_{\tau} \mathsf{E}_{\mathbf{a}, \mathbf{x}, \mathbf{s}} \widetilde{\mathbf{G}}(\mathbf{Z}_{\tau}),$$

where times τ are such that $EA_{\tau} < \infty$. However since $\tilde{V}_*(a, x, s) = V_*(x, s) - a$ it is sufficient to find the function $V_*(x, s)$ i.e. to solve **2-dimensional optimal stopping problem** for (X, S).

The infinitesimal operator of the process $Z = (Z_t)_{t \ge 0}$ equals

$$\mathbb{L}_{Z} = c(x)\frac{\partial}{\partial a} + \mathbb{L}_{X} = c(x)\frac{\partial}{\partial a} + b(x)\frac{\partial}{\partial x} + \frac{\sigma^{2}(x)}{2}\frac{\partial^{2}}{\partial x^{2}} \text{ if } x < s.$$

Since the cost for observations c(x) is positive we should not allow the process X to decrease too fast when s is fixed. It means that for given s **there exist a point** g(s) such that we should stop the observations when (X, S) achieves a point (g(s), s). In other words

$\tau_* = \inf\{t > 0 : X_t \leq g(S_t)\}$

The unknown function g = g(s) is called the **boundary of the** stopping set D_* .

The function $V_*(x,s)$, $g(s) < x \leq s$ is a solution of the system

$$(\mathbb{L}_X V)(x,s) = c(x) \quad \text{if } g(s) < x < s, \tag{4}$$

 $\frac{\partial V}{\partial s}(x,s)\Big|_{x=0} = 0$ (normal reflection), (5)

$$\frac{\partial V}{\partial x}(x,s)\Big|_{x=g(s)+} = s \quad \text{(instanteneous stopping)}, \quad (6)$$
$$\frac{\partial V}{\partial x}(x,s)\Big|_{x=g(s)+} = 0 \quad \text{(smooth fit)}, \quad (7)$$

which is called a **Stefan problem with moving boundary** g = g(s).

Explain the meaning of each equation (4)-(7).

- According to the general optimal stopping theory, $\mathbb{L}_Z V(x,s) = 0$ when $(x,s) \in C_*$. Thus we get the equation (4);
- The instanteneous stopping condition (6) follows from the fact that V(x,s) = s when $(x,s) \in D_*$;
- The smooth fit condition (7) means that the derivative of the function V(x, s) is contintinuous on the boundary of C_* and D_* ;
- Clarify the normal reflection condition.

Applying the Ito formula for semimartingales

$$df(X_t, S_t) = f'_x(X_t, S_t) dX_t + f'_s(X_t, S_t) dS_t + \frac{1}{2} f''_{xx}(X_t, S_t) d\langle X, X \rangle_t$$

to the process $(f(X_t, S_t))_{t \ge 0}$, taking the expectation $E_{s,s}$ on both sides and multiplying on t^{-1} we get

$$\frac{\mathsf{E}_{s,s}f(X_t, S_t) - f(s, s)}{t} = \mathsf{E}_{s,s}\left(\frac{1}{t}\int\limits_0^t \mathbb{L}_X f(X_u, S_u)du\right) + \mathsf{E}_{s,s}\left(\frac{1}{t}\int\limits_0^t \frac{\partial f}{\partial s}(X_u, S_u)dS_u\right) \longrightarrow \mathbb{L}_X f(s, s) + \frac{\partial f}{\partial s}(s, s)\left(\lim_{t\downarrow 0} \frac{\mathsf{E}_{s,s}(S_t - s)}{t}\right)$$

as $t \downarrow 0$. Since the diffusion coefficient $\sigma > 0$ as $t \downarrow 0$ we have

$$\frac{1}{t}\mathsf{E}_{s,s}(S_t-s)\to\infty$$

Therefore the condition $\mathbf{f}'_{\mathbf{s}}(\mathbf{s},\mathbf{s}) = \mathbf{0}$ assures us that the limit $\mathbb{L}_X f(s,s) + \frac{\partial f}{\partial s}(s,s) \left(\lim_{t \downarrow 0} \frac{\mathsf{E}_{s,s}(S_t - s)}{t}\right)$ is finite.

Find the functions V(x, s) and g(s) – the solutions of system (4)-(7). Denote

 $\tau_g = \inf\{t > 0 \colon X_t \leq g(S_t)\}, \quad \tau_{g(s),s} = \inf\{t > 0 \colon X_t \notin (g(s),s)\}$

and consider the function

$$V_g(x,s) = \mathsf{E}_{x,s} \left(S_{\tau_g} - \int_0^{\tau_g} c(X_t) dt \right).$$

Using the strong Markov property of X w.r.t. time $\tau_{g(s),s}$ when $x \in (g(s),s)$ we have

$$V_g(x,s) = s \mathsf{P}_{x,s}(X_{\tau_{g(s),s}} = g(s)) + V_g(s,s)\mathsf{P}_{x,s}(X_{\tau_{g(s),s}} = s) - \mathsf{E}_{x,s} \int_{0}^{\tau_{g(s),s}} c(X_t) dt =$$

$$= s \frac{R(s) - R(x)}{R(s) - R(g(s))} + V_g(s, s) \frac{R(x) - R(g(s))}{R(s) - R(g(s))} - \int_{g(s)}^{s} G_{g(s),s}(x, y)c(y)m(dy),$$

where $G_{a,b}(x,y)$ is the **Green function** of X on the segment [a,b]:

$$G_{a,b}(x,y) = \begin{cases} \frac{(R(b) - R(x))(R(y) - R(a))}{R(b) - R(a)} & \text{if } a \leq y \leq x, \\ \frac{(R(b) - R(y))(R(x) - R(a))}{R(b) - R(a)} & \text{if } x \leq y \leq b. \end{cases}$$

Rewrite the expression for $V_g(x,s)$ in the following form:

$$V_g(s,s) - s = \frac{R(s) - R(g(s))}{R(x) - R(g(s))} \left(V_g(x,s) - s + \int_{g(s)}^s G_{g(s),s}(x,y)c(y)m(dy) \right)$$

Suppose that $V_g(x,s)$ satisfies the **smooth fit** condition. Then

$$\lim_{x \downarrow g(s)} \frac{V_g(x,s) - s}{R(x) - R(g(s))} = \frac{1}{R'(g(s))} \frac{\partial V_g}{\partial x}(x,s) \Big|_{x = g(s)+} = 0,$$

$$\lim_{x \downarrow g(s)} \frac{R(s) - R(g(s))}{R(x) - R(g(s))} \int_{g(s)}^{s} G_{g(s),s}(x,y)c(y)m(dy) =$$

$$\int_{g(s)}^{s} (R(s) - R(y))c(y)m(dy).$$

Therefore we have

$$V_g(s,s) = s + \int_{g(s)}^{s} (R(s) - R(y))c(y)m(dy),$$

Finally we obtain

$$V_g(x,s) = s + \int_{g(s)}^x (R(x) - R(y))c(y)m(dy),$$

(8)

for all $g(s) \leqslant x \leqslant s$.

