

Albert-Ludwigs-Universität Freiburg

Vorlesungsskript

Markov-Ketten

apl. Prof. Dr. Stefan Tappe Sommersemester 2018

Abteilung für Mathematische Stochastik

Inhaltsverzeichnis

1	\mathbf{Gru}	ındlagen	2
	1.1	Stochastische Prozesse	2
	1.2	Die Markov-Eigenschaft	3
	1.3	Filtrationen und Stoppzeiten	8
	1.4	Die starke Markov-Eigenschaft	10
	1.5	Das Standardmodell	11
	1.6	Beispiele	14
2	Cha	arakterisierung der Zustände	16
	2.1	Irreduzibilität	16
	2.2	Periodizität	22
	2.3	Rekurrenz und Transienz	23
	2.4	Zufällige Irrfahrten	33
	2.5	Zyklische Zerlegungen	38
	2.6	Solidaritätseigenschaften	41
3	Erg	odensatz für positiv rekurrente Markov-Ketten	50
	_	Stationäre Verteilungen	50
		Der Ergodensatz	

Kapitel 1

Grundlagen

1.1 Stochastische Prozesse

Es sei $(\Omega, \mathscr{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Weiterhin sei (E, \mathscr{E}) ein messbarer Raum.

Definition 1.1.1. Eine Abbildung $X: \Omega \to E$ heißt eine <u>Zufallsvariable</u>, falls sie messbar ist; das heißt $X^{-1}(B) \in \mathscr{F}$ für alle $B \in \mathscr{E}$.

Definition 1.1.2. Ein E-wertiger stochastischer Prozess (oder kurz, ein Prozess) ist eine Familie $X = (X_n)_{n \in \mathbb{N}_0}$ von Zufallsvariablen.

Definition 1.1.3. Es sei $I \subset \mathbb{N}_0$ eine beliebige Indexmenge.

- (a) Wir bezeichnen mit E^I den Produktraum aller Abbildungen $\omega: I \to E$.
- (b) $F\ddot{u}r \ n \in I$ definieren wir die n-te Koordinatenabbildung

$$X_n: E^I \to E, \quad \omega \mapsto \omega(n).$$

(c) Die <u>Produkt- σ -Algebra</u> $\mathcal{E}^{\otimes I}$ auf dem Produktraum E^I ist definiert durch

$$\mathscr{E}^{\otimes I} := \sigma(X_n : n \in I).$$

Definition 1.1.4. Es seien $I \subset J \subset \mathbb{N}_0$ zwei Indexmengen.

(a) Wir definieren die kanonische Projektion

$$X_I^J: E^J \to E^I, \quad \omega \mapsto \omega|_I.$$

(b) Speziell setzen wir $X_I := X_I^{\mathbb{N}_0}$.

Nun definieren wir den messbaren Raum

$$(\Omega, \mathscr{F}) := (E^{\mathbb{N}_0}, \mathscr{E}^{\otimes \mathbb{N}_0}).$$

Definition 1.1.5. Eine Familie $\{\mathbb{P}_I : I \subset \mathbb{N}_0 \text{ endlich}\}\ von\ Wahrscheinlichkeitsmaßen$ auf $(E^I, \mathscr{E}^{\otimes I})$ heißt eine projektive Familie, falls für alle endlichen $I \subset J \subset \mathbb{N}_0$ gilt

$$\mathbb{P}_I = \mathbb{P}_J \circ X_I^J$$
.

Satz 1.1.6 (Erweiterungssatz von Kolmogorov). Es sei $\{\mathbb{P}_I : I \subset \mathbb{N}_0 \text{ endlich}\}$ eine projektive Familie von Wahrscheinlichkeitsmaßen. Dann existiert ein eindeutig bestimmtes Wahrscheinlichkeitsmaß auf \mathbb{P} auf (Ω, \mathscr{F}) , so dass

$$\mathbb{P}_I = \mathbb{P} \circ X_I$$
 für jedes endliche $I \subset \mathbb{N}_0$.

Beweis. Folgt aus [Kle13, Satz 14.36].

Definition 1.1.7. Wir nennen \mathbb{P} den projektiven Limes der Familie

$$\{\mathbb{P}_I: I \subset \mathbb{N}_0 \ endlich\}.$$

1.2 Die Markov-Eigenschaft

 $(\Omega, \mathscr{F}, \mathbb{P})$ bezeichnet weiterhin einen Wahrscheinlichkeitsraum.

Definition 1.2.1. Es sei $B \in \mathscr{F}$ ein Ereignis mit $\mathbb{P}(B) > 0$. Dann definieren wir das Wahrscheinlichkeitsmaß \mathbb{P}^B auf (Ω, \mathscr{F}) durch

$$\mathbb{P}^B(A) := \mathbb{P}(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, \quad A \in \mathscr{F}.$$

Lemma 1.2.2. Es seien $B, C \in \mathscr{F}$ mit $\mathbb{P}(B \cap C) > 0$. Dann gilt

$$(P^B)^C = \mathbb{P}^{B \cap C}.$$

Beweis. Übung.

Satz 1.2.3 (Multiplikationsregel). Es seien $A_1, \ldots, A_n \in \mathscr{F}$ Ereignisse mit $\mathbb{P}(A_1 \cap \ldots \cap A_{n-1}) > 0$ für ein $n \geq 2$. Dann gilt

$$\mathbb{P}(A_1 \cap \ldots \cap A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 \mid A_1) \cdot \mathbb{P}(A_3 \mid A_1 \cap A_2)$$
$$\cdot \ldots \cdot \mathbb{P}(A_n \mid A_1 \cap \ldots \cap A_{n-1}).$$

Satz 1.2.4 (Satz von der totalen Wahrscheinlichkeit). Es seien I eine höchstens abzählbare Indexmenge und $(B_i)_{i\in I} \subset \mathscr{F}$ paarweise disjunkte Ereignisse mit $\mathbb{P}(B_i) > 0$, $i \in I$ und $\mathbb{P}(\bigcup_{i\in I} B_i) = 1$. Dann gilt für jedes Ereignis $A \in \mathscr{F}$ die Identität

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(A \mid B_i) \cdot \mathbb{P}(B_i).$$

Definition 1.2.5. Ein messbarer Raum (E,\mathcal{E}) heißt ein <u>diskreter Zustandsraum</u>, falls E höchstens abzählbar (das heißt, endlich oder abzählbar) ist, und $\mathcal{E} = \mathscr{P}(E)$.

Von nun an sei (E, \mathcal{E}) ein diskreter Zustandsraum.

Definition 1.2.6. Ein E-wertiger Prozess X besitzt die Markov-Eigenschaft, falls

$$\mathbb{P}(X_{n+1} = i_{n+1} \mid X_0 = i_0, \dots, X_n = i_n) = \mathbb{P}(X_{n+1} = i_{n+1} \mid X_n = i_n)$$

 $f\ddot{u}r$ alle $n \in \mathbb{N}_0$ und $i_0, \ldots, i_n, i_{n+1} \in E$ mit

$$\mathbb{P}(X_0 = i_0, \dots, X_n = i_n) > 0.$$

Definition 1.2.7. Ein E-wertiger Prozess X heißt eine $\underline{Markov\text{-}Kette}$, falls er die Markov-Eigenschaft besitzt.

Definition 1.2.8. Es seien X eine Zufallsvariable mit Werten in einem messbaren Raum (G, \mathcal{G}) , und es $B \in \mathcal{F}$ ein Ereignis mit $\mathbb{P}(B) > 0$. Dann ist das Wahrscheinlichkeitsmaß $\mathbb{P}^{X|B}$ auf (G, \mathcal{G}) definiert durch

$$\mathbb{P}^{X|B}(A) := \mathbb{P}^{B}(X \in A), \quad A \in \mathcal{G}.$$

Lemma 1.2.9. Es sei X ein E-wertiger Prozess. Dann sind folgende Aussagen äquivalent:

- (i) X besitzt die Markov-Eigenschaft.
- (ii) Es gilt

$$\mathbb{P}^{X_{n+1}|X_0=i_0,...,X_n=i_n} = \mathbb{P}^{X_{n+1}|X_n=i_n}$$

 $f\ddot{u}r \ alle \ n \in \mathbb{N}_0 \ und \ i_0, \dots, i_n \in E \ mit$

$$\mathbb{P}(X_0 = i_0, \dots, X_n = i_n) > 0.$$

Beweis. Übung.

Satz 1.2.10. Für einen E-wertigen Prozess X sind folgende Aussagen äguivalent:

(i) Für alle $n \in \mathbb{N}_0$ und $i_0, \ldots, i_n \in E$ mit

$$\mathbb{P}(X_0 = i_0, \dots, X_n = i_n) > 0$$

gilt

$$\mathbb{P}^{(X_k)_{k\geq n}|X_0=i_0,\dots,X_n=i_n} = \mathbb{P}^{(X_k)_{k\geq n}|X_n=i_n}$$

(ii) Für alle $n \in \mathbb{N}_0$ und $i \in E$ mit $\mathbb{P}(X_n = i) > 0$ sind $(X_k)_{k \le n}$ und $(X_k)_{k \ge n}$ unter $\mathbb{P}^{X_n = i}$ unabhängig.

Beweis. (i) \Rightarrow (ii): Es seien $i_0, \ldots, i_{n+l} \in E$ für ein $l \in \mathbb{N}$ beliebig. Wir dürfen annehmen, dass $i_n = i$. Dann folgt

$$\mathbb{P}^{X_n=i}(\{X_0=i_0,\ldots,X_n=i_n\}\cap\{X_n=i_n,\ldots,X_{n+l}=i_{n+l}\})$$

$$=\mathbb{P}^{X_n=i}(X_0=i_0,\ldots,X_n=i_n)\cdot\mathbb{P}^{X_0=i_0,\ldots,X_n=i_n}(X_n=i_n,\ldots,X_{n+l}=i_{n+l})$$

$$=\mathbb{P}^{X_n=i}(X_0=i_0,\ldots,X_n=i_n)\cdot\mathbb{P}^{X_n=i}(X_n=i_n,\ldots,X_{n+l}=i_{n+l}).$$

(ii) \Rightarrow (i): Für $B \in \mathscr{E}^{\otimes \mathbb{N}}$ gilt wegen der Unabhängigkeit

$$\mathbb{P}((X_k)_{k \ge n} \in B \mid X_0 = i_0, \dots, X_n = i_n)$$

$$= \mathbb{P}^{X_n = i_n}((X_k)_{k \ge n} \in B \mid X_0 = i_0, \dots, X_n = i_n)$$

$$= \mathbb{P}^{X_n = i_n}((X_k)_{k \ge n} \in B)$$

$$= \mathbb{P}((X_k)_{k \ge n} \in B \mid X_n = i_n).$$

Definition 1.2.11. Eine Funktion $\pi: E \to [0,1]$ heißt ein <u>stochastischer Vektor</u>, falls

$$\sum_{i \in E} \pi_i = 1.$$

Beispiel 1.2.12. Für jedes $i \in E$ ist $\delta_i : E \to [0,1]$ gegeben durch

$$\delta_i(j) := \begin{cases} 1, & falls \ j = i, \\ 0, & sonst \end{cases}$$

ein stochastischer Vektor.

Definition 1.2.13. Eine Funktion $P: E \times E \rightarrow [0,1]$ heißt eine <u>stochastische Matrix,</u> falls

$$\sum_{i \in E} p_{ij} = 1 \quad \text{für alle } i \in E,$$

wobei wir die Notation $P = (p_{ij})$ benutzen.

Definition 1.2.14. Es seien π ein stochastischer Vektor und P eine stochastische Matrix. Eine Markov-Kette X heißt eine zeitlich homogene (oder kurz homogene) Markov-Kette mit Anfangsverteilung π und Übergangsmatrix P, falls gilt:

- (a) $\mathbb{P}(X_0 = i) = \pi_i \text{ für alle } i \in E.$
- (b) $\mathbb{P}(X_{n+1}=j \mid X_n=i)=p_{ij} \text{ für alle } n \in \mathbb{N}_0 \text{ und } i,j \in E \text{ mit } \mathbb{P}(X_n=i)>0.$

In diesem Fall nennen wir X auch kurz eine (π, P) -MK.

Satz 1.2.15. Für einen Prozess X sind folgende Aussagen äquivalent:

- (i) X ist eine (π, P) -MK.
- (ii) Für alle $n \in \mathbb{N}_0$ und alle $i_0, i_1, \ldots, i_n \in E$ gilt

$$\mathbb{P}(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = \pi_{i_0} \cdot p_{i_0, i_1} \cdot \dots \cdot p_{i_{n-1}, i_n}.$$

Beweis. (i) \Rightarrow (ii): Wir dürfen annehmen, dass

$$\mathbb{P}(X_0 = i_0, \dots, X_{n-1} = i_{n-1}) > 0.$$

(Warum?) Nach der Multiplikationsregel (Satz 1.2.3) gilt

$$\mathbb{P}(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n)
= \mathbb{P}(X_0 = i_0) \cdot \mathbb{P}(X_1 = i_1 | X_0 = i_0) \cdot \mathbb{P}(X_2 = i_2 | X_0 = i_0, X_1 = i_1)
\cdot \dots \cdot \mathbb{P}(X_n = i_n | X_0 = i_0, \dots, X_{n-1} = i_{n-1})
= \mathbb{P}(X_0 = i_0) \cdot \mathbb{P}(X_1 = i_1 | X_0 = i_0) \cdot \mathbb{P}(X_2 = i_2 | X_1 = i_1)
\cdot \dots \cdot \mathbb{P}(X_n = i_n | X_{n-1} = i_{n-1})
= \pi_{i_0} \cdot p_{i_0, i_1} \cdot \dots \cdot p_{i_{n-1}, i_n}.$$

 $(ii) \Rightarrow (i)$: Es gilt

$$\mathbb{P}(X_0 = i) = \pi_i$$
 für alle $i \in E$.

