2.1. Injectivity of the Fourier transform

Show that E-valued random variables X_1 and X_2 are identically distributed if

\[\mathbb{E} \left[\exp \left(-i \langle X_1, x^* \rangle \right) \right] = \mathbb{E} \left[\exp \left(-i \langle X_2, x^* \rangle \right) \right], \quad x^* \in E^*. \]

Note: you may use without proof that the Fourier transform is bijective on tempered distributions on \mathbb{R}^n, for each $n \in \mathbb{N}$.

2.2. Rotations of independent Gaussians

For iid centered Gaussian random variables X_1 and X_2, set $Y_1 := (X_1 + X_2)/\sqrt{2}$ and $Y_2 := (X_1 - X_2)/\sqrt{2}$. Show that Y_1 and Y_2 are iid and have the same distribution as X_1 and X_2.

Hint: use the previous exercise.

2.3. Convergence of Gaussians

Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of centered Gaussian E-valued random variables, let X be an E-valued random variable, and assume that $\langle X_n, x^* \rangle \to \langle X, x^* \rangle$ in probability for each $x^* \in E^*$. Show that X is centered Gaussian.
2.4. Sazanov’s theorem

Let H be a separable Hilbert space. Show that $Q \in L(H)$ is the covariance operator of a centered Gaussian H-valued random variable X if and only if Q is symmetric, non-negative definite, and $\text{Tr}(Q) < \infty$.