Now suppose that the function $V_g(x,s)$ is given by (8). Then it is easy to show that $V_g(x,s)$ is a solution of **Stefan problem** (4)-(7) if and only if the boundary g = g(s) belongs to C^1 and satisfies the equation

$$g'(s) = \frac{\sigma^2(g(s))R'(g(s))}{2c(g(s))(R(s) - R(g(s)))}.$$

(9)

Observe that the equation (9) has a whole family of solutions. We need to specify the criteria which enables us to choose the solution $g_* = g_*(s) - a$ boundary of the stopping set D_* .

We call the solution g(s) of the equation (9) an **admissible solution** if g(s) < s for all $s \ge 0$.

Theorem [maximality principle]. The boundary $g_* = g_*(s)$ of the stopping set D_* in the problem

$$V_*(x,s) = \sup_{\tau} \mathsf{E}_{x,s} \left(S_{\tau} - \int_0^{\tau} c(X_t) dt \right)$$
(*)

is a maximal admissible solution of the differential equation (9).

Theorem. Consider the stopping problem (*) for diffusion process $X = (X_t)_{t \ge 0}$ such that $dX_t = b(X_t)dt + \sigma(X_t)dB_t$. Supremum is taken by all Markov times τ such that

$$\mathsf{E}_{x,s}\left(\int\limits_{0}^{\tau} c(X_t)dt\right) < \infty. \tag{10}$$

Assume that there exist the maximal admissible solution $g_*(s)$ of (9). Then

1) The value function $V_*(x,s)$ in problem (*) is finite and can be determined on E by

$$V_*(x,s) = \begin{cases} s, & \text{if } x \leq g_*(s), \\ s + \int\limits_{g_*(s)}^x (R(x) - R(y))c(y)m(dy), & \text{if } g_*(s) \leq x \leq s. \end{cases}$$

2) The Markov time $\tau_* = \inf\{t > 0 \colon X_t \leq g_*(S_t)\}$ is optimal in problem (*) if it satisfies the condition (10);

3) If there exist an optimal stopping time σ in problem (*) such that $E_{x,s}\begin{pmatrix} \sigma \\ 0 \\ 0 \end{pmatrix} < \infty$ then $P_{x,s}(\tau_* \leq \sigma) = 1$ for all (x,s) and time τ_* is also optimal in problem (*).

If the equation (9) doesn't have a maximal admissible solution then $V_*(x,s) = +\infty$ for all (x,s) and there is no optimal stopping time in problem (*).

Theorem [verification theorem]. Assume that for the solution $\hat{V} = \hat{V}(x,s)$ of Stefan problem (4)-(7) the following statements are true:

(i) $\widehat{V}(x,s) \geqslant s$, $(x,s) \in E$;

(ii) $\widehat{V}(x,s) = \mathsf{E}_{x,s} \left(S_{\tau_g} - \int_0^{\tau_g} c(X_t) dt \right), (x,s) \in E$ for some Markov time $\tau_g = \inf\{t \ge 0 \colon X_t \le g(S_t)\}$ satisfying (10);

(iii) $\hat{V}(x,s) \ge \mathsf{E}_{x,s}\hat{V}(X_{\tau},S_{\tau})$ for any Markov time τ satisfying (10).

Then $\hat{V}(x,s)$ coincides with the value function $V_*(x,s)$ in problem (*) and τ_g is optimal.

§2. Maximal inequalities for standard Brownian motion and it's modulus. Martingale and «Stefan problem» approaches

Consider the **standard Brownian motion** $B = (B_t)_{t \ge 0}, B_0 = 0$. This was the first process for which sharp maximal inequalities were established.

• "square root inequality"

$$\boxed{\mathsf{E}\left(\max_{\mathbf{0}\leqslant t\leqslant \tau}B_{t}\right)\leqslant\sqrt{\mathsf{E}\tau}}$$

(11)

(12)

• "square root of two inequality"

$$\mathsf{E}\left(\max_{0\leqslant t\leqslant \tau}|B_t|\right)\leqslant \sqrt{2\mathsf{E}\tau}$$

Inequalities (11) and (12) are also called **Dubins-Jacka-Schwarz-Shiryaev inequalities**.

Denote
$$S_t(B) = \max_{0 \le u \le t} B_u$$
 and $S_t(|B|) = \max_{0 \le u \le t} |B_u|$.

Martingale approach. First proof the inequality (11). Consider a stochastic process

$$Z_t = c((S_t(B) - B_t)^2 - t) + \frac{1}{4c}, t \ge 0$$

when c > 0. Due to Levy theorem Law(S(B)-B) = Law(|B|) and the process $B_t^2 - t$ is a martingale. Therefore $(Z_t)_{t \ge 0}$ is also martingale w.r.t. natural filtration of B. It is easy to see that $(\sqrt{cx} - 1/(2\sqrt{c}))^2 \ge 0$. From this inequality it

follows that $x - ct \leq c(x^2 - t) + 1/(4c)$ for all $x \in \mathbb{R}$. Thus for any $\tau \in \mathfrak{M}$ we get

 $\mathsf{E}(S_{\tau\wedge t}(B) - c\tau \wedge t) = \mathsf{E}(S_{\tau\wedge t}(B) - B_{\tau\wedge t} - c\tau \wedge t) \leqslant \mathsf{E}Z_{\tau\wedge t} = \mathsf{E}Z_0 = \frac{1}{4c}$

Taking the limit as $t \to \infty$ from Doob's optional sampling theorem we have $ES_{\tau}(B) \leq cE\tau + 1/(4c)$. Taking an infimum on c > 0 on both sides we obtain (11).

Prove that inequality $ES_{\tau}(B) \leq \sqrt{E\tau}$ is **sharp**. For each a > 0 consider the time

$$\tau_a = \inf\{t \ge 0 \colon S_t(B) - B_t = a\}$$

We see that $ES_{\tau_a}(B) = E(S_{\tau_a}(B) - B_{\tau_a}) = a$. Since $Law(\tau_a) = Law(inf\{t \ge 0 : |B_t| = a\})$ from Wald identities we get $a^2 = EB_{\tau_a}^2 = E\tau_a$.

Corollary. For any continuous local martingale $M = (M_t)_{t \ge 0}, M_0 = 0$ we have

$$\mathsf{E}\left(\max_{0\leqslant t\leqslant T}M_{t}\right)\leqslant\sqrt{\mathsf{E}\langle M\rangle_{T}},\tag{13}$$

for any T > 0. Here $(\langle M \rangle_t)_{t \ge 0}$ is a quadratic characteristic of M.