Nun seien $n \in \mathbb{N}_0$ und $i_0, i_1, \dots, i_n, i_{n+1} \in E$ mit

$$\mathbb{P}(X_n = i_n, \dots, X_0 = i_0) > 0$$

beliebig. Dann gilt

$$\mathbb{P}(X_{n+1} = i_{n+1} \mid X_n = i_n, \dots, X_0 = i_0)$$

$$= \frac{\mathbb{P}(X_{n+1} = i_{n+1}, X_n = i_n, \dots, X_0 = i_0)}{\mathbb{P}(X_n = i_n, \dots, X_0 = i_0)}$$

$$= \frac{\pi_{i_0} \cdot p_{i_0, i_1} \cdot \dots \cdot p_{i_{n-1}, i_n} \cdot p_{i_n, i_{n+1}}}{\pi_{i_0} \cdot p_{i_0, i_1} \cdot \dots \cdot p_{i_{n-1}, i_n}} = p_{i_n, i_{n+1}}.$$

Nun seien $i_n, i_{n+1} \in E$ mit

$$\mathbb{P}(X_n = i_n) > 0$$

beliebig. Mit dem Satz von der totalen Wahrscheinlichkeit (Satz 1.2.4) folgt

$$\mathbb{P}^{X_n=i_n}(X_{n+1}=i_{n+1})
= \sum_{\substack{i_0,\dots,i_{n-1}\in E\\ \mathbb{P}(X_n=i_n,\dots,X_0=i_0)>0}} \mathbb{P}^{X_n=i_n}(X_{n+1}=i_{n+1}\,|\,X_{n-1}=i_{n-1},\dots,X_0=i_0)
\cdot \mathbb{P}^{X_n=i_n}(X_{n-1}=i_{n-1},\dots,X_0=i_0)
= p_{i_n,i_{n+1}} \sum_{\substack{i_0,\dots,i_{n-1}\in E\\ \mathbb{P}(X_n=i_n,\dots,X_0=i_0)>0}} \mathbb{P}^{X_n=i_n}(X_{n-1}=i_{n-1},\dots,X_0=i_0) = p_{i_n,i_{n+1}}.$$

Satz 1.2.16. Es sei X ist eine (π, P) -MK. Weiterhin seien $n \in \mathbb{N}_0$ und $i \in E$ mit $\mathbb{P}(X_n = i) > 0$ beliebig. Dann gelten folgende Aussagen:

(a) Für alle $B_0, \ldots, B_n \subset E$, $l \in \mathbb{N}$ und $i_n, \ldots, i_{n+l} \in E$ gilt

$$\mathbb{P}^{X_n=i}(\{X_0 \in B_0, \dots, X_n \in B_n\} \cap \{X_n = i_n, \dots, X_{n+l} = i_{n+l}\})$$

= $\mathbb{P}^{X_n=i}(X_0 \in B_0, \dots, X_n \in B_n) \cdot \delta_i(i_n) \cdot p_{i_n, i_{n+1}} \cdot \dots \cdot p_{i_{n+l-1}, i_{n+l}}.$

- (b) Der Prozess $(X_{n+k})_{k\in\mathbb{N}_0}$ ist unter $\mathbb{P}^{X_n=i}$ eine (δ_i, P) -MK.
- (c) Die Zufallsvariablen $(X_k)_{k \leq n}$ und $(X_k)_{k \geq n}$ sind unter $\mathbb{P}^{X_n = i}$ unabhängig.
- (d) Für alle $i_0, \ldots, i_n \in E$ mit $i_n = i$ und

$$\mathbb{P}(X_0 = i_0, \dots, X_n = i_n) > 0$$

gilt

$$\mathbb{P}^{(X_k)_{k\geq n}|X_0=i_0,\dots,X_n=i_n} = \mathbb{P}^{(X_k)_{k\geq n}|X_n=i_n}.$$

Beweis.

(a) Es genügt, für alle $i_0, \ldots, i_{n+l} \in E$ mit $i_n = i$ zu zeigen

$$\mathbb{P}^{X_n=i_n}(\{X_0=i_0,\ldots,X_n=i_n\}\cap\{X_n=i_n,\ldots,X_{n+l}=i_{n+l}\})$$

= $\mathbb{P}^{X_n=i_n}(X_0=i_0,\ldots,X_n=i_n)\cdot p_{i_n,i_{n+1}}\cdot\ldots\cdot p_{i_{n+l-1},i_{n+l}}.$

Dies folgt mit Satz 1.2.15

$$\mathbb{P}^{X_n = i_n}(X_0 = i_0, \dots, X_n = i_n, \dots, X_{n+l} = i_{n+l})$$

$$= \frac{\mathbb{P}(X_0 = i_0, \dots, X_n = i_n, \dots, X_{n+l} = i_{n+l})}{\mathbb{P}(X_n = i_n)}$$

$$= \frac{\pi_{i_0} \cdot p_{i_0, i_1} \cdot \dots \cdot p_{i_{n-1}, i_n} \cdot p_{i_n, i_{n+1}} \cdot \dots \cdot p_{i_{n+l-1}, i_{n+l}}}{\mathbb{P}(X_n = i_n)}$$

$$= \frac{\mathbb{P}(X_0 = i_0, \dots, X_n = i_n)}{\mathbb{P}(X_n = i_n)} \cdot p_{i_n, i_{n+1}} \cdot \dots \cdot p_{i_{n+l-1}, i_{n+l}}$$

(b) Mit $B_0 = \ldots = B_n = E$ folgt aus Teil (a), dass

$$\mathbb{P}^{X_n=i}(X_n=i_n,\ldots,X_{n+l}=i_{n+l})=\delta_i(i_n)\cdot p_{i_n,i_{n+1}}\cdot \ldots \cdot p_{i_{n+l-1},i_{n+l}}.$$

Nach Satz 1.2.15 folgt also, dass $(X_{n+k})_{k\in\mathbb{N}_0}$ unter $\mathbb{P}^{X_n=i}$ eine (δ_i, P) -MK ist.

(c) Setzen wir die Gleichung aus Teil (b) in Teil (a) ein, so folgt

$$\mathbb{P}^{X_n=i}(\{X_0=i_0,\ldots,X_n=i_n\}\cap\{X_n=i_n,\ldots,X_{n+l}=i_{n+l}\})$$

= $\mathbb{P}^{X_n=i}(X_0=i_0,\ldots,X_n=i_n)\cdot\mathbb{P}^{X_n=i}(X_n=i_n,\ldots,X_{n+l}=i_{n+l}\}),$

was die Unabhängigkeit beweist.

(d) Folgt aus Satz 1.2.10.

1.3 Filtrationen und Stoppzeiten

Definition 1.3.1. Eine <u>Filtration</u> $(\mathscr{F}_n)_{n\in\mathbb{N}_0}$ ist eine Familie von Sub- σ -Algebra von \mathscr{F} , so dass $\mathscr{F}_m \subset \mathscr{F}_n$ für alle $m, n \in \mathbb{N}_0$ mit $m \leq n$.

Bemerkung 1.3.2. Eine Familie $(\mathscr{F}_n)_{n\in\mathbb{N}_0}$ von Sub- σ -Algebran von \mathscr{F} ist genau dann eine Filtration, wenn $\mathscr{F}_n\subset\mathscr{F}_{n+1}$ für alle $n\in\mathbb{N}_0$ gilt.

Definition 1.3.3. Es seien $X = (X_n)_{n \in \mathbb{N}_0}$ ein Prozess und $\mathbb{F} = (\mathscr{F}_n)_{n \in \mathbb{N}_0}$ eine Filtration. X heißt $\underline{\mathbb{F}}$ -adpatiert (oder kurz adaptiert), falls X_n für jedes $n \in \mathbb{N}_0$ bezüglich \mathscr{F}_n messbar ist.

Lemma 1.3.4. Es sei $X = (X_n)_{n \in \mathbb{N}_0}$ ein Prozess. Wir definieren die Familie $\mathbb{F}^X = (\mathscr{F}_n^X)_{n \in \mathbb{N}_0}$ durch

$$\mathscr{F}_n^X := \sigma(X_0, \dots, X_n) \quad \text{für } n \in \mathbb{N}_0.$$

Dann gelten folgende Aussagen:

- (a) \mathbb{F}^X ist eine Filtration.
- (b) X ist \mathbb{F}^X -adpatient.
- (c) Ist $\mathbb{F} = (\mathscr{F}_n)_{n \in \mathbb{N}_0}$ eine weitere Filtration, so dass X bezüglich \mathbb{F} adaptiert ist, dann gilt $\mathscr{F}_n^X \subset \mathscr{F}_n$ für alle $n \in \mathbb{N}_0$.

Beweis. Übung. \Box

Definition 1.3.5. Wir nennen \mathbb{F}^X die von X erzeugte Filtration.

Im Folgenden sei $\mathbb{F} = (\mathscr{F}_n)_{n \in \mathbb{N}_0}$ eine Filtration.

Definition 1.3.6. Eine Abbildung $\tau: \Omega \to \overline{\mathbb{N}}_0 = \mathbb{N}_0 \cup \{\infty\}$ heißt eine $\underline{\mathbb{F}\text{-}Stoppzeit}$ (oder kurz, eine Stoppzeit), falls

$$\{\tau \leq n\} \in \mathscr{F}_n \quad \text{für alle } n \in \mathbb{N}_0.$$

Lemma 1.3.7. Es sei $\tau:\Omega\to\overline{\mathbb{N}}_0$ eine Abbildung. Dann sind folgende Aussagen äquivalent:

- (i) τ ist eine Stoppzeit.
- (ii) Es gilt $\{\tau = n\} \in \mathscr{F}_n$ für alle $n \in \mathbb{N}_0$.

Beweis. Übung. \Box

Satz 1.3.8. Es gelten folgende Aussagen:

- (a) Für jedes $n \in \overline{\mathbb{N}}_0$ ist die konstante Abbildung $\tau \equiv n$ eine Stoppzeit.
- (b) Für zwei Stoppzeiten σ, τ sind $\sigma \wedge \tau$, $\sigma \vee \tau$ und $\sigma + \tau$ ebenfalls Stoppzeiten.
- (c) Für eine Konstante $\alpha \in \mathbb{N}$ und eine Stoppzeit τ ist $\alpha \tau$ ebenfalls eine Stoppzeit.

Beweis. Übung. \Box

Definition 1.3.9. Für eine Stoppzeit τ bezeichnen wir mit

$$\mathscr{F}_{\tau}:=\{A\in\mathscr{F}:A\cap\{\tau\leq n\}\in\mathscr{F}_n\ f\ddot{u}r\ alle\ n\in\mathbb{N}_0\}$$

das Mengensystem der bis τ beobachtbaren Ereignisse.

Satz 1.3.10. Es sei τ eine Stoppzeit.

(a) \mathscr{F}_{τ} ist eine σ -Algebra über Ω .

(b) Es gilt

$$\mathscr{F}_{\tau} = \{ A \in \mathscr{F} : A \cap \{ \tau = n \} \in \mathscr{F}_n \text{ für alle } n \in \mathbb{N}_0 \}.$$

- (c) τ ist \mathscr{F}_{τ} -messbar.
- (d) Gilt $\tau \equiv n$ für eine $n \in \mathbb{N}_0$, dann ist $\mathscr{F}_{\tau} = \mathscr{F}_n$.

Lemma 1.3.11. Es seien $X = (X_n)_{n \in \mathbb{N}_0}$ ein adaptierter Prozess, σ eine Stoppzeit und $B \subset E$ eine Menge. Dann ist die Abbildung

$$\tau: \Omega \to \overline{\mathbb{N}}_0, \quad \tau:=\min\{n \geq \sigma: X_n \in B\}$$

eine Stoppzeit.

