Mild solutions and related solution concepts

We consider the stochastic evolution equation

\[dX_t = (AX_t + F_t(X_t))dt + B_t(X_t)dW_t, \]

(1)

where \(W \) is cylindrical Brownian motion on a separable Hilbert space \(U \), \(A \) is the generator of a strongly continuous semigroup on a separable Hilbert space \(H \), and \(F \) and \(B \) are nonlinear mappings on appropriate spaces.

a) Assuming that \(F \) and \(B \) vanish, describe the relation between mild solutions of (1) and solutions of the abstract Cauchy problem \(dX_t/dt = AX_t \) [EN99, Section II.6].

b) Assuming that \(B \) vanishes, \(F \) depends only on time, and \(H \) is finite-dimensional, show that the definition of mild solutions of (1) coincides with the variation of constants formula for ordinary differential equations [Arn92, Section 29].

c) Assuming that \(F \) vanishes and \(B \) is constant, show that the notion of mild solutions of (1) corresponds to the integral representation of Ornstein-Uhlenbeck processes (see [Jac96] for definitions and a historical context).

References