This inequality follows from (11) and Dambis-Dubins-Schwarz theorem. Indeed, $E(\max_{t \leq T} M_t) = E(\max_{t \leq T} B_{\langle M \rangle_t}) = E(\max_{t \leq \langle M \rangle_T} B_t) \leq \sqrt{E\langle M \rangle_T}$. Prove the inequality $\mathsf{E}S_{\tau}(|B|) \leq \sqrt{2\mathsf{E}\tau}$. Consider a continuous martingale $U_t = \mathsf{E}(|B_{\tau}| - \mathsf{E}|B_{\tau}| | \mathcal{F}^B_{t \wedge \tau}), t \geq 0$

Applying (13) to $\max_{t \leq T} U_t$ and taking $T \to +\infty$ we get $\mathsf{E}(\max_{t \geq 0} U_t) \leq \sqrt{\mathsf{E}(|B_{\tau}| - \mathsf{E}|B_{\tau}|)^2}$. Using this inequality we estimate $\mathsf{E}S_{\tau}(|B|)$ by

$$\mathsf{E}\left(\max_{0\leqslant t\leqslant \tau}|B_{t}|\right) = \mathsf{E}\left(\max_{t\geqslant 0}|B_{t\wedge\tau}|\right) = \mathsf{E}\left(\max_{t\geqslant 0}|\mathsf{E}(B_{\tau}|\mathcal{F}_{t\wedge\tau}^{B})|\right) \leqslant \mathsf{E}\left(\max_{t\geqslant 0}\mathsf{E}(|B_{\tau}||\mathcal{F}_{t\wedge\tau}^{B})\right) = \mathsf{E}\left(\max_{t\geqslant 0}U_{t}\right) + \mathsf{E}|B_{\tau}| \leqslant \sqrt{\mathsf{E}(|B_{\tau}|-\mathsf{E}|B_{\tau}|)^{2}} + \mathsf{E}|B_{\tau}| = \sqrt{\mathsf{E}\tau - (\mathsf{E}|B_{\tau}|)^{2}} + \mathsf{E}|B_{\tau}| \leqslant \sqrt{2\mathsf{E}\tau}.$$

In order to get the last inequality in this series we used a simple inequality $\sqrt{A - x^2 + x} \leq \sqrt{2A}$ when $0 < x < \sqrt{A}$.

Now show that inequality $ES_{\tau}(|B|) \leq \sqrt{2E\tau}$ is sharp. Consider the time

 $\widehat{\tau}_a = \inf\{t \ge 0 \colon S_t(|B|) - |B_t| = a\}$

It turns out that $E\hat{\tau}_a = 2a^2$ and $E(\max_{t \leq \hat{\tau}_a} |B_t|) = 2a$.

«Stefan problem» approach. Basically the proof of (11) and (12) is the application of the main theorem of §1 to the problem

$$V_*(x,s) = \sup_{\tau} \mathsf{E}_{x,s} \left(S_{\tau} - \int_0^{\tau} c(X_t) dt \right)$$

in the case when $c(X_t) \equiv c > 0$, $X_t = B_t$ or $X_t = |B_t|$.

First, prove the inequality $ES_{\tau}(B) \leq \sqrt{E\tau}$. In the case of Brownian motion R(x) = x, m(dx) = 2dx, $x \in \mathbb{R}$. According to the theorem the equation for boundary is

$$g'(s) = \frac{1}{2c(s - g(s))}$$

The maximal admissible solution of this equation is $g_*(s) = s - 1/(2c)$.

Therefore the value function $V_*(x,s) = \sup_{t \leq \tau} \mathsf{E}_{x,s}(S_\tau(B) - c\tau)$ when $0 \leq s - x \leq 1/(2c)$ equals

$$V_*(x,s) = s + 2c \int_{g(s)}^x (x-y)dy = c(x-s)^2 + x + \frac{1}{4c}$$

Since we need the value $V_*(0,0)$ for any $\tau \in \mathfrak{M}$ we get

$$\mathsf{E}S_{\tau}(B) \leq \inf_{c>0} \{V_*(0,0) + c\mathsf{E}\tau\} = \inf_{c>0} \{1/(4c) + c\mathsf{E}\tau\} = \sqrt{\mathsf{E}\tau}$$

However we cannot apply directly the method from §1 in the case of $X_t = |B_t|$ and obtain the inequality $\mathsf{E}S_\tau(|B|) \leq \sqrt{2\mathsf{E}\tau}$. The reason is that we cannot represent $X_t = |B_t|$ in the form $dX_t = b(X_t)dt + \sigma(X_t)dB_t$ with continuous b and σ . But we can consider the problem

$$W_*(x,s) = \sup_{\tau} \mathsf{E}_{x,s} \left(s \vee \max_{0 \leq t \leq \tau} |x + B_t| - c\tau \right)$$

and reduce it to the Stefan problem.

Infinitesimal operator of |B| equals $L = \frac{1}{2} \frac{d^2}{dx^2}$, x > 0 with endpoint x = 0. Thus Stefan problem in our case is

$$\begin{cases} \frac{\partial^2 W}{\partial x^2}(x,s) = 2c, & x \neq 0, \ g(s) < x \leq s, \\ \frac{\partial W}{\partial x}(0+,s) = 0, & s \colon g(s) < 0; \\ \frac{\partial W}{\partial s}(x,s)\Big|_{x=s-} = 0; \ W(x,s)|_{x=g(s)+} = s; \ \frac{\partial W}{\partial x}(x,s)\Big|_{x=g(s)+} = 0. \end{cases}$$

The solution of this system is the function

$$W_*(x,s) = \begin{cases} s, & s-x \ge \frac{1}{2c}, \\ c(x-s)^2 + x + \frac{1}{4c}, & s \ge 1/(2c), \ s-x \le 1/(2c), \\ cx^2 + \frac{1}{2c}, & 0 \le s \le \frac{1}{2c} \end{cases}$$

Since $W_*(0,0) = 1/(2c)$ for each $\tau \in \mathfrak{M}$ we have $\mathsf{E}S_{\tau}(|B|) \leq \inf_{c>0}\{1/(2c) + c\mathsf{E}\tau\} = \sqrt{2\mathsf{E}\tau}$.

§3. Maximal inequalities for skew Brownian motion. Solution to the corresponding Stefan problem

The process $X^{\alpha} = (X_t^{\alpha})_{t \ge 0}$ defined on probability space $(\Omega, \mathcal{F}, \mathsf{P})$ is called a **skew Brownian motion** if it satisfies the stochastic equation

$$X_t^{\alpha} = X_0^{\alpha} + B_t + (2\alpha - 1)L_t^0(X^{\alpha}),$$
(14)

where $L^0 = (L^0_t(X^{\alpha}))_{t \ge 0} \subset L^0_0(X^{\alpha}) = 0$ is the local time of X^{α} in zero.