Beweis. Übung.
$$\Box$$

1.4 Die starke Markov-Eigenschaft

Satz 1.4.1 (Starke Markov-Eigenschaft). Es seien X eine (π, P) -MK, τ eine \mathbb{F}^X Stoppzeit und $i \in E$ ein Zustand. Wir setzen $A := \{\tau < \infty\} \cap \{X_{\tau} = i\}$ und nehmen an, dass $\mathbb{P}(A) > 0$. Dann gelten folgende Aussagen:

(a) Für alle $B \in \mathscr{F}_{\tau}^{X}$, $n \in \mathbb{N}$ und $i_0, \ldots, i_n \in E$ gilt

$$\mathbb{P}^{A}(B \cap \{X_{\tau} = i_{0}, \dots, X_{\tau+n} = i_{n}\}) = \mathbb{P}^{A}(B) \cdot \delta_{i}(i_{0}) \cdot p_{i_{0}, i_{1}} \cdot \dots \cdot p_{i_{n-1}, i_{n}}.$$

(b) Der Prozess $(X_{\tau+n})_{n\in\mathbb{N}_0}$ ist unter \mathbb{P}^A eine (δ_i, P) -MK, die von der σ -Algebra \mathscr{F}^X_{τ} unabhängig ist.

Beweis.

(a) Zunächst sei $k \in \mathbb{N}_0$ mit $\mathbb{P}(X_k = i) > 0$ beliebig. Nach Satz 1.2.16 ist $(X_{k+n})_{n \in \mathbb{N}_0}$ unter $\mathbb{P}^{X_k = i}$ eine (δ_i, P) -MK, und die Zufallsvariablen $(X_l)_{l \leq k}$ und $(X_l)_{l \geq k}$ sind unter $\mathbb{P}^{X_k = i}$ unabhängig. Da

$$A = \bigcup_{k \in \mathbb{N}_0} \{ \tau = k, X_k = i \},$$

folgt mit Satz 1.2.15 also

$$\mathbb{P}^{A}(B \cap \{X_{\tau} = i_{0}, \dots, X_{\tau+n} = i_{n}\}) \\
= \sum_{k \in \mathbb{N}_{0}} \mathbb{P}^{A}(B \cap \{X_{\tau} = i_{0}, \dots, X_{\tau+n} = i_{n}, \tau = k\}) \\
= \sum_{k \in \mathbb{N}_{0}} \mathbb{P}^{A}(B \cap \{\tau = k\} \cap \{X_{k} = i_{0}, \dots, X_{k+n} = i_{n}\}) \\
= \frac{1}{\mathbb{P}(A)} \sum_{k \in \mathbb{N}_{0}} \mathbb{P}(B \cap \{\tau = k\} \cap \{X_{k} = i, X_{k} = i_{0}, \dots, X_{k+n} = i_{n}\}) \\
= \frac{1}{\mathbb{P}(A)} \sum_{k \in \mathbb{N}_{0}} \mathbb{P}^{X_{k} = i}(\underbrace{B \cap \{\tau = k\}}_{\in \mathscr{F}_{k}^{X}} \cap \{X_{k} = i_{0}, \dots, X_{k+n} = i_{n}\}) \cdot \mathbb{P}(X_{k} = i) \\
= \frac{1}{\mathbb{P}(A)} \sum_{k \in \mathbb{N}_{0}} \mathbb{P}^{X_{k} = i}(B \cap \{\tau = k\}) \cdot \mathbb{P}^{X_{k} = i}(X_{k} = i_{0}, \dots, X_{k+n} = i_{n}) \cdot \mathbb{P}(X_{k} = i) \\
= \frac{1}{\mathbb{P}(A)} \sum_{k \in \mathbb{N}_{0}} \mathbb{P}(B \cap \{\tau = k\} \cap \{X_{k} = i\}) \cdot \delta_{i}(i_{0}) \cdot p_{i_{0}, i_{1}} \cdot \dots \cdot p_{i_{n-1}, i_{n}} \\
= \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)} \cdot \delta_{i}(i_{0}) \cdot p_{i_{0}, i_{1}} \cdot \dots \cdot p_{i_{n-1}, i_{n}}.$$

(b) Setzen wir $B = \Omega$ in Teil (a) ein, so folgt

$$\mathbb{P}^{A}(X_{\tau} = i_{0}, \dots, X_{\tau+n} = i_{n}) = \delta_{i}(i_{0}) \cdot p_{i_{0}, i_{1}} \cdot \dots \cdot p_{i_{n-1}, i_{n}}.$$

Nach Satz 1.2.15 ist $(X_{\tau+n})_{n\in\mathbb{N}_0}$ ist unter \mathbb{P}^A eine (δ_i, P) -MK. Setzen wir nun die vorherige Formel in Teil (a) ein, so folgt

$$\mathbb{P}^{A}(B \cap \{X_{\tau} = i_{0}, \dots, X_{\tau+n} = i_{n}\})$$

= $\mathbb{P}^{A}(B) \cdot \mathbb{P}^{A}(X_{\tau} = i_{0}, \dots, X_{\tau+n} = i_{n}),$

was die Unabhängigkeit beweist.

1.5 Das Standardmodell

Definition 1.5.1. Wir bezeichnen mit Π die Menge aller stochastischen Vektoren auf E.

Satz 1.5.2. Es sei P eine stochastische Matrix. Dann existieren ein messbarer Raum (Ω, \mathscr{F}) , darauf ein Prozess X, und eine Familie $(\mathbb{P}_{\pi})_{\pi \in \Pi}$ von Wahrscheinlichkeitsmaßen, so dass X für jedes $\pi \in \Pi$ eine (π, P) -MK auf $(\Omega, \mathscr{F}, \mathbb{P}_{\pi})$ ist.

Beweis. Wir definieren den messbaren Raum

$$(\Omega, \mathscr{F}) := (E^{\mathbb{N}_0}, \mathscr{E}^{\otimes \mathbb{N}_0}),$$

wobei $\mathscr{E} = \mathscr{P}(E)$. Darauf definieren wir den Prozess $X = (X_n)_{n \in \mathbb{N}_0}$ durch die Koordinatenabbildungen

$$X_n: E^{\mathbb{N}_0} \to E, \quad \omega \mapsto \omega(n).$$

Nun sei $\pi \in \Pi$ beliebig. Wir definieren die Familie $\{\mathbb{P}_{\pi,I} : I \subset \mathbb{N}_0 \text{ endlich}\}$ wie folgt:

(1) Falls $I = \{0, 1, ..., n\}$ für ein $n \in \mathbb{N}_0$, so definieren wir $\mathbb{P}_{\pi, I}$ durch

$$\mathbb{P}_{\pi,I}(\{(i_0,i_1,\ldots,i_n)\}) := \pi_{i_0} \cdot p_{i_0,i_1} \cdot \ldots \cdot p_{i_{n-1},i_n}.$$

(2) Falls I nicht von der Form wie in Schritt (1) ist, so existiert ein $n \in \mathbb{N}_0$, so dass $I \subset J$, wobei $J = \{0, 1, \dots, n\}$. Wir setzen

$$\mathbb{P}_{\pi,I} := \mathbb{P}_{\pi,J} \circ X_I^J.$$

Die Familie $\{\mathbb{P}_{\pi,I}: I \subset \mathbb{N}_0 \text{ endlich}\}$ ist eine projektive Familie von Wahrscheinlichkeitsmaßen (Übung). Wir bezeichnen mit \mathbb{P}_{π} den nach dem Erweiterungssatz von Kolmogorov (Satz 1.1.6) eindeutig bestimmten projetive Limes. Für alle $n \in \mathbb{N}_0$ und alle $i_0, i_1, \ldots, i_n \in E$ gilt

$$\mathbb{P}_{\pi}(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = \mathbb{P}_{\pi, \{0, \dots, n\}}(\{(i_0, i_1, \dots, i_n)\})$$
$$= \pi_{i_0} \cdot p_{i_0, i_1} \cdot \dots \cdot p_{i_{n-1}, i_n}.$$

Nach Satz 1.2.15 ist X eine (π, P) -MK auf $(\Omega, \mathscr{F}, \mathbb{P}_{\pi})$.

Definition 1.5.3. Wir nennen $(\Omega, \mathscr{F}, X, (\mathbb{P}_{\pi})_{\pi \in \Pi})$ ein <u>Standardmodell</u> zur Übergangsmatrix P.

Definition 1.5.4. Für jedes $i \in E$ setzen wir $\mathbb{P}_i := \mathbb{P}_{\delta_i}$.

Nun sei ein Standardmodell zu einer Übergangsmatrix P gegeben.

Definition 1.5.5. Für $n \in \mathbb{N}_0$ definieren wir die stochastische Matrix $P^{(n)} = (p_{ij}^{(n)})$ durch

$$p_{ij}^{(n)} := \mathbb{P}_i(X_n = j), \quad i, j \in E.$$

Bemerkung 1.5.6. *Es gilt* $P^{(0)} = \text{Id} \ und \ P^{(1)} = P$.

Satz 1.5.7. Es gilt $P^{(n)} = P^n$ für alle $n \in \mathbb{N}_0$.

Beweis. Induktion nach $n \in \mathbb{N}_0$. Klar für n = 0 und n = 1. Induktionsschritt $n \to n + 1$: Mit der Notation $P^n = (p_{ij}^n)$ gilt für alle $i, j \in E$ nach Satz 1.2.15

$$\mathbb{P}_{i}(X_{n+1} = j) = \sum_{i_{0}, \dots, i_{n} \in E} \mathbb{P}_{i}(X_{0} = i_{0}, \dots, X_{n} = i_{n}, X_{n+1} = j)$$

$$= \sum_{i_{0}, \dots, i_{n} \in E} \delta_{i}(i_{0}) \cdot p_{i_{0}, i_{1}} \cdot \dots \cdot p_{i_{n-1}, i_{n}} \cdot p_{i_{n}, j}$$

$$= \sum_{i_{0}, \dots, i_{n} \in E} \mathbb{P}_{i}(X_{0} = i_{0}, \dots, X_{n} = i_{n}) \cdot p_{i_{n}, j}$$

$$= \sum_{i_{n} \in E} \sum_{i_{0}, \dots, i_{n-1} \in E} \mathbb{P}_{i}(X_{0} = i_{0}, \dots, X_{n} = i_{n}) \cdot p_{i_{n}, j}$$

$$= \sum_{i_{n} \in E} \mathbb{P}_{i}(X_{n} = i_{n}) \cdot p_{i_{n}, j} = \sum_{i_{n} \in E} p_{i, i_{n}}^{n} \cdot p_{i_{n}, j} = p_{i, j}^{n+1}.$$

Satz 1.5.8 (Chapman-Kolmogorov-Gleichung). Es gilt für alle $n, m \in \mathbb{N}_0$

$$P^{(n+m)} = P^{(n)}P^{(m)}$$

das heißt

$$p_{ij}^{(n+m)} = \sum_{k \in E} p_{ik}^{(n)} p_{kj}^{(m)}$$
 für alle $i, j \in E$.

Beweis. Nach Satz 1.5.7 gilt

$$P^{(n+m)} = P^{n+m} = P^n P^m = P^{(n)} P^{(m)}$$

Korollar 1.5.9. Es gilt für alle $n, m \in \mathbb{N}_0$ und $i, j, k \in E$

$$p_{ij}^{(n+m)} \ge p_{ik}^{(n)} p_{kj}^{(m)}.$$

1.6 Beispiele

Beispiel 1.6.1 (Markov-Kette mit zwei Zuständen). Es seien $E = \{0, 1\}$ und

$$P = \left(\begin{array}{cc} 1 - p & p \\ q & 1 - q \end{array}\right)$$

 $mit \ p, q \in [0, 1].$

Beispiel 1.6.2 (Markov-Kette mit drei Zuständen). Es seien $E = \{0, 1, 2\}$ und

$$P = \begin{pmatrix} 1-p & p & 0\\ q(1-p) & 1-q(1-p)-p(1-q) & p(1-q)\\ 0 & q & 1-p \end{pmatrix}$$

 $mit \ p, q \in [0, 1].$

Beispiel 1.6.3 (Irrfahrt mit reflektierenden Barrieren). Es seien $E = \{0, 1, ..., N\}$ und

$$P = \begin{pmatrix} 0 & 1 & 0 & & & & 0 \\ 1 - p & 0 & p & & & & \\ & & & \ddots & & & \\ & & & & 1 - p & 0 & p \\ 0 & & & & 0 & 1 & 0 \end{pmatrix}$$

 $mit \ p \in (0,1).$

Beispiel 1.6.4 (Irrfahrt mit absorbierenden Barrieren). Es seien $E = \{0, 1, \dots, N\}$ und

$$P = \begin{pmatrix} 1 & 0 & 0 & & & & 0 \\ 1 - p & 0 & p & & & & \\ & & & \ddots & & & \\ & & & & 1 - p & 0 & p \\ 0 & & & & 0 & 0 & 1 \end{pmatrix}$$

 $mit \ p \in (0,1).$

Beispiel 1.6.5 (Symmetrische Irrfahrt). Es seien $E = \mathbb{Z}^d$ und $P = (p_{ij})$ gegeben durch

$$p_{ij} = \begin{cases} \frac{1}{2d}, & falls \ |i - j|_1 = 1, \\ 0, & sonst, \end{cases}$$

wobei $|i|_1 = \sum_{k=1}^d |i_k| \text{ für } i \in \mathbb{Z}^d.$

Beispiel 1.6.6 (Variante). Es seien $E = \mathbb{Z}^d$ und $P = (p_{ij})$ gegeben durch

$$p_{ij} = \begin{cases} \frac{1}{3^{d}-1}, & falls \ |i-j|_{\infty} = 1, \\ 0, & sonst, \end{cases}$$

 $wobei |i|_{\infty} = \max_{k=1,\dots,d} |i_k| f \ddot{u} r i \in \mathbb{Z}^d.$

Beispiel 1.6.7 (Allgemeine Irrfahrt). Es seien $E = \mathbb{Z}^d$ und $(p_k)_{k=-d,\dots,d}$ ein stochastischer Vektor. Wir definieren $P = (p_{ij})$ durch

$$p_{ij} = \begin{cases} p_0, & falls \ i = j, \\ p_{\lambda k}, & falls \ j = i + \lambda e_k \ mit \ \lambda \in \{-1, 1\} \ und \ k \in \{1, \dots, d\}, \\ 0, & sonst. \end{cases}$$

Beispiel 1.6.8 (Variante). Es seien $E = \mathbb{Z}^d$ und $(p_{\alpha})_{\alpha \in \{-1,0,1\}^d}$ ein stochastischer Vektor. Wir definieren $P = (p_{ij})$ durch

$$p_{ij} = \begin{cases} p_{\alpha}, & \text{falls } j = i + \alpha \text{ mit } \alpha \in \{-1, 0, 1\}^d, \\ 0, & \text{sonst.} \end{cases}$$

Kapitel 2

Charakterisierung der Zustände

Es sei $(\Omega, \mathscr{F}, X, (\mathbb{P}_{\pi})_{\pi \in \Pi})$ ein Standardmodell zu einer Übergangsmatrix P.

2.1 Irreduzibilität

Definition 2.1.1.

(a) Für eine Teilmenge $A \subset E$ definieren wir die Stoppzeit

$$\tau_A^0 := \inf\{n \in \mathbb{N}_0 : X_n \in A\}.$$

(b) Für einen Zustand $i \in E$ definieren wir die Stoppzeit

$$\tau_i^0 := \tau_{\{i\}}^0 = \inf\{n \in \mathbb{N}_0 : X_n = i\}.$$

Definition 2.1.2. Es seien $i, j \in E$. Dann heißt \underline{j} erreichbar von \underline{i} (symbolisch $i \to j$), falls

$$\mathbb{P}_i(\tau_j^0 < \infty) > 0.$$

Bemerkung 2.1.3. Es gilt stets $i \rightarrow i$, denn

$$\mathbb{P}_i(\tau_i^0 < \infty) \ge \mathbb{P}_i(\tau_i^0 = 0) = 1.$$

Satz 2.1.4. Für alle $i, j \in E$ sind folgende Aussagen äquivalent:

- (i) Es gilt $i \rightarrow j$.
- (ii) Es gilt $p_{ij}^{(n)} > 0$ für ein $n \in \mathbb{N}_0$.

Beweis. (i) \Rightarrow (ii): Aus der Inklusion

$$\{\tau_j^0 < \infty\} = \bigcup_{n=0}^{\infty} \{\tau_j^0 = n\} \subset \bigcup_{n=0}^{\infty} \{X_n = j\}$$

folgt

$$0 < \mathbb{P}_i(\tau_j^0 < \infty) \le \mathbb{P}_i\left(\bigcup_{n=0}^{\infty} \{X_n = j\}\right) \le \sum_{n=0}^{\infty} \mathbb{P}_i(X_n = j) = \sum_{n=0}^{\infty} p_{ij}^{(n)}.$$

Also existiert $n \in \mathbb{N}_0$, so dass $p_{ii}^{(n)} > 0$.

 $(ii) \Rightarrow (i)$: Mit der Inklusion

$$\{X_n = j\} \subset \{\tau_j^0 \le n\} \subset \{\tau_j^0 < \infty\}$$

folgt

$$0 < p_{ij}^{(n)} = \mathbb{P}_i(X_n = j) \le \mathbb{P}_i(\tau_i^0 < \infty).$$

Also gilt $i \to j$.

Definition 2.1.5. Zwei Zustände $i, j \in E$ heißen <u>verbunden</u> oder <u>kommunizierend</u> (symbolisch $i \leftrightarrow j$), falls $i \rightarrow j$ und $j \rightarrow i$.

Lemma 2.1.6. Verbundenheit (\leftrightarrow) ist eine Äquivalenzrelation auf E.

Beweis. Reflexivität: Nach Bemerkung 2.1.3 gilt $i \leftrightarrow i$ für alle $i \in I$.

Symmetrie: Offensichtlich folgt aus $i \leftrightarrow j$ auch $j \leftrightarrow i$.

<u>Transitivität:</u> Es gelte $i \leftrightarrow j$ und $j \leftrightarrow k$. Nach Satz 2.1.4 existieren $n, m \in \mathbb{N}_0$, so dass $p_{ij}^{(n)} > 0$ und $p_{jk}^{(m)} > 0$. Mit Korollar 1.5.9 folgt

$$p_{ik}^{(n+m)} \ge p_{ij}^{(n)} p_{jk}^{(m)} > 0.$$

Also gilt nach Satz 2.1.4, dass $i \leftrightarrow k$.

Definition 2.1.7. Für einen Zustand $i \in E$ definieren wir die Äquivalenzklasse

$$\mathcal{G}_i := \{ j \in E : i \leftrightarrow j \}.$$

Dann erhalten wir die Zerlegung des Zustandsraumes

$$E = \bigcup_{i \in E/\leftrightarrow} \mathscr{G}_i.$$

Definition 2.1.8. Eine Teilmenge $\mathscr{G} \subset E$ heißt <u>kommunizierend</u>, falls $i \leftrightarrow j$ für alle $i, j \in \mathscr{G}$.

Bemerkung 2.1.9. Die Klassen (\mathcal{G}_i) aus Definition 2.1.7 sind kommunizierende Teilmengen.

Definition 2.1.10. Die Markov-Kette X heißt <u>irreduzibel</u>, falls $i \leftrightarrow j$ für alle $i, j \in E$; das heißt $\mathcal{G}_i = \mathcal{G}_j$ für alle $i, j \in E$.

Korollar 2.1.11. Die folgenden Aussagen sind äquivalent:

- (i) Die Markov-Kette X ist irreduzibel.
- (ii) Es gilt $\sup_{n\in\mathbb{N}_0} p_{ij}^{(n)} > 0$ für alle $i, j \in E$.

Beweis. Folgt aus Satz 2.1.4.

Wir betrachten einige Varianten von Beispiel 1.6.1.

Beispiel 2.1.12 (Markov-Kette mit zwei Zuständen). Es seien $E = \{0, 1\}$ und

$$P = \left(\begin{array}{cc} 1 - p & p \\ q & 1 - q \end{array}\right)$$

 $mit \ p, q \in (0, 1)$. Dann ist die Markov-Kette irreduzibel.

Beispiel 2.1.13 (Markov-Kette mit zwei Zuständen). Es seien $E = \{0, 1\}$ und

$$P = \left(\begin{array}{cc} 1 & 0 \\ q & 1 - q \end{array}\right)$$

 $mit \ q \in [0,1]$. Dann ist die Markov-Kette nicht irreduzibel, und der Zustandsraum zerfällt in $\mathcal{G}_0 = \{0\}$ und $\mathcal{G}_1 = \{1\}$.

Beispiel 2.1.14 (Markov-Kette mit zwei Zuständen). Es seien $E = \{0, 1\}$ und

$$P = \left(\begin{array}{cc} 0 & 1\\ q & 1 - q \end{array}\right)$$

 $mit \ q \in (0,1]$. Dann ist die Markov-Kette irreduzibel.

Nun Beispiel 1.6.3.

Beispiel 2.1.15 (Irrfahrten mit reflektierenden Barrieren). Es seien $E = \{0, 1, \dots, N\}$ und

$$P = \begin{pmatrix} 0 & 1 & 0 & & & & 0 \\ 1 - p & 0 & p & & & & \\ & & & \ddots & & & \\ & & & & 1 - p & 0 & p \\ 0 & & & & 0 & 1 & 0 \end{pmatrix}$$

 $mit \ p \in (0,1)$. Dann ist die Markov-Kette irreduzibel.

Nun Beispiel 1.6.4.

Beispiel 2.1.16 (Irrfahrt mit absorbierenden Barrieren). Es seien $E = \{0, 1, \dots, N\}$ und

$$P = \begin{pmatrix} 1 & 0 & 0 & & & & 0 \\ 1 - p & 0 & p & & & & \\ & & & \ddots & & & \\ & & & & 1 - p & 0 & p \\ 0 & & & & 0 & 0 & 1 \end{pmatrix}$$

 $mit \ p \in (0,1)$. Dann ist die Markov-Kette nicht irreduzibel, und der Zustandsraum zerfällt in $\mathscr{G}_0 = \{0\}, \ \mathscr{G}_1 = \{1, \dots, N-1\} \ und \ \mathscr{G}_N = \{N\}.$

Beispiel 2.1.17. Die Irrfahrt auf \mathbb{Z} mit $p \in (0,1)$ ist irreduzibel.

Beispiel 2.1.18 (Symmetrische Irrfahrt). Die symmetrische Irrfahrt auf $E = \mathbb{Z}^d$ ist stets irreduzibel. In der Tat, seien $i, j \in \mathbb{Z}^d$ beliebig. Dann gilt

- in Beispiel 1.6.5: $p_{ij}^{(n)} = (2d)^{-n}$, wobei $n = |i j|_1$.
- in Beispiel 1.6.6: $p_{ij}^{(n)} = (3^d 1)^{-n}$, wobei $n = |i j|_{\infty}$.

Definition 2.1.19.

(a) Eine Teilmenge $\mathscr{C} \subset E$ heißt abgeschlossen, falls

$$\mathbb{P}_i(\tau_{\mathscr{C}^c}^0 = \infty) = 1$$
 für alle $i \in \mathscr{C}$.

(b) Ein Zustand $i \in E$ heißt absorbierend, falls $\mathscr{C} = \{i\}$ abgeschlossen ist; das heißt

$$\mathbb{P}_i(\tau^0_{\{i\}^c} = \infty) = 1.$$

Satz 2.1.20. Für eine Teilmenge $\mathscr{C} \subset E$ sind folgende Aussagen äquivalent:

- (i) & ist abgeschlossen.
- (ii) Für alle $i \in \mathscr{C}$ und $j \in E$ mit $i \to j$ gilt $j \in \mathscr{C}$.
- (iii) Es gilt $p_{ij}^{(n)} = 0$ für alle $i \in \mathcal{C}$, $j \in \mathcal{C}^c$ und $n \in \mathbb{N}_0$.
- (iv) Es gilt $p_{ij} = 0$ für alle $i \in \mathscr{C}$ und $j \in \mathscr{C}^c$.

Beweis. (i) \Rightarrow (ii): Es sei $i \in \mathscr{C}$ beliebig. Dann gilt

$$\mathbb{P}_i \left(\bigcap_{j \in \mathscr{C}^c} \{ \tau_j^0 = \infty \} \right) = \mathbb{P}_i (\tau_{\mathscr{C}^c}^0 = \infty) = 1.$$

Für jedes $j \in \mathscr{C}^c$ folgt $\mathbb{P}_i(\tau_j^0 = \infty) = 1$, und damit $\mathbb{P}_i(\tau_j^0 < \infty) = 0$, das heißt $i \nrightarrow j$. (ii) \Rightarrow (iii): Es seien $i \in \mathscr{C}$ und $j \in \mathscr{C}^c$ beliebig. Dann gilt $i \nrightarrow j$. Nach Satz 2.1.4 folgt $p_{ij}^{(n)} = 0$ für alle $n \in \mathbb{N}_0$.

 $(iii) \Rightarrow (iv): \checkmark$

(iv) \Rightarrow (i): Es sei $i \in \mathscr{C}$ beliebig. Dann gilt $\mathbb{P}_i(\tau_{\mathscr{C}^c}^0 = 0) = 0$ und

$$\mathbb{P}_i(\tau_{\mathscr{C}^c}^0 = 1) = \mathbb{P}_i(X_1 \in \mathscr{C}^c) = \sum_{j \in \mathscr{C}^c} \mathbb{P}_i(X_1 = j) = \sum_{j \in \mathscr{C}^c} p_{ij} = 0.$$

Für $n \ge 2$ gilt nach Satz 1.2.15

$$\mathbb{P}_{i}(\tau_{\mathscr{C}^{c}}^{0} = n) = \mathbb{P}_{i}(X_{1} \in \mathscr{C}, \dots, X_{n-1} \in \mathscr{C}, X_{n} \in \mathscr{C}^{c})$$

$$= \sum_{i_{1},\dots,i_{n-1} \in \mathscr{C}} \sum_{j \in \mathscr{C}^{c}} \delta_{i}(i_{1}) \cdot p_{i_{1},i_{2}} \cdot \dots \cdot p_{i_{n-2},i_{n-1}} \cdot \underbrace{p_{i_{n-1},j}}_{=0} = 0.$$

Also folgt insgesamt

$$\mathbb{P}_i(\tau_{\mathscr{C}^c}^0 < \infty) = \sum_{n=0}^{\infty} \mathbb{P}_i(\tau_{\mathscr{C}^c}^0 = n) = 0.$$

Korollar 2.1.21. Für einen Zustand $i \in E$ sind folgende Aussagen äquivalent:

- (i) i ist absorbierend.
- (ii) Es gilt $p_{ii} = 1$.