The skew Brownian motion with parameter $\alpha = 1/2$ has the same distribution as **standard Brownian motion**, with parameter $\alpha = 1$ – as the **modulus of standard Brownian motion**.

Denote by $W^{\alpha} = (W_t^{\alpha})_{t \ge 0}$ the unique strong solution of (14) such that $W_0^{\alpha} = 0$.

Consider the optimal stopping problem

$$V_*(x,s) = \sup_{\tau} \mathsf{E}_{x,s} \left(s \lor \max_{0 \leqslant t \leqslant \tau} (x + W_t^{\alpha}) - c\tau \right)$$
(15)

with constant cost for observations c > 0. We cannot directly apply the methods from §1 since $X_t = x + W_t^{\alpha}$ cannot be represented in the form $dX_t = b(X_t)dt + \sigma(X_t)dB_t$ with continuous $b(\cdot)$ and $\sigma(\cdot)$. However we can write the analogue of Stefan problem (4)-(7) in the case of optimal stopping problem.

The infinitesimal operator for X equals $L = \frac{1}{2} \frac{d^2}{dx^2}$ and defined for functions

$$\{f: f'' \text{ exists on } \mathbb{R} \setminus \{0\}, f''(0+) = f''(0-), \lim_{x \to \infty} f(x) = 0$$

and $\alpha f'(0+) = (1-\alpha)f'(0-)\}$

Therefore we get the Stefan problem for value function

$$\begin{cases} \frac{\partial^2 V}{\partial x^2}(x,s) = 2c, \quad x \neq 0, \ g(s) < x \leqslant s, \\ \alpha \frac{\partial V}{\partial x}(0+,s) = (1-\alpha) \frac{\partial V}{\partial x}(0-,s), \quad s \colon g(s) < 0; \\ \frac{\partial V}{\partial s}(x,s)\Big|_{x=s-} = 0; \ V(x,s)|_{x=g(s)+} = s; \ \frac{\partial V}{\partial x}(x,s)\Big|_{x=g(s)+} = 0 \end{cases}$$

The solution of this system is given in the following

Theorem 1. The optimal stopping time τ_c in the problem (15) exists and equals

$$\tau_* = \inf\{t \ge 0 : X_t \le g(S_t)\}$$

The mapping $g = g(s), s \ge 0$ is given by

$$s = \begin{cases} g + 1/(2c), & \text{if } g \ge 0, \\ \frac{\beta^2 - 1}{2c\beta^2} e^{2c\beta g} + \frac{g}{\beta} + \frac{1}{2c\beta^2}, & \text{if } g < 0, \end{cases}$$

parameter $\beta = (1 - \alpha)/\alpha$.

If we consider the sets $D_* = \{(x, s) \in E : x \leq g(s)\}, C_* = E \setminus D_*$ then the value function equals

$$V_*(x,s) = \begin{cases} s + c(x - g(s))^2, & (x,s) \in C_*, \ x \ge 0, \ s \ge \frac{1}{2c} \\ & \text{or } x < 0, \ s < \frac{1}{2c}, \\ s + c(x - g(s))^2 + 2c(1 - \beta)xg(s), & (x,s) \in C_*, \ x \ge 0, \ s < \frac{1}{2c}, \\ s, & (x,s) \in D_* \end{cases}$$

The proof of the theorem is based on finding the solution to Stefan problem. Particularly the equation for boundary g = g(s) is

$$g'(s) = \begin{cases} \frac{1}{2c(s - g(s))}, & s \colon g(s) \ge 0, \\ \frac{1}{2c(\beta s - g(s))}, & s \colon g(s) < 0 \end{cases}$$

The general solution of this equation is $s(g) = a_0 e^{2cg} + g + 1/(2c)$ when $g \ge 0$ and $s(g) = b_0 e^{2c\beta g} + g/\beta + 1/(2c\beta^2)$ when g < 0. In order to prove that the solution of Stefan problem V(x,s) coincides with the value function $V_*(x,s) = \sup_{\tau} \mathsf{E}_{x,s} (s \lor \max_{0 \le t \le \tau} (x + W_t^{\alpha}) - c\tau)$ we use the following analogue of **Ito formula**:

$$\hat{V}(X_t, S_t) = \hat{V}(X_0, S_0) + \int_0^t \hat{V}'_x(X_u, S_u) dB_u + \int_0^t \hat{V}'_s(X_u, S_u) dS_u + \frac{2\alpha - 1}{2} \int_0^t (\hat{V}'_x(0+, S_u) + \hat{V}'_x(0-, S_u)) dL_u^0 + \frac{1}{2} \int_0^t (\hat{V}'_x(0+, S_u) + \hat{V}'_x(0-, S_u)) dL_u^0 + \frac{1}{2} \int_0^t \hat{V}''_x(X_u, S_u) \mathbb{I}(X_u \neq 0) du$$

Once we know the value $V_*(0,0)$ it is possible to obtain the maximal inequalities.

Theorem 2 (Lyulko'2012). For any Markov time $\tau \in \mathfrak{M}$ and for any $\alpha \in (0, 1)$ the following inequality holds:

$$\mathsf{E}\left(\max_{\mathbf{0}\leqslant t\leqslant \tau}W_{t}^{\alpha}\right)\leqslant M_{\alpha}\sqrt{\mathsf{E}\tau},$$

where $M_{\alpha} = \alpha(1 + A_{\alpha})/(1 - \alpha)$ and A_{α} is the unique solution of the equation

$$A_{\alpha}e^{A_{\alpha}+1} = \frac{1-2\alpha}{\alpha^2},$$

such that $A_{\alpha} > -1$.

The inequality (16) is **sharp** i.e. for any T > 0 there exist a Markov time τ with $E\tau = T$ such that

$$\mathsf{E}\left(\max_{0\leqslant t\leqslant \tau} W_t^{\alpha}\right) = M_{\alpha}\sqrt{\mathsf{E}\tau}.$$

37

(16)

The inequalities like (16) can be obtained not only for maximum max W_t^{α} . Thus in **[Zhitlukhin'2012]** there were stated the following $0 \le t \le \tau$ inequalities for range of skew Brownian motion:

$$\mathsf{E}\left(\max_{0\leqslant t\leqslant \tau} W_t^{\alpha} - \min_{0\leqslant t\leqslant \tau} W_t^{\alpha}\right) \leqslant \sqrt{K_{\alpha}\mathsf{E}\tau},$$

where
$$K_{\alpha} = C_{\alpha} + C_{1-\alpha}$$
,

$$C_{\alpha} = \frac{\alpha}{1-\alpha} \left(\frac{\alpha D_{\alpha}^2}{1-\alpha} - 2D_{\alpha} - 2\alpha \int_{D_{\alpha}}^{0} \frac{\alpha x + \alpha - 1}{(2\alpha - 1)e^x - \alpha} dx \right)$$

and D_{α} is the unique negative solution of the equation

§4. Maximal inequalities for Bessel processes. Solution to the corresponding Stefan problem

A continuous nonnegative Markov process $X = (X_t(x))_{t \ge 0}, x \ge 0$ is called a **Bessel process of dimension** $\gamma \in \mathbb{R}$ $(X \in \text{Bes}^{\gamma}(x))$ if it's infinitesimal operator equals

$$\mathbb{L}_X = \frac{1}{2} \left(\frac{\gamma - 1}{x} \frac{d}{dx} + \frac{d^2}{dx^2} \right)$$

The endpoint x = 0 is called **trap** if $\gamma \leq 0$, **instantaneously** reflecting if $\gamma \in (0, 2)$ and entrance if $\gamma \ge 2$.