Beweis. Folgt aus Satz 2.1.20.

Bemerkung 2.1.22.

- (a) Eine kommunizierende Teilmenge $\mathscr{G} \subset E$ braucht nicht abgeschlossen zu sein. Siehe etwa die Irrfahrt mit absorbierenden Barrieren (Beispiel 2.1.16). Dort ist $\mathscr{G}_1 = \{1, \ldots, N-1\}$ nicht abgeschlossen.
- (b) Eine abgeschlossene Teilmenge $\mathscr{C} \subset E$ braucht nicht kommunizierend zu sein. Seien etwa $E = \{0,1\}$ und

$$P = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right).$$

Dann ist E abgeschlossen, aber nicht kommunizierend.

Definition 2.1.23. *Es sei* $i \in E$ *ein Zustand.*

- (a) Der Zustand i heißt unwesentlich, falls ein $j \in E$ mit $i \to j$ und $j \not\to i$ existiert.
- (b) Der Zustand i heißt wesentlich, falls er nicht unwesentlich ist; das heißt, für alle $j \in E$ mit $i \to j$ gilt auch $j \to i$.

Lemma 2.1.24. Es sei $i \in E$ ein wesentlicher Zustand. Dann ist \mathcal{G}_i abgeschlossen.

Beweis. Es sei $j \in E$ mit $i \to j$ beliebig. Da i wesentlich ist, gilt auch $j \to i$. Also gilt $i \leftrightarrow j$, und damit $j \in \mathcal{G}_i$. Mit Satz 2.1.20 folgt, dass \mathcal{G}_i abgeschlossen ist.

Definition 2.1.25. Wir bezeichnen mit \mathcal{U} die Menge aller unwesentlichen Zustände.

Satz 2.1.26. Es gelten folgende Aussagen:

(a) Es existiert eine eindeutig bestimmte disjunkte Zerlegung

$$E = \mathscr{U} \cup \left(\bigcup_{\alpha \in I} \mathscr{C}_{\alpha}\right)$$

mit einer höchstens abzählbaren Indexmenge I und abgeschlossenen kommunizierenden Klassen $(\mathscr{C}_{\alpha})_{\alpha \in I}$.

(b) Bei geeigneter Nummerierung der Zustände ist die Übergangsmatrix P von der Form

$$P = \begin{pmatrix} Q_0 & Q_1 & Q_2 & Q_3 & Q_4 & \cdots \\ 0 & P_1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & P_2 & 0 & 0 & \cdots \\ 0 & 0 & 0 & P_3 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \end{pmatrix}.$$

Beweis. Die (\mathscr{C}_{α}) sind gegeben durch die Äquivalenzklassen (\mathscr{G}_i) mit wesentlichen Zuständen $i \in \mathscr{U}^c$. Also folgt Teil (a) mit Lemma 2.1.24, und Teil (b) mit Satz 2.1.20.

2.2 Periodizität

Definition 2.2.1. Die Periode eines Zustandes $i \in E$ ist definiert durch

$$d_i := ggT \{ n \in \mathbb{N} : p_{ii}^{(n)} > 0 \},$$

wobei wir die Konvention $ggT\emptyset = \infty$ verwenden. Wir nennen den Zustand i dann d-periodisch.

Bemerkung 2.2.2. Ein Zustand $i \in E$ mit $p_{ii}^{(n)} = 0$ für alle $n \in \mathbb{N} \setminus d\mathbb{N}$ und $p_{ii}^{(d)} > 0$ ist d-periodisch.

Definition 2.2.3. Ein Zustand $i \in E$ mit Periode 1 heißt aperiodisch.

Bemerkung 2.2.4. Gilt $p_{ii} > 0$, dann ist der Zustand i aperiodisch. Insbesondere ist ein absorbierender Zustand aperiodisch.

Beispiel 2.2.5. *Es seien* $E = \{0, 1\}$ *und*

$$P = \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right).$$

Dann gilt $P^n = P$ für alle $n \in \mathbb{N}$. Es folgt $p_{00}^{(n)} = 0$ und $p_{11}^{(n)} = 1$ für alle $n \in \mathbb{N}$. Also gilt $d_0 = \infty$ und $d_1 = 1$; das heißt, der Zustand 1 ist aperiodisch.

Beispiel 2.2.6. Wir betrachten die symmetrische Irrfahrt auf \mathbb{Z} . Dann gilt $d_0 = 2$, weil $p_{00}^{(2n+1)} = 0$ für alle $n \in \mathbb{N}_0$ und $p_{00}^{(2)} = \frac{1}{2}$.

Lemma 2.2.7. Es sei $H \subset \mathbb{N}$ abgeschlossen bezüglich Addition mit ggTH = d für ein $d \in \mathbb{N}$. Dann ist $d\mathbb{N} \setminus H$ endlich; das heißt H enthält bis auf endlich viele Ausnahmen alle Zahlen $d, 2d, 3d, \ldots$

Beweis. Es existieren $k \geq 2$ und teilerfremde $n_1, \ldots, n_k \in \mathbb{N}$, so dass $n_1 d, \ldots, n_k d \in H$. Daraus folgt

$$n_1 \mathbb{Z} \oplus \ldots \oplus n_k \mathbb{Z} = \operatorname{ggT} \{n_1, \ldots, n_k\} \mathbb{Z} = \mathbb{Z}.$$

Folglich existieren $z_1, \ldots, z_k \in \mathbb{Z}$ mit $\sum_{j=1}^k n_j z_j = 1$. Wir setzen $n := n_1 + \ldots + n_k \ge 2$. Dann gilt $nd \in H$, und es existiert ein $m \in \mathbb{N}$, so dass

$$m + (n-1)z_j \ge 0$$
 für alle $j = 1, \dots, k$.

Es sei $l \geq mn$ beliebig. Dann existieren $p \in \mathbb{N}_0$ und $q \in \{0, \dots, n-1\}$, so dass l = (m+p)n + q. Es folgt

$$ld = ((m+p)n+q)d = pnd + \sum_{j=1}^{k} \underbrace{(m+qz_j)}_{>0} n_j d \in H.$$

Satz 2.2.8. Für einen Zustand $i \in E$ und ein $d \in \mathbb{N}$ sind folgende Aussagen äquivalent:

- (i) i ist d-periodisch.
- (ii) Es gilt $p_{ii}^{(n)} = 0$ für alle $n \in \mathbb{N} \setminus d\mathbb{N}$, und es existiert ein $m_0 \in \mathbb{N}$, so dass $p_{ii}^{(md)} > 0$ für alle $m \ge m_0$.

Beweis. (i) \Rightarrow (ii): Wir definieren $H:=\{n\in\mathbb{N}:p_{ii}^{(n)}>0\}$. Da i Peridode d hat, gilt gg
TH=d, und damit $p_{ii}^{(n)}=0$ für alle $n\in\mathbb{N}\setminus d\mathbb{N}$. Die Menge H ist abgeschlossen bezüglich Addition. In der Tat, es seien $n, m \in H$. Dann gilt $p_{ii}^{(n)} > 0$ und $p_{ii}^{(m)} > 0$. Nach Korollar 1.5.9 gilt

$$p_{ii}^{(n+m)} \ge p_{ii}^{(n)} p_{ii}^{(m)} > 0,$$

also $n+m\in H$. Nun folgt mit Lemma 2.2.7, dass $d\mathbb{N}\setminus H$ endlich ist. Also existiert ein $m_0\in\mathbb{N}$, so dass $p_{ii}^{(md)}>0$ für alle $m\geq m_0$.

(ii) \Rightarrow (i): Klar, da ggT $\{n\in\mathbb{N}:p_{ii}^{(n)}>0\}=d$.

(ii)
$$\Rightarrow$$
 (i): Klar, da ggT $\{n \in \mathbb{N} : p_{ii}^{(n)} > 0\} = d$.

Korollar 2.2.9. Für einen Zustand $i \in E$ sind folgende Aussagen äquivalent:

- (i) i ist aperiodisch.
- (ii) Es existiert ein $m_0 \in \mathbb{N}$, so dass $p_{ii}^{(m)} > 0$ für alle $m \ge m_0$.

Beweis. Folgt aus Satz 2.2.8.

2.3 Rekurrenz und Transienz

Definition 2.3.1.

(a) Für eine Teilmenge $A \subset E$ definieren wir die Stoppzeit

$$\tau_A := \inf\{n \in \mathbb{N} : X_n \in A\}.$$

(b) Für einen Zustand $i \in E$ definieren wir die Stoppzeit

$$\tau_i := \tau_{\{i\}} = \inf\{n \in \mathbb{N} : X_n = i\}.$$

Wir nennen τ_A bzw. τ_i die Rückkehrzeit oder Rekurrenzzeit der Menge A bzw. des Zustandes i.

Definition 2.3.2. Für zwei Zustände $i, j \in E$ definieren wir

$$f_{ij}^{(n)} := \mathbb{P}_i(\tau_j = n) \in [0, 1], \quad n \in \mathbb{N},$$

$$f_{ij} := \sum_{n=1}^{\infty} f_{ij}^{(n)} = \mathbb{P}_i(\tau_j < \infty) \in [0, 1],$$

$$\mu_{ij} := \mathbb{E}_i[\tau_i] \in [1, \infty].$$

Bemerkung 2.3.3. Für $i \neq j$ gilt $i \rightarrow j$ genau dann, wenn $f_{ij} > 0$.

Bemerkung 2.3.4. Für alle $i, j \in E$ gilt $f_{ij}^{(n)} \leq p_{ij}^{(n)}$. In der Tat, wegen $\{\tau_j = n\} \subset \{X_n = j\}$ gilt

$$f_{ij}^{(n)} = \mathbb{P}_i(\tau_j = n) \le \mathbb{P}_i(X_n = j) = p_{ij}^{(n)}.$$

Wir können informell anmerken:

- $p_{ij}^{(n)}$ ist die Wahrscheinlichkeit dafür, bei Start im Zustand i in n Schritten den Zustand j zu besuchen.
- $f_{ij}^{(n)}$ ist die Wahrscheinlichkeit dafür, bei Start im Zustand i in n Schritten den Zustand j erstmalig zu besuchen.
- f_{ij} ist die Wahrscheinlichkeit dafür, bei Start im Zustand i den Zustand j in Zukunft (überhaupt) zu besuchen.

Definition 2.3.5. Ein Zustand $i \in E$ heißt

- (a) rekurrent, falls $f_{ii} = 1$.
- (b) transient, falls er nicht rekurrent ist; das heißt $f_{ii} < 1$.
- (c) positiv rekurrent, falls $\mu_{ii} < \infty$. (Dann ist i insbesondere rekurrent.)
- (d) <u>null-rekurrent</u>, falls er rekurrent, aber nicht positiv rekurrent ist; das heißt $f_{ii} = 1$ und $\mu_{ii} = \infty$.

Bemerkung 2.3.6.

- (a) Ist i absorbierend, dann gilt $p_{ii} = 1$, ja sogar $p_{ii}^{(n)} = 1$ für alle $n \in \mathbb{N}$ (Satz 2.1.20). Also gilt \mathbb{P}_i -fast sicher $\tau_i = 1$, und damit $\mu_{ii} = 1$; und folglich ist i auch positiv rekurrent.
- (b) Ist i positiv rekurrent, dann ist i auch rekurrent.

(c) Gilt $d_i = \infty$, so ist $p_{ii}^{(n)} = 0$ für alle $n \in \mathbb{N}$. Also gilt $f_{ii}^{(n)} = 0$ für alle $n \in \mathbb{N}$, und damit $f_{ii} = 0$. Folglich ist i transient.

Wir können also zwei Extremfälle ausmachen:

• Ein Zustand i ist genau dann absorbierend, wenn die Markov-Kette bei Start in i deterministisch verläuft, und nur noch im Zustand i bleibt; das heißt

$$\mathbb{P}_i\bigg(\bigcap_{n\in\mathbb{N}}\{X_n=i\}\bigg)=1.$$

In diesem Fall ist i insbesondere (positiv) rekurrent.

• Ein Zustand i hat genau dann unendliche Periode, wenn die Markov-Kette bei Start in i nach dem ersten Schritt nur noch andere Zustände besucht; das heißt

$$\mathbb{P}_i \bigg(\bigcap_{n \in \mathbb{N}} \{ X_n \neq i \} \bigg) = 1.$$

In diesem Fall ist i insbesondere transient.

Lemma 2.3.7. Für alle $i, j \in E$ und $n \in \mathbb{N}$ gilt

$$p_{ij}^{(n)} = \sum_{k=1}^{n} f_{ij}^{(k)} p_{jj}^{(n-k)}.$$

Beweis. Wir setzen

$$A := \{ \tau_i < \infty \} = \{ \tau_i < \infty \} \cap \{ X_{\tau_i} = j \}.$$

Wir dürfen annehmen, dass $\mathbb{P}_i(A) > 0$; ansonsten sind beide Seiten gleich Null. Es sei $k \in \{1, \dots, n\}$ beliebig. Dann gilt $\{\tau_j = k\} \subset A$ und der Prozess $(X_{\tau_j+m})_{m \in \mathbb{N}_0}$ ist nach der starken Markov-Eigenschaft (Satz 1.4.1) unter \mathbb{P}_i^A eine (δ_j, P) -MK, die unabhängig von der σ -Algebra $\mathscr{F}_{\tau_j}^X$ ist. Wegen $\{\tau_j = k\} \in \mathscr{F}_{\tau_j}^X$ folgt

$$p_{ij}^{(n)} = \mathbb{P}_i(X_n = j) = \sum_{k=1}^n \mathbb{P}_i(\tau_j = k, X_{\tau_j + n - k} = j)$$

$$= \sum_{\substack{k=1 \\ \mathbb{P}_i(\tau_j = k) > 0}}^n \mathbb{P}_i(X_{\tau_j + n - k} = j \mid \tau_j = k) \cdot \mathbb{P}_i(\tau_j = k)$$

$$= \sum_{\substack{k=1 \\ \mathbb{P}_i(\tau_j = k) > 0}}^n \mathbb{P}_i^A(X_{\tau_j + n - k} = j \mid \tau_j = k) \cdot f_{ij}^{(k)}$$

$$= \sum_{k=1}^n \mathbb{P}_j(X_{n - k} = j) \cdot f_{ij}^{(k)} = \sum_{k=1}^n f_{ij}^{(k)} p_{jj}^{(n - k)}.$$

Bemerkung 2.3.8. Mit Hilfe von Lemma 2.3.7 können wir zeigen dass

$$d_i = \operatorname{ggT}\{n \in \mathbb{N} : f_{ii}^{(n)} > 0\} \quad \text{für jedes } i \in E.$$

Siehe [Als16, Lemma 3.15].

Definition 2.3.9. Für einen Zustand $i \in E$ definieren wir die monoton wachsende Folge von Stoppzeiten $(\sigma_i^n)_{n \in \mathbb{N}_0}$ rekursiv durch $\sigma_i^0 := 0$ und

$$\sigma_i^n := \inf\{k \ge \sigma_i^{n-1} + 1 : X_k = i\}, \quad n \in \mathbb{N}.$$

Definition 2.3.10. Für einen Zustand $i \in E$ definieren wir die Folge von Zufallsvariablen $(\tau_i^n)_{n \in \mathbb{N}}$ durch

$$\tau_i^n := (\sigma_i^n - \sigma_i^{n-1}) \mathbb{1}_{\{\sigma_i^n < \infty\}} + \infty \mathbb{1}_{\{\sigma_i^n = \infty\}}, \quad n \in \mathbb{N}.$$

Bemerkung 2.3.11. Es gilt $\tau_i = \sigma_i^1 = \tau_i^1$.

Bemerkung 2.3.12. Für jedes $n \in \mathbb{N}$ gilt

$$\{\sigma_i^n < \infty\} = \{\tau_i^1 < \infty, \dots, \tau_i^n < \infty\}.$$

Insbesondere gilt $\{\sigma_i^n < \infty\} \subset \{\sigma_i^{n-1} < \infty\}$ für alle $n \in \mathbb{N}$.

 $\mathbb{P}_i(\sigma_j^n < \infty)$ ist die Wahrscheinlichkeit dafür, bei Start im Zustand i den Zustand j in Zukunft (mindestens) n-mal zu besuchen.

Lemma 2.3.13. Es seien $i, j \in E$ und $n \in \mathbb{N}$ beliebig.

- (a) Es gilt $\mathbb{P}_i(\sigma_i^n < \infty) = f_{ij}f_{ij}^{n-1}$.
- (b) Insbesondere gilt $\mathbb{P}_i(\sigma_i^n < \infty) = f_{ii}^n$.

Beweis. Beweis per Induktion nach $n \in \mathbb{N}$. Der Induktionsanfang n=1 ist klar. Induktionsschritt $n-1 \to n$: Wir setzen

$$A:=\{\sigma_j^{n-1}<\infty\}=\{\sigma_j^{n-1}<\infty\}\cap \{X_{\sigma_j^{n-1}}=j\}$$

Wir dürfen annehmen, dass $\mathbb{P}_i(A) > 0$; ansonsten sind beide Seiten gleich Null. Nach der starken Markov-Eigenschaft (Satz 1.4.1) ist der Prozess $(X_{\sigma_i^{n-1}+m})_{m\in\mathbb{N}_0}$ unter \mathbb{P}_i^A eine (δ_j, P) -MK. Wegen

$$\sigma_j^n = \inf\{k \in \mathbb{N} : X_{\sigma_i^{n-1} + k} = j\}$$

folgt

$$\mathbb{P}_{i}(\sigma_{j}^{n} < \infty) = \mathbb{P}_{i}(\sigma_{j}^{n} < \infty \mid \sigma_{j}^{n-1} < \infty) \cdot \mathbb{P}_{i}(\sigma_{j}^{n-1} < \infty)
= \mathbb{P}_{i}^{A}(\sigma_{j}^{n} < \infty) \cdot f_{ij}f_{jj}^{n-2}
= \mathbb{P}_{j}(\tau_{j} < \infty) \cdot f_{ij}f_{jj}^{n-2} = f_{jj} \cdot f_{ij}f_{jj}^{n-2} = f_{ij}f_{jj}^{n-1}.$$

Definition 2.3.14. Für $i, j \in E$ definieren wir die momenterzeugenden Funktionen $P_{ij}, F_{ij} : (-1, 1) \to \mathbb{R}_+$ durch

$$P_{ij}(s) := \sum_{n=0}^{\infty} p_{ij}^{(n)} s^n,$$
$$F_{ij}(s) := \sum_{n=1}^{\infty} f_{ij}^{(n)} s^n.$$

Offenbar gilt $f_{ij} = \lim_{s \uparrow 1} F_{ij}(s)$. Dies folgt mit dem Abelschen Grenzwertsatz. Da die Folge $(f_{ij}^{(n)})_{n \in \mathbb{N}}$ nichtnegativ ist, können wir einen alternativen maßtheoretischen Beweis angeben. Betrachte den Maßraum $(\mathbb{N}, \mathscr{P}(\mathbb{N}), \zeta)$, wobei ζ das Zählmaß bezeichnet; das heißt $\zeta(\{n\}) = 1$ für alle $n \in \mathbb{N}$. Es sei $(s_m)_{m \in \mathbb{N}} \subset (0, 1)$ eine monoton wachsende Folge mit $s_m \uparrow 1$. Wir definieren die nichtnegativen messbaren Abbildungen $Z_m : \mathbb{N} \to \mathbb{R}_+$, $m \in \mathbb{N}$ und $Z : \mathbb{N} \to \mathbb{R}_+$ durch

$$Z_m(n) := f_{ij}^{(n)} s_m^n, \quad m \in \mathbb{N},$$
$$Z(n) := f_{ij}^{(n)}.$$

Dann gilt $Z_m \uparrow Z$ für $m \to \infty$. Nach dem Satz von der monotonen Konvergenz (oder auch dem Konvergenzsatz von Lebesgue) folgt

$$\int_{\mathbb{N}} Z_m d\zeta \uparrow \int_{\mathbb{N}} Z d\zeta \quad \text{für } m \to \infty,$$

und daher

$$\lim_{m \to \infty} F_{ij}(s_m) = \lim_{m \to \infty} \sum_{n=1}^{\infty} f_{ij}^{(n)} s_m^n = \lim_{m \to \infty} \sum_{n=1}^{\infty} Z_m(n) = \lim_{m \to \infty} \int_{\mathbb{N}} Z_m d\zeta$$
$$= \int_{\mathbb{N}} Z d\zeta = \sum_{n=1}^{\infty} Z(n) = \sum_{n=1}^{\infty} f_{ij}^{(n)} = f_{ij}.$$

Lemma 2.3.15. Für alle $i, j \in E$ gilt

$$P_{ij}(s) = \delta_{ij} + F_{ij}(s)P_{jj}(s), \quad s \in (-1, 1).$$

Beweis. Wir setzen $f_{ij}^{(0)} := 0$. Nach Lemma 2.3.7 gilt

$$P_{ij}(s) = \sum_{n=0}^{\infty} p_{ij}^{(n)} s^n = p_{ij}^{(0)} + \sum_{n=1}^{\infty} p_{ij}^{(n)} s^n = \delta_{ij} + \sum_{n=1}^{\infty} \left(\sum_{k=1}^n f_{ij}^{(k)} p_{jj}^{(n-k)} \right) s^n$$

$$= \delta_{ij} + \sum_{n=0}^{\infty} \left(\sum_{k=0}^n f_{ij}^{(k)} p_{jj}^{(n-k)} \right) s^n = \delta_{ij} + \left(\sum_{n=0}^{\infty} f_{ij}^{(n)} s^n \right) \cdot \left(\sum_{n=0}^{\infty} p_{jj}^{(n)} s^n \right)$$

$$= \delta_{ij} + F_{ij}(s) P_{ij}(s).$$

Korollar 2.3.16. Für alle $i \in E$ gilt

$$P_{ii}(s) = \frac{1}{1 - F_{ii}(s)}, \quad s \in (-1, 1).$$

Beweis. Nach Lemma 2.3.15 mit i = j gilt für $s \in (-1, 1)$

$$P_{ii}(s) = 1 + F_{ii}(s)P_{ii}(s).$$

Durch Umstellen folgt die behauptete Gleichung.

Definition 2.3.17. Für eine Folge $(A_n)_{n\in\mathbb{N}}\subset\mathscr{F}$ von Ereignissen definieren wir den Limes superior durch

$$\limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{m \ge n} A_m.$$

Der Limes superior steht für das Ereignis, dass unendlich viele der A_n eintreten.

Satz 2.3.18. Für einen Zustand $i \in E$ sind folgende Aussagen äquivalent:

- (i) Der Zustand i ist rekurrent; das heißt $f_{ii} = 1$.
- (ii) Es gilt

$$\mathbb{P}_i \bigg(\limsup_{n \to \infty} \{ X_n = i \} \bigg) = 1.$$

(iii) Es gilt

$$\sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty.$$

Beweis. (i) \Leftrightarrow (ii): Nach Lemma 2.3.13 gilt $f_{ii}=1$ genau dann, wenn $\mathbb{P}_i(\sigma_i^n<\infty)=1$ für alle $n\in\mathbb{N}$. Da die Folge $\{\sigma_i^n<\infty\}_{n\in\mathbb{N}}$ absteigend ist, ist dies äquivalent zu

$$\mathbb{P}_i \bigg(\limsup_{n \to \infty} \{ X_n = i \} \bigg) = \mathbb{P}_i \bigg(\bigcap_{n \in \mathbb{N}} \{ \sigma_i^n < \infty \} \bigg) = 1.$$

(i) \Leftrightarrow (iii): Nach Korollar 2.3.16 gilt

$$\sum_{n=0}^{\infty} p_{ii}^{(n)} = \lim_{s \uparrow 1} P_{ii}(s) = \lim_{s \uparrow 1} \frac{1}{1 - F_{ii}(s)} = \frac{1}{1 - f_{ii}}.$$

Also folgt die Äquivalenz wegen $f_{ii} = \lim_{s \uparrow 1} F_{ii}(s)$.

Korollar 2.3.19. Für einen Zustand $i \in E$ sind folgende Aussagen äquivalent:

- (i) Der Zustand i ist transient; das heißt $f_{ii} < 1$.
- (ii) Es gilt

$$\sum_{n=0}^{\infty} p_{ii}^{(n)} < \infty.$$

In dem Fall gilt sogar

$$\sum_{n=0}^{\infty} p_{ji}^{(n)} < \infty \quad \text{für alle } j \in E.$$

Beweis. (i) \Leftrightarrow (ii): Folgt aus Satz 2.3.18.

In diesem Fall gilt für $j \neq i$ nach Lemma 2.3.15

$$\sum_{n=0}^{\infty} p_{ji}^{(n)} = \lim_{s \uparrow 1} P_{ji}(s) = \lim_{s \uparrow 1} F_{ji}(s) P_{ii}(s) = f_{ji} \sum_{n=0}^{\infty} p_{ii}^{(n)} < \infty.$$

Definition 2.3.20. Für $i \in E$ definieren wir die Anzahl der Aufenthalte der Markov-Kette im Zustand i durch

$$N_i := \sum_{n=1}^{\infty} \mathbb{1}_{\{X_n = i\}} \in \overline{\mathbb{N}}_0.$$

Bemerkung 2.3.21. Für jeden Zustand $i \in E$ gilt

$${N_i = \infty} = \limsup_{n \to \infty} {X_n = i}.$$

Lemma 2.3.22. Es seien $i, j \in E$ zwei Zustände. Für jedes $k \in \mathbb{N}_0$ gilt

$$\mathbb{P}_{j}(N_{i} = k) = \begin{cases} 1 - f_{ji}, & \text{falls } k = 0, \\ f_{ji} f_{ii}^{k-1} (1 - f_{ii}), & \text{falls } k \ge 1. \end{cases}$$

Beweis. Für k = 0 gilt

$$\mathbb{P}_{j}(N_{i}=0) = \mathbb{P}_{j}(\tau_{i}=\infty) = 1 - \mathbb{P}_{j}(\tau_{i}<\infty) = 1 - f_{ji}.$$

Nun sei $k \geq 1$ beliebig. Nach Lemma 2.3.13 gilt $\mathbb{P}_j(\sigma_i^k < \infty) = f_{ji}f_{ii}^{k-1}$. Wir unterscheiden zwei Fälle:

• Gilt $\mathbb{P}_j(\sigma_i^k < \infty) = 0$, so folgt

$$\mathbb{P}_{i}(N_{i}=k) = \mathbb{P}_{i}(\sigma_{i}^{k} < \infty, \tau_{i}^{k+1} = \infty) \leq \mathbb{P}_{i}(\sigma_{i}^{k} < \infty) = 0.$$

• Gilt $\mathbb{P}_j(\sigma_i^k < \infty) > 0$, so folgt mit der starken Markov-Eigenschaft (Satz 1.4.1)

$$\mathbb{P}_{j}(N_{i}=k) = \mathbb{P}_{j}(\sigma_{i}^{k} < \infty, \tau_{i}^{k+1} = \infty) = \mathbb{P}_{j}(\tau_{i}^{k+1} = \infty \mid \sigma_{i}^{k} < \infty) \cdot \mathbb{P}_{j}(\sigma_{i}^{k} < \infty)$$
$$= \mathbb{P}_{i}(\tau_{i} = \infty) \cdot f_{ji}f_{ii}^{k-1} = (1 - f_{ii})f_{ji}f_{ii}^{k-1}.$$

Definition 2.3.23. Wir definieren die <u>Greenfunktion</u> $g: E \times E \rightarrow [0, \infty]$ durch

$$g_{ij} = \mathbb{E}_i[N_j], \quad i, j \in E.$$

Lemma 2.3.24. Für alle $i, j \in E$ gilt

$$g_{ij} = \sum_{n=1}^{\infty} p_{ij}^{(n)}.$$

Beweis. Mit dem Satz von der monotonen Konvergenz gilt

$$g_{ij} = \mathbb{E}_i[N_j] = \mathbb{E}_i\left[\sum_{n=1}^{\infty} \mathbb{1}_{\{X_n = j\}}\right] = \sum_{n=1}^{\infty} \mathbb{P}_i(X_n = j) = \sum_{n=1}^{\infty} p_{ij}^{(n)}.$$

Lemma 2.3.25. Es sei $X : \Omega \to \mathbb{N}_0$ eine diskrete Zufallsvariable. Dann gilt

$$\mathbb{E}[X] = \sum_{n=1}^{\infty} \mathbb{P}(X \ge n) = \sum_{n=0}^{\infty} \mathbb{P}(X > n).$$

Beweis. Wegen der unbedingten Konvergenz der Reihe gilt

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} j \mathbb{P}(X = j) = \sum_{j=1}^{\infty} \sum_{n=1}^{j} \mathbb{P}(X = j)$$
$$= \sum_{n=1}^{\infty} \sum_{j=n}^{\infty} \mathbb{P}(X = j) = \sum_{n=1}^{\infty} \mathbb{P}(X \ge n).$$

Lemma 2.3.26. Für alle $i, j \in E$ gilt

$$g_{ij} = \underbrace{\frac{f_{ij}}{1 - f_{jj}} \mathbb{1}_{\{f_{jj} < 1\}}}_{j \ transient} + \underbrace{\left(0 \mathbb{1}_{\{f_{ij} = 0\}} + \infty \mathbb{1}_{\{f_{ij} > 0\}} \infty\right) \mathbb{1}_{\{f_{jj} = 1\}}}_{j \ rekurrent}.$$

Beweis. Mit Lemmas 2.3.25, 2.3.13 und der geometrischen Reihe gilt

$$g_{ij} = \mathbb{E}_{i}[N_{j}] = \sum_{n=1}^{\infty} \mathbb{P}_{i}(N_{j} \ge n) = \sum_{n=1}^{\infty} \mathbb{P}_{i}(\sigma_{j}^{n} < \infty) = \sum_{n=1}^{\infty} f_{ij} f_{jj}^{n-1}$$
$$= \frac{f_{ij}}{1 - f_{jj}} \mathbb{1}_{\{f_{jj} < 1\}} + \left(0 \mathbb{1}_{\{f_{ij} = 0\}} + \infty \mathbb{1}_{\{f_{ij} > 0\}} \infty\right) \mathbb{1}_{\{f_{jj} = 1\}}.$$

Satz 2.3.27. Für einen Zustand $i \in E$ sind folgende Aussagen äquivalent:

- (i) Der Zustand i ist rekurrent; das heißt $f_{ii} = 1$.
- (ii) Es gilt $\mathbb{P}_i(N_i = \infty) = 1$; mit anderen Worten

$$\mathbb{P}_i \bigg(\limsup_{n \to \infty} \{ X_n = i \} \bigg) = 1.$$

(iii) Es gilt $g_{ii} = \infty$.

In diesem Fall gelten folgende Zusatzaussagen:

- (a) Für jedes $j \in E$ gilt $\mathbb{P}_i(N_i = 0) = 1 f_{ii}$ und $\mathbb{P}_i(N_i = \infty) = f_{ii}$.
- (b) Für jedes $j \in E$ gilt

$$g_{ji} = \begin{cases} 0, & falls \ f_{ji} = 0, \\ \infty, & falls \ f_{ji} > 0. \end{cases}$$

Beweis. (i) \Leftrightarrow (ii): Folgt aus Satz 2.3.18.

(ii) \Leftrightarrow (iii): Folgt aus Satz 2.3.18 und Lemma 2.3.24.

Beweis der Zusatzaussagen:

- (a) Folgt aus Lemma 2.3.22.
- (b) Folgt aus Lemma 2.3.26.

Definition 2.3.28. Für $p \in (0,1]$ bezeichnen wir mit Geo(p) die diskrete Verteilung auf \mathbb{N}_0 , die durch den stochastischen Vektor

$$\pi_k = (1-p)^k p, \quad k \in \mathbb{N}_0$$

gegeben ist, und nennen sie geometrische Verteilung mit Parameter p.

Bemerkung 2.3.29. Wir beachten, dass $Geo(1) = \delta_0$.

Satz 2.3.30. Für einen Zustand $i \in E$ sind folgende Aussagen äquivalent:

- (i) Der Zustand i ist transient; das heißt $f_{ii} < 1$.
- (ii) Es gilt $\mathbb{P}_i(N_i < \infty) = 1$; mit anderen Worten

$$\mathbb{P}_i \bigg(\limsup_{n \to \infty} \{ X_n = i \} \bigg) = 0.$$

- (iii) Es gilt $N_i \sim \text{Geo}(1 f_{ii})$ unter \mathbb{P}_i .
- (iv) Es gilt $g_{ii} < \infty$.

In diesem Fall gelten folgende Zusatzaussagen:

- (a) Für jedes $j \in E$ gilt $\mathbb{P}_i(N_i < \infty) = 1$.
- (b) Für jedes $j \in E$ gilt $g_{ji} < \infty$.

Beweis. (i) \Rightarrow (iii): Folgt aus Lemma 2.3.22.

- $(iii) \Rightarrow (ii): \checkmark$
- (ii) \Rightarrow (iv): Wegen $\mathbb{P}_i(N_i = \infty) < 1$ folgt diese Implikation aus Satz 2.3.27.
- (iv) \Rightarrow (i): Folgt aus Satz 2.3.27.

Beweis der Zusatzaussagen:

(a) Nach Lemma 2.3.22 und der geometrischen Reihe gilt

$$\sum_{k=1}^{\infty} \mathbb{P}_j(N_i = k) = \sum_{k=1}^{\infty} f_{ji} f_{ii}^{k-1} (1 - f_{ii}) = f_{ji}.$$

Also folgt mit Lemma 2.3.22, dass

$$\mathbb{P}_{i}(N_{i} < \infty) = (1 - f_{ii}) + f_{ii} = 1.$$

(b) Folgt aus Korollar 2.3.19 und Lemma 2.3.24.

Wir merken noch an, dass (iv) \Rightarrow (ii) auch mit dem Lemma von Borel-Cantelli folgt. In der Tat, aus $\sum_{n=1}^{\infty} \mathbb{P}_i(X_n = i) < \infty$ folgt

$$\mathbb{P}_i \bigg(\limsup_{n \to \infty} \{ X_n = i \} \bigg) = 0.$$

Korollar 2.3.31. Für zwei Zustände $i, j \in E$ mit $i \neq j$ sind folgende Aussagen äquivalent:

- (i) Es gilt $i \rightarrow j$.
- (ii) Es gilt $f_{ij} > 0$.
- (iii) Es gilt $g_{ij} > 0$.

Beweis. (i) \Leftrightarrow (iii): Folgt aus Bemerkung 2.3.3.

(ii) \Leftrightarrow (iii): Folgt aus Lemma 2.3.26.

Korollar 2.3.32. Folgende Aussagen sind äquivalent:

- (i) Die Markov-Kette ist irreduzibel.
- (ii) Es gilt $f_{ij} > 0$ für alle $i, j \in E$ mit $i \neq j$.
- (iii) Es gilt $g_{ij} > 0$ für alle $i, j \in E$ mit $i \neq j$.

Beweis. Folgt aus Korollar 2.3.31.

Bemerkung 2.3.33. Die Markov-Kette heißt schwach irreduzibel, falls $f_{ij} + f_{ji} > 0$ für alle $i, j \in E$ mit $i \neq j$.

2.4 Zufällige Irrfahrten

Als erstes betrachten wir die Irrfahrt auf \mathbb{Z} ; das heißt, mit einem $p \in (0,1)$ gilt $p_{i,i+1} = p$ und $p_{i,i-1} = 1 - p$ für alle $i \in \mathbb{Z}$.

Satz 2.4.1. Für die Irrfahrt auf \mathbb{Z} mit $p \in (0,1)$ sind folgende Aussagen äquivalent:

- (i) 0 ist ein rekurrenter Zustand.
- (ii) Es gilt $p = \frac{1}{2}$.

Beweis. Wir setzen q:=1-p. Es sei $n\in\mathbb{N}$ beliebig. Dann gilt $p_{00}^{(2n-1)}=0$. Nach der Stirling-Formel gilt

$$n! \sim \sqrt{2\pi n} \, n^n e^{-n}$$

und daher

$$p_{00}^{(2n)} = \binom{2n}{n} p^n q^n = \frac{(2n)!}{n! \cdot n!} (pq)^n \sim \frac{\sqrt{4\pi n} (2n)^{2n}}{\sqrt{2\pi n} \, n^n \sqrt{2\pi n} \, n^n} (pq)^n = \frac{1}{\sqrt{\pi n}} (4pq)^n.$$

Es gilt 4pq=1 genau dann, wenn $p=\frac{1}{2}$; und andernfalls 4pq<1. Mit der geometrischen Reihe folgt $\sum_{n=0}^{\infty}p_{00}^{(n)}=\infty$ genau dann, wenn $p=\frac{1}{2}$. Also folgt (i) \Leftrightarrow (ii) mit Satz 2.3.18.

Also ist die 0 bei der assymetrischen Irrfahrt ein transienter Zustand. Alternativ läßt sich dies folgendermaßen zeigen.

Satz 2.4.2. Bei der asymmetrischen $(p \neq \frac{1}{2})$ Irrfahrt auf \mathbb{Z} ist 0 ein transienter Zustand.

Beweis. Wir setzen $\mathbb{P}:=\mathbb{P}_0$. Unter \mathbb{P} ist der Prozess $X=(X_n)_{n\in\mathbb{N}_0}$ von der Form $X_0=0$ und

$$X_n = \sum_{i=1}^n \xi_i, \quad n \in \mathbb{N}$$

mit einer Folge $(\xi_i)_{i\in\mathbb{N}}$ von unabhängigen, identisch verteilten Zufallsvariablen, so dass $\mathbb{P}(\xi_i=1)=p$ und $\mathbb{P}(\xi_i=-1)=1-p$ für alle $i\in\mathbb{N}$. Für den Erwartungswert $\mu:=\mathbb{E}[\xi_1]$ gilt

$$\mu = p - (1 - p) = 2p - 1 \neq 0.$$

Nach dem starken Gesetz der großen Zahlen gilt P-f.s.

$$\lim_{n \to \infty} \frac{X_n}{n} = \mu.$$

Also gilt \mathbb{P} -f.s.

$$|X_n| \to \infty$$
 für $n \to \infty$,

und damit

$$\mathbb{P}\bigg(\limsup_{n\to\infty} \{X_n = 0\}\bigg) = 0.$$

Nach Satz 2.3.30 ist 0 ein transienter Zustand.

Bemerkung 2.4.3. Nun betrachten wir die symmtrische Irrfahrt auf \mathbb{Z}^d . Im Beweis von Satz 2.4.1 haben wir gesehen, dass im Fall d=1 gilt

$$p_{00}^{(2n)} \sim \frac{1}{\sqrt{\pi n}}.$$

Dies läßt vermuten, dass generell

$$p_{00}^{(2n)} \sim \frac{C_d}{n^{d/2}}$$

mit einer Konstanten $C_d > 0$, und dass 0 demnach genau dann ein rekurrenter Zustand ist, wenn $d \leq 2$.

Es sei $(\eta_m)_{m\in\mathbb{N}}\subset \mathscr{L}^2$ eine Folge von \mathbb{Z}^d -wertigen, unabhängigen, identisch verteilten Zufallsvariablen, die zentriert sind und eine positiv definite Kovarianzmatrix $\Sigma^2\in\mathbb{R}^{d\times d}$ haben. Wir definieren die Folge $(Y_n)_{n\in\mathbb{N}}$ durch

$$Y_n := \sum_{m=1}^n \eta_m, \quad n \in \mathbb{N},$$

und die Folge $(Z_n)_{n\in\mathbb{N}}$ durch

$$Z_n := \frac{Y_n}{\sqrt{n}}, \quad n \in \mathbb{N}.$$

Nach dem mehrdimensionalen zentralen Grenzwertsatz gilt

$$\mathbb{P}^{Z_n} \xrightarrow{w} \mathcal{N}(0, \Sigma^2)$$
. (schwache Konvergenz)

Im Folgenden bezeichnen wir für $\epsilon > 0$ mit $B_{\epsilon} \subset \mathbb{R}^d$ den Quader $B_{\epsilon} := (-\epsilon, \epsilon)^d$. Da die Folge $(Y_n)_{n \in \mathbb{N}}$ Werte in \mathbb{Z}^d hat, existiert ein $\epsilon > 0$, so dass

$$\mathbb{P}(Y_n = 0) = \mathbb{P}(Y_n \in B_{\epsilon}) = \mathbb{P}(Z_n \in B_{\epsilon/\sqrt{n}})$$
 für alle $n \in \mathbb{N}$.

Also gilt für große $n \in \mathbb{N}$

$$\mathbb{P}(Y_n = 0) \approx \int_{B_{\epsilon/\sqrt{n}}} f(x) dx,$$

wobei $f: \mathbb{R}^d \to \mathbb{R}_+$ die Dichte der N $(0, \Sigma^2)$ -Verteilung bezeichnet; das heißt

$$f(x) = \frac{1}{\sqrt{(2\pi)^d \det \Sigma^2}} \exp\left(-\frac{1}{2}\langle \Sigma^{-2} x, x \rangle\right).$$

Satz 2.4.4 (Version des lokalen zentralen Grenzwertsatzes). Wir nehmen an, dass $ein \epsilon > 0$ existiert, so dass

$$\lim_{n \to \infty} n^{d/2} \left(\mathbb{P}(Y_n = 0) - \int_{B_{\epsilon/\sqrt{n}}} f(x) dx \right) = 0.$$

Dann gilt

$$n^{d/2}\mathbb{P}(Y_n=0) \to \frac{(2\epsilon)^d}{\sqrt{(2\pi)^d \det \Sigma^2}} \quad \text{für } n \to \infty.$$

Beweis. Wir bezeichnen mit |B| das Lebesgue-Maß einer Borelmenge $B \in \mathcal{B}(\mathbb{R}^d)$. Dann gilt

$$|B_{\epsilon/\sqrt{n}}| = \left(\frac{2\epsilon}{\sqrt{n}}\right)^d = \frac{(2\epsilon)^d}{n^{d/2}}$$
 für alle $n \in \mathbb{N}$.

Es folgt

$$\lim_{n \to \infty} n^{d/2} \mathbb{P}(Y_n = 0) = \lim_{n \to \infty} n^{d/2} \int_{B_{\epsilon/\sqrt{n}}} f(x) dx = \lim_{n \to \infty} \frac{(2\epsilon)^d}{|B_{\epsilon/\sqrt{n}}|} \int_{B_{\epsilon/\sqrt{n}}} f(x) dx$$
$$= (2\epsilon)^d f(0) = \frac{(2\epsilon)^d}{\sqrt{(2\pi)^d \det \Sigma^2}}.$$

Aufgrund der resultierenden Konvergenz kann höchstens ein $\epsilon > 0$ existieren, das die Bedinging aus Satz 2.4.4 erfüllt.

Bemerkung 2.4.5. Falls d=1 und $\eta_1 \in p\mathbb{Z}$ für ein $p \in \mathbb{N}$, so kann man zeigen, dass die Voraussetzung von Satz 2.4.4 mit $\epsilon = \frac{p}{2}$ erfüllt ist. Folglich gilt dann

$$n^{1/2}\mathbb{P}(Y_n=0) \to \frac{p}{\sqrt{2\pi\sigma^2}}.$$

Vergleiche [Bre92, Thm. 10.17].

Satz 2.4.6. Für die symmetrische Irrfahrt auf \mathbb{Z}^d sind folgende Aussagen äguivalent:

- (i) 0 ist ein rekurrenter Zustand.
- (ii) Es qilt d < 2.

Beweis. Wir betrachten die symmetrische Irrfahrt aus Beispiel 1.6.5, und setzen $\mathbb{P} := \mathbb{P}_0$. Unter \mathbb{P} ist der Prozess $X = (X_n)_{n \in \mathbb{N}_0}$ von der Form $X_0 = 0$ und

$$X_n = \sum_{m=1}^n \xi_m, \quad n \in \mathbb{N}$$

mit einer Folge $(\xi_m)_{m\in\mathbb{N}}$ von \mathbb{R}^d -wertigen unabhängigen, identisch verteilten Zufallsvariablen, so dass für alle $m\in\mathbb{N}$ gilt

$$\mathbb{P}(\xi_m = i) = \begin{cases} \frac{1}{2d}, & \text{falls } |i|_1 = 1, \\ 0, & \text{sonst.} \end{cases}$$

Es gilt $p_{00}^{(2n-1)} = \mathbb{P}(X_{2n-1} = 0) = 0$ für alle $n \in \mathbb{N}$. Nun definieren wir die Folge $(\eta_m)_{m \in \mathbb{N}}$ von \mathbb{R}^d -wertigen unabhängigen, identisch verteilten Zufallsvariablen durch

$$\eta_m := \xi_{2m-1} + \xi_{2m}, \quad m \in \mathbb{N}.$$

Dann gilt

$$X_{2n} = \sum_{m=1}^{n} \eta_m, \quad n \in \mathbb{N}.$$

Wir definieren die \mathbb{R}^d -wertige Zufallsvariable $\eta := \eta_1$. Dann gilt

$$\mathbb{E}[\eta] = \mathbb{E}[\xi_1] + \mathbb{E}[\xi_2] = 0.$$

Nun definieren wir die \mathbb{R}^d -wertige Zufallsvariable $\xi := \xi_1$. Dann gilt \mathbb{P} -f.s. $\xi = \lambda e_i$ mit $\lambda \in \{-1, 1\}$ und $i \in \{1, \ldots, d\}$. Es seien $k, l \in \{1, \ldots, d\}$ mit $k \neq l$ beliebig. Dann gilt $\xi^k \xi^l = 0$, und daher

$$\operatorname{Cov}(\xi^k, \xi^l) = \mathbb{E}[\xi^k \xi^l] - \mathbb{E}[\xi^k] \mathbb{E}[\xi^l] = 0.$$

Da ξ_1 und ξ_2 unabhängig sind, folgt

$$\mathrm{Cov}(\eta^k, \eta^l) = \mathrm{Cov}(\xi_1^k + \xi_2^k, \xi_1^l + \xi_2^l) = \mathrm{Cov}(\xi_1^k, \xi_1^l) + \mathrm{Cov}(\xi_2^k, \xi_2^l) = 0.$$

Nun sei $k \in \{1, ..., d\}$ beliebig. Dann gilt

$$\operatorname{Var}[\xi^k] = \mathbb{E}[|\xi^k|^2] = \frac{1}{2d} + \frac{1}{2d} = \frac{1}{d}.$$

Da ξ_1 und ξ_2 unabhängig sind, folgt

$$\operatorname{Var}[\eta^k] = \operatorname{Var}[\xi_1^k] + \operatorname{Var}[\xi_2^k] = \frac{2}{d}.$$

Folglich ist die $\mathbb{R}^{d\times d}$ -wertige Kovarianzmatrix von η gegeben durch

$$\Sigma^2 = \operatorname{diag}\left(\frac{2}{d}, \dots, \frac{2}{d}\right).$$

Also gilt det $\Sigma^2 = (\frac{2}{d})^d$. Man kann zeigen, dass die Voraussetzung von Satz 2.4.4 mit $\epsilon = 2^{\frac{1}{d}-1}$ erfüllt ist. Folglich gilt

$$n^{d/2}p_{00}^{2n} = n^{d/2}\mathbb{P}(X_{2n} = 0) \to \frac{(2\epsilon)^d}{\sqrt{(2\pi)^d \det \Sigma^2}} = \frac{2}{(2\pi)^{d/2}(\frac{2}{d})^{d/2}} = \frac{2}{(\frac{4\pi}{d})^{d/2}}.$$

Bekanntlich gilt für $\alpha > 0$ die Äquivalenz

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} < \infty \quad \Leftrightarrow \quad \alpha > 1.$$

Also gilt $\sum_{n=0}^{\infty} p_{00}^{(n)} < \infty$ genau dann, wenn d > 2, und eine Anwendung von Satz 2.3.18 beendet den Beweis.

2.5 Zyklische Zerlegungen

Wir fixieren einen Zustand $i \in E$.

Definition 2.5.1. Wir definieren die <u>Zyklen</u> (<u>Segmente</u>, <u>Exkursionen</u>) $(Z_n)_{n \in \mathbb{N}_0}$ der Markov-Kette durch

$$Z_n := \begin{cases} (\tau_i^{n+1}, X_{\sigma_i^n}, \dots, X_{\sigma_i^{n+1}-1}), & falls \ \sigma_i^n < \infty, \\ (\infty, \Delta, \Delta, \dots), & sonst, \end{cases}$$

 $mit\ einem\ \Delta\notin E.$

Hierbei ist τ_i^{n+1} die Länge des n-ten Zyklus, und $(X_{\sigma_i^n},\ldots,X_{\sigma_i^{n+1}-1})$ der (möglicherweise unendlich lange) Verlauf der Markov-Kette im n-ten Zyklus. Beachte außerdem, dass $X_{\sigma_i^n}=i$ und $X_{\sigma_i^n+k}\neq i$ für alle $k=1,\ldots,\tau_i^{n+1}-1$.

Hat der Zyklus Z_n unendliche Länge, so hat auch der Zyklus Z_{n+1} unendliche Länge.

Definition 2.5.2. Es gelte $f_{ii} > 0$. Für jedes $n \in \mathbb{N}$ setzen wir

$$\widehat{\mathbb{P}}_i^{(n)} := \mathbb{P}_i^{\{\sigma_i^n < \infty\}}.$$

Bemerkung 2.5.3.

- (a) Nach Lemma 2.3.13 gilt $\mathbb{P}_i(\sigma_i^n < \infty) = f_{ii}^n > 0$ für alle $n \in \mathbb{N}$.
- (b) Falls i rekurrent ist (das heißt $f_{ii}=1$), dann gilt $\widehat{\mathbb{P}}_i^{(n)}=\mathbb{P}_i$ für alle $n\in\mathbb{N}$. Unter $\widehat{\mathbb{P}}_i^{(n)}$ sind die Zyklen Z_0,\ldots,Z_{n-1} von endlicher Länge.

Satz 2.5.4. Es gelte $f_{ii} > 0$. Für jedes $n \in \mathbb{N}$ sind die Zufallsvariablen Z_0, \ldots, Z_{n-1} unter $\widehat{\mathbb{P}}_i^{(n)}$ unabhängig und identisch verteilt mit

$$\widehat{\mathbb{P}}_i^{(n)} \circ Z_0 = \mathbb{P}_i^{\{\tau_i < \infty\}} \circ Z_0.$$

Beweis. Wir zeigen für alle $n \in \mathbb{N}$, dass

$$\mathbb{P}_i \left(\bigcap_{k=0}^{n-1} \{ Z_k \in A_k, \tau_i^{k+1} < \infty \} \right) = \prod_{k=0}^{n-1} \mathbb{P}_i (Z_0 \in A_k, \tau_i < \infty)$$

für alle messbaren Mengen A_0, \ldots, A_{n-1} . Wir zeigen dies per Induktion nach $n \in \mathbb{N}$. Für n = 1 klar. Induktionsschritt $n \to n+1$: Wir setzen

$$A := \{\sigma_i^n < \infty\} = \{\sigma_i^n < \infty\} \cap \{X_{\sigma_i^n} = i\}.$$

Wir dürfen annehmen, dass $\mathbb{P}_i(A) > 0$; ansonsten sind beide Seiten gleich Null. Nach der starken Markov-Eigenschaft (Satz 1.4.1) ist der Prozess $