In the case $\alpha = n \in \mathbb{N}$ the Bessel process can be realized as a radial part of *n*-dimensional Brownian motion

$$X_t(x) = \left(\sum_{i=1}^n (B_t^i + a_i)^2\right)^{1/2},$$

where $a = (a_1, a_2, ..., a_n)$ is a vector in \mathbb{R}^n with norm $x = \sqrt{a_1^2 + ... + a_n^2}$. $B^1, B^2, ..., B^n$ are independent Brownian motions starting from zero. The Bessel process of dimension $\gamma = 1$ is a **modulus of standard Brownian motion** $x + |B_t|$.

Consider the optimal stopping problem

$$V_*(x,s) = \sup_{\tau} \mathsf{E}_{x,s} \left(s \vee \max_{0 \leqslant t \leqslant \tau} X_t(x) - c\tau \right) \tag{(*)}$$

where Markov times $\tau \in \mathfrak{M}$.

Theorem 3. Let $X \in Bes^{\gamma}(x)$ where the dimension $\gamma \in \mathbb{R}$ and c > 0. The optimal stopping time τ_* in problem (*) exists and equals

$$\tau_* = \inf\{t \ge 0 \colon (X_t, S_t) \in D_*\}$$

with $X_t = X_t(x)$, $S_t = S_t(x,s) = s \vee \max_{0 \le u \le t} X_u$ and stopping set $D_* = \{(x,s) \colon s_* \le s, x \le g_*(s)\}$ where $g_* = g_*(s)$ is the unique nonnegative solution of the equation

$$\frac{2c}{\gamma-2}g'(s)g(s)\left(1-\left(\frac{g(s)}{s}\right)^{\gamma-2}\right)=1$$

(17)

such that $g(s) \leq s$ when $s \geq 0$ and

$$\lim_{s \to \infty} \frac{g_*(s)}{s} = 1,$$

and s_* is the root of the equation $g_*(s) = 0$. When $\gamma = 2$ the equation (17) has the form $2cg'(s)g(s)\ln(s/g) = 1$.

Moreover if we denote

$$C_*^1 = \{(x,s) \in \mathbb{R}_+ \times \mathbb{R}_+ \colon s > s_*, g_*(s) < x \leq s\},\$$
$$C_*^2 = \{(x,s) \in \mathbb{R}_+ \times \mathbb{R}_+ \colon 0 \leq x \leq s \leq s_*\}$$

and define a continuation set by $C_* = C_*^1 \cup C_*^2$ then depending on the value of parameter γ the value function $V_*(x,s)$ equals

 $\text{if }\alpha > \mathsf{0}$

$$V_{*}(x,s) = \begin{cases} s, & (x,s) \in D_{*}, \\ s + \frac{c}{\gamma}(x^{2} - g_{*}^{2}(s)) + \frac{2cg_{*}^{2}(s)}{\gamma(\gamma - 2)} \left(\left(\frac{g_{*}(s)}{x}\right)^{\gamma - 2} - 1 \right), & (x,s) \in C_{*}^{1}, \\ \frac{c}{\gamma}x^{2} + s_{*}, & (x,s) \in C_{*}^{2}; \end{cases}$$

 $\text{if } \alpha = \mathbf{0}$

$$V_*(x,s) = \begin{cases} s, & (x,s) \in D_*, \\ s + \frac{c}{2}(g_*^2(s) - x^2) + cx^2 \ln \frac{x}{g_*(s)}, & (x,s) \in C_*; \end{cases}$$

if $\alpha < 0$

$$V_*(x,s) = \begin{cases} s, & (x,s) \in D_*, \\ s + \frac{c}{\gamma}(x^2 - g_*^2(s)) + \frac{2cg_*^2(s)}{\gamma(\gamma - 2)} \left(\left(\frac{g_*(s)}{x}\right)^{\gamma - 2} - 1 \right), & (x,s) \in C_*. \end{cases}$$

Using this theorem we can obtain the maximal inequalities for Bessel processes.

- if $\gamma \leq 0$ then the point x = 0 is a **trap**. Therefore $X_t(x) \equiv 0$ if $t \geq 0$ and maximal inequalities do not make sense
- if $\gamma > 0$ then from theorem it follows that $V_*(0,0) = s_*$. Denote $V_*(x,s) = V_c^{\gamma}(x,s), s_* = s_c(\gamma)$

Since Bessel processes are self-similar

Law(
$$X_t(x), t \ge 0$$
) = Law($c^{-1/2}X_{ct}(c^{1/2}x)$)

the value function $V_c^{\gamma}(x,s)$ is also self-similar, i.e. $cV_c^{\gamma}(x,s) = V_1^{\gamma}(cx,cs)$. Hence $s_c(\gamma) = s_1(\gamma)/c$. Therefore we get the inequalties

$$\mathsf{E}\left(\max_{0\leqslant t\leqslant\tau}X_t(0)\right)\leqslant\inf_{c>0}\{V_*(0,0)+c\mathsf{E}\tau\}=\\\inf_{c>0}\{s_1(\gamma)/c+c\mathsf{E}\tau\}=\sqrt{4s_1(\gamma)\mathsf{E}\tau}$$

Theorem 4 (Dubins-Shepp-Shiryaev'1993). Let $X \in Bes^{\gamma}(0)$, $\gamma > 0$. Then for any Markov time $\tau \in \mathfrak{M}$ the following sharp maximal inequality holds:

$$\mathsf{E}\left(\max_{0\leqslant t\leqslant \tau} X_t(0)\right)\leqslant \sqrt{4s_1(\gamma)\mathsf{E}\tau},$$

where $s_1(\gamma)$ is the root of equation $g_*(s) = 0$ such that

$$\frac{s_1(\gamma)}{\gamma} \longrightarrow \frac{1}{4}$$

as $\gamma \uparrow \infty$.

Observe that in the case $\gamma = 1$ we have $s_1(1) = 1/2$ and therefore we get the maximal inequality for modulus of standard Brownian motion $E\left(\max_{0 \le t \le \tau} |B_t|\right) \le \sqrt{2E\tau}$.

§5. Doob maximal inequalities

Theorem 5. Let $M = (M_t)_{t \ge 0}$ be a local martingale on a filtered probability space $(\Omega, (\mathcal{F}_t)_{t \ge 0}, \mathsf{P})$. Then for any p > 0 there exist a universal constants c_p $\bowtie C_p$ such that

$$c_{p}\mathsf{E}([M]_{\tau}^{p/2}) \leqslant \mathsf{E}\left(\max_{0 \leqslant t \leqslant \tau} |M_{t}|^{p}\right) \leqslant C_{p}\mathsf{E}([M]_{\tau}^{p/2}),$$
(18)

where $([M]_t)_{t \ge 0}$ is called a **quadratic variation** of M.

The inequalities (18) are called **Burkholder-Davis-Gundy inequalities**. In the case when $M_t = B_t$ is standard Brownian motion we get

$$c_p \mathsf{E} \tau^{p/2} \leqslant \mathsf{E} \left(\max_{\mathbf{0} \leqslant t \leqslant \tau} |B_t|^{p/2}
ight) \leqslant C_p \mathsf{E} \tau^{p/2},$$

Note that if $p \neq 2$ the exact values of the constants c_p and C_p when inequalities (19) become **sharp** are still not known.

(19)

Some particular cases of Burkholder-Davis-Gundy inequalities:

• Davis inequalities (p = 1):

$$c_1 \mathsf{E} \sqrt{\tau} \leqslant \mathsf{E} \left(\max_{\mathbf{0} \leqslant t \leqslant \tau} |B_t| \right) \leqslant C_1 \mathsf{E} \sqrt{\tau}$$

• **Doob inequalities** (p = 2):

$$c_2 \mathsf{E}\tau \leqslant \mathsf{E}\left(\max_{0 \leqslant t \leqslant \tau} B_t^2\right) \leqslant C_2 \mathsf{E}\tau$$

Consider the case p = 1. One of the possible ways to obtain the exact values of c_1 , C_1 is to solve the optimal stopping problem

$$V(c) = \sup_{\tau} \mathsf{E}\left(\max_{0 \le t \le \tau} |B_t| - c\sqrt{\tau}\right),\tag{20}$$

where c > 0, τ is the Markov time such that $E\sqrt{\tau} < \infty$.

The problem (20) can be formulated in a standard way for 3dimensional Markov process

$$Z_t = (t, X_t, S_t), X_t = |B_t|, S_t = \max_{u \leq t} |B_u|$$

But this problem is **nonlinear** and we cannot decrease it's dimensionality. The same situation happens when $p \neq 2$.

In the case p = 2 the corresponding optimal stopping problem

$$\sup_{\tau} \mathsf{E}(\max_{t \leqslant \tau} B_t^2 - c\tau)$$

is **linear** and we can get the solution explicitly. As a consequence we obtain the **Doob maximal inequalities**

$$\mathsf{E}\tau \leqslant \mathsf{E}\left(\max_{0\leqslant t\leqslant \tau} B_t^2\right) \leqslant \mathsf{4}\mathsf{E}\tau,$$

(21)

where τ is the Markov time such that $E\tau < \infty$.

Prove the inequality (21) and show that it is sharp. Denote $S_t(B^2) = \max_{0 \le u \le t} B_u^2$. The lower bound for $\mathsf{E}S_\tau(B^2)$ follows from the Wald identity:

$\mathsf{E}S_{\tau}(B^2) \geqslant \mathsf{E}B_{\tau}^2 = \mathsf{E}\tau$

To show that this inequality is sharp it is enough to consider the time $\tau_*(T) = \inf\{t \ge 0 : |B_t| = \sqrt{T}\}$. Then $\mathsf{E}_{\tau_*(T)} = \mathsf{E}_{T_*(T)}^2 = T$ and $\mathsf{E}_{T_*(T)}(B^2) = T$.

In order to prove the upper bound $E\left(\max_{0 \le t \le \tau} B_t^2\right) \le 4E\tau$ consider the sequence of stopping times

$$\sigma_{\lambda,\varepsilon} = \inf\{t > 0: \max_{0 \le s \le t} |B_s| - \lambda |B_t| \ge \varepsilon\},\$$

where $\lambda, \varepsilon > 0$. It is known that $E(\sigma_{\lambda,\varepsilon})^{p/2} < \infty$ if and only if $\lambda < p/(p-1)$.

Therefore if $\lambda \in (0,2)$ we have

$$\mathsf{E}\left(\max_{0\leqslant t\leqslant\sigma_{\lambda,\varepsilon}}B_t^2\right) = \lambda^2 \mathsf{E}|B_{\sigma_{\lambda,\varepsilon}}|^2 + 2\lambda\varepsilon\mathsf{E}|B_{\sigma_{\lambda,\varepsilon}}| + \varepsilon^2 \leqslant K\mathsf{E}|B_{\sigma_{\lambda,\varepsilon}}|^2 \quad (22)$$

for some constant K > 0. Divide the both sides of (22) on $E|B_{\sigma_{\lambda,\varepsilon}}|^2$ and take $\lambda \uparrow 2$. Since $E|B_{\sigma_{\lambda,\varepsilon}}|^2 = E\sigma_{\lambda,\varepsilon} \to \infty$ and $E|B_{\sigma_{\lambda,\varepsilon}}|/E|B_{\sigma_{\lambda,\varepsilon}}|^2 \leq 1/\sqrt{E\sigma_{\lambda,\varepsilon}} \to 0$ if $\lambda \uparrow 2$ then from (22) we get

$$K \ge \lambda^2 + 2\lambda\varepsilon \frac{\mathsf{E}|B_{\sigma_{\lambda,\varepsilon}}|}{\mathsf{E}B_{|\sigma_{\lambda,\varepsilon}}|^2} + \frac{\varepsilon^2}{\mathsf{E}|B_{\sigma_{\lambda,\varepsilon}}|^2} \longrightarrow 4.$$

Therefore K = 4 is the best possible constant in the upper bound for $ES_{\tau}(B^2)$.

TOPIC II: Sharp maximal inequalities for discrete time processes

§1. Maximal inequalities for modulus of simple symmetric Random walk

In this section time t will take discrete values i.e. t = n = 0, 1, 2, ...Consider the simple symmetric Random walk $X_n = S_n = \xi_1 + ... + \xi_n, X_0 = S_0 = 0$, where $\xi_1, ..., \xi_n, ...$ are i.i.d. random variables, $P(\xi_1 = 1) = P(\xi_1 = -1) = 1/2$

Denote the current maximums of X and |X| by $M_n(S) = \max_{0 \le k \le n} S_k$ and $M_n(|S|) = \max_{0 \le k \le n} |S_k|$. In order to obtain the maximal inequalities for $(S_n)_{n \ge 0}$ and $(|S_n|)_{n \ge 0}$ consider the following optimal stopping problems:

$$V_*(c) = \sup_{\tau \in \mathfrak{M}} \mathsf{E}\left(\max_{0 \leqslant k \leqslant \tau} S_k - c\tau\right) \tag{(*)}$$

and

$$W_*(c) = \sup_{\tau \in \mathfrak{M}} \mathsf{E}\left(\max_{0 \leqslant k \leqslant \tau} |S_k| - c\tau\right) \tag{**}$$

For any nonnegative integer l define the stopping times

$$\tau_{l} = \begin{cases} \inf\{k > n : M_{k}(|S|) - |S_{k}| = l\}, & \text{if } m - s < l, \\ n, & \text{if } m - s \geqslant l \end{cases}$$

$$\sigma_{l} = \begin{cases} \inf\{k > n : S_{k} \neq 0, M_{k}(|S|) - |S_{k}| = l\}, & \text{if } m - s < l, \\ n, & \text{if } m - s \geqslant l \end{cases}$$

and a function $Q_l = Q_l(n, s, m, c)$ such that

$$Q_l(n, s, m, c) = \sup_{\tau \in \mathfrak{M}_l} \mathsf{E}_{s, m} \left(M_{\tau}(|S|) - c\tau \right),$$

where the set of stopping times equals $\mathfrak{M}_l = \{\tau_l, \sigma_l : l \in \mathbb{Z}_+\}.$

If the conditions

1)
$$Q_l(n, s, m, c) \ge m - cn$$
,

2) $Q_l(n, s, m, c) \ge EQ_l(n+1, s+\xi_{n+1}, \max\{m, s+\xi_{n+1}\}, c)$ (excessivity)

are satisfied then $Q_l(n, s, m, c) = \sup_{\tau \ge n} \mathsf{E}_{s,m} (M_{\tau}(|S|) - c\tau)$ i.e. the supremum on all stopping times is achieved on the stopping times of the special form τ_l and σ_l . Namely if $l \in [1/(2c) - 1/2, 1/(2c)]$ then supremum is achieved on τ_l . If $l \in [1/(2c) - 1, 1/(2c) - 1/2]$ then supremum is achieved on σ_l .

Take an arbitrary $l \in \mathbb{N}$ and compute E_{τ_l} and $\mathsf{E}_{\mathcal{T}_l}(|S|)$. Represent τ_l as a sum $\tau_l = \tau^{(1)} + \tau^{(2)}$ where

$$\tau^{(1)} = \inf\{k \ge 0 : |S_k| = l\},\$$

$$\tau^{(2)} = \inf\{k \ge 0 : \max_{0 \le i \le k} (S_{i+\tau^{(1)}} - S_{\tau^{(1)}}) - (S_{k+\tau^{(1)}} - S_{\tau^{(1)}}) = l\}$$

Due to Wald identities for Random walk we have $E\tau^{(1)} = ES_{\tau^{(1)}}^2 = l^2$. Also note that the distribution law of $\tau^{(2)}$ coincides with distribution law of the time $\inf\{k \ge 0 : M_k(S) - S_k = l\}$. This Markov time can be represented as a sum of $M_{\tau^{(2)}}(S) + 1$ i.i.d. random variables with distribution of $\tau_{-l,1} = \inf\{k \ge 0 : S_k = -l \text{ or } S_k = 1\}$. Therefore since $EM_{\tau^{(2)}}(S) = E(M_{\tau^{(2)}}(S) - S_{\tau^{(2)}}) = l$ we get

$$\mathsf{E}\tau^{(2)} = (\mathsf{E}M_{\tau^{(2)}} + 1)\mathsf{E}\tau_{-l,1} = l(l+1)$$

Here we used Wald identities $ES_{\tau_{-l,1}} = 0$, $ES_{\tau_{-l,1}}^2 = E\tau_{-l,1}$ in order to prove that $E\tau_{-l,1} = l$.

Finally we have $\mathsf{E}_{\tau_l} = \mathsf{E}_{\tau}^{(1)} + \mathsf{E}_{\tau}^{(2)} = l^2 + l(l+1) = l(2l+1)$ and $\mathsf{E}_{\tau_l}(|S|) = \mathsf{E}(\max_{0 \le k \le \tau^{(1)}} |S_k|) + \mathsf{E}(\max_{0 \le k \le \tau^{(2)}} S_k) = 2l$ i.e. $\begin{cases} \mathsf{E}_{\tau_l} = l(2l+1), \\ \mathsf{E}_{\tau_l}(|S|) = 2l \end{cases}$

From this system we find that $EM_{\tau_l}(|S|) = (\sqrt{8E\tau_l + 1} - 1)/2$. **Theorem 6 (Dubins-Schwarz'1988).** For any Markov time $\tau \in \mathfrak{M}$ the following **sharp** maximal inequality holds:

$$\mathsf{E}\left(\max_{0\leqslant n\leqslant \tau}|S_n|\right)\leqslant \frac{\sqrt{8\mathsf{E}\tau+1}-1}{2}$$

If we consider the Markov time

$$\tau_* = \inf\{n \ge 0 : \max_{0 \le k \le n} |S_k| - |S_n| = N\}$$

for any $N \in \mathbb{N}$ then (23) becomes an equality.

§2. Maximal inequalities for simple symmetric Random walk

Consider the optimal stopping problem

$$V_*(c) = \sup_{\tau \in \mathfrak{M}} \mathsf{E}\left(\max_{0 \leq k \leq \tau} S_k - c\tau\right) \tag{(*)}$$

Theorem 7. The optimal stopping time $\tau_*(c)$ and value function $V_*(c)$ in problem (*) equal

$$\tau_{*}(c) = \begin{cases} \inf\{k \ge 0 : \left|S_{k} - \frac{1}{2}\right| = \left\lfloor\frac{1}{2c} + \frac{1}{2}\right\rfloor - \frac{1}{2}\}, & \text{if } \left\lfloor\frac{1}{2c} + \frac{1}{2}\right\rfloor \ge \frac{1}{2c}, \\ \inf\{k \ge 0 : \left|S_{k} - \frac{1}{2}\right| = \left\lfloor\frac{1}{2c} + \frac{1}{2}\right\rfloor + \frac{1}{2}\}, & \text{if } \left\lfloor\frac{1}{2c} + \frac{1}{2}\right\rfloor < \frac{1}{2c}. \end{cases} \\ V_{*}(c) = \begin{cases} \left\lfloor\frac{1}{2c} + \frac{1}{2}\right\rfloor - c\left(\left\lfloor\frac{1}{2c} + \frac{1}{2}\right\rfloor - \frac{1}{2}\right)^{2} + \frac{c}{4} - 1, & \text{if } \left\lfloor\frac{1}{2c} + \frac{1}{2}\right\rfloor \ge \frac{1}{2c}, \\ \left\lfloor\frac{1}{2c} + \frac{1}{2}\right\rfloor - c\left(\left\lfloor\frac{1}{2c} + \frac{1}{2}\right\rfloor + \frac{1}{2}\right)^{2} + \frac{c}{4}, & \text{if } \left\lfloor\frac{1}{2c} + \frac{1}{2}\right\rfloor < \frac{1}{2c}, \end{cases} \\ where \lfloor x \rfloor \text{ is the integer part of } x. \end{cases}$$

Proof. According to the **discrete version of Levy theorem** [Fujita, Mischenko]

Law (max
$$S - S$$
, max S) = Law $\left(\left| S - \frac{1}{2} \right| - \frac{1}{2}, L(S) \right)$,

where $L(S) = (L_n(S))_{n \ge 0}$, $L_n(S)$ is the number of crossings of the level 1/2 by Random walk on [0, n]. Rewriting the problem (*) and using Wald identities we have

$$\mathsf{E}(M_{\tau}(S) - c\tau) = \mathsf{E}(M_{\tau}(S) - S_{\tau}) - c\mathsf{E}S_{\tau}^{2} = \mathsf{E}\left(|S_{\tau} - 1/2| - 1/2 - cS_{\tau}^{2} - 1/2\right)$$

Since $S_{\tau}^2 = (S_{\tau} - 1/2)^2 + S_{\tau} - 1/4$ we can rewrite the last expression

$$\mathsf{E}\left(|S_{\tau} - 1/2| - cS_{\tau}^2 - 1/2\right) = \mathsf{E}\left(|S_{\tau} - 1/2| - c|S_{\tau} - 1/2|^2\right) + c/4 - 1/2$$
(24)

Observe that the resulting expression does not depend on τ explicitly, there is only dependence on $|S_{\tau} - 1/2|$. That's why the method we use is called **the method of space change**.

Consider the function $f(x) = x - cx^2$, $x \ge 0$. It attains a maximum at the point $c_0 = 1/(2c)$ and therefore $x - cx^2 \le f(\frac{1}{2c}) = 1/(4c)$. Hence from (24) we get

$$\sup_{\tau \in \mathfrak{M}} \mathsf{E}\left(\max_{0 \leqslant n \leqslant \tau} S_n - c\tau\right) \leqslant \frac{1}{4c} + \frac{c}{4} - \frac{1}{2}$$

However this inequality can be not sharp if $\frac{1}{2c}$ does not belong to the values set $E = \{k + 1/2\}_{k \ge 0}$ of the process |S - 1/2|.

Nevertheless it is clear that the maximum of $|S_{\tau}-1/2|-c|S_{\tau}-1/2|^2$ is attained at the closest point to 1/(2c) i.e. at the point $i_0 = \left\lfloor \frac{1}{2} + \frac{1}{2c} \right\rfloor$. The values of optimal stopping time $\tau_*(c)$ and value function $V_*(c)$ depend on the relation between 2 distances $\Delta_1 = 1/(2c) - i_0 + 1/2$ and $\Delta_2 = i_0 + 1/2 - 1/(2c)$:

$$\tau_*(c) = \begin{cases} \inf\{k \ge 0 : \left|S_k - \frac{1}{2}\right| = i_0 - \frac{1}{2}\}, & \text{if } \Delta_1 \le \Delta_2, \\ \inf\{k \ge 0 : \left|S_k - \frac{1}{2}\right| = i_0 + \frac{1}{2}\}, & \text{if } \Delta_1 > \Delta_2 \end{cases}$$

$$V_*(c) = \begin{cases} f(i_0 - \frac{1}{2}) + \frac{c}{4} - \frac{1}{2}, & \text{if } \Delta_1 \leq \Delta_2, \\ f(i_0 + \frac{1}{2}) + \frac{c}{4} - \frac{1}{2}, & \text{if } \Delta_1 > \Delta_2 \end{cases}$$

Theorem 8. For any Markov time $\tau \in \mathfrak{M}$ the following inequality holds:

$$\mathsf{E}\left(\max_{0\leqslant n\leqslant \tau}S_n\right)\leqslant \frac{\sqrt{4\mathsf{E}\tau+1}-1}{2}$$

If for any $N \in \mathbb{N}$ we consider the Markov time

$$\tau_* = \inf\{n \ge 0 : \max_{0 \le k \le n} S_k - S_n = N\}$$

then (25) becomes an equality.

Proof. Use the inequality (24) which we already proved:

$$\mathsf{E}\left(\max_{0\leqslant n\leqslant \tau} S_n\right)\leqslant \inf_{c>0}\left\{c\left(\mathsf{E}\tau+\frac{1}{4}\right)+\frac{1}{4c}-\frac{1}{2}\right\}=\frac{\sqrt{4\mathsf{E}\tau+1}-1}{2}$$
 which gives us exactly (25).

60

(25)

Now show that (25) is **sharp**. Due to the discrete version of Levy theorem the time $\tau_* = \inf\{n \ge 0 : \max_{0 \le k \le n} S_k - S_n = N\}$ coincides by distribution with

$$\inf\{n \ge 0 : |S_n - 1/2| - 1/2 = N\} = \\ \inf\{n \ge 0 : S_n = -N \text{ or } S_n = N+1\} = \tau_{-N,N+1}$$

Using Wald identities we can check that

$$\mathsf{E}\tau_* = \mathsf{E}\tau_{-N,N+1} = N(N+1)$$

On the other hand

$$\mathsf{E}M_{\tau_*} = \mathsf{E}(M_{\tau_*} - S_{\tau_*}) = N = \frac{\sqrt{4N(N+1) + 1} - 1}{2}$$

References

[1] **Peskir G., Shiryaev A.** Optimal stopping and free-boundary problems. Basel: Birkhauser, 2006

[2] **Dubins L., Shepp L., Shiryaev A.** Optimal Stopping Rules and Maximal Inequalities for Bessel Processes // Theory Probab. Appl. 1994. 38(2), pp. 226-261

[3] Lyulko Ya. Exact inequalities for the maximum of a skew Brownian motion // Moscow University Mathematics Bulletin. 2012.
67 (4), pp. 164-169

[4] **Dubins L., Schwarz G.** A sharp inequality for sub-martingales and stopping times // Asterisque. 1988. v. 157-158. pp. 129–145

[5] **Zhitlukhin M.V.** A maximal inequality for skew Brownian motion // Statist. Decisions. 2009. 27. pp. 261–280

[6] **Graversen S. E, Peskir G.** On Doob's maximal inequality for Brownian motion // Stoch. Processes Appl. 1997. 69. pp. 111–125

 [7] Peskir G., Shiryaev A. Maximal inequalities for reflected Brownian motion with drift // Theory Probab. Math. Statist. 2001. 63. pp. 137– 143

[8] Fujita T. A random walk analogue of Levy's theorem //
 Studia Scientiarum Mathematicarum Hungarica. 2008. 45(2). pp. 223–
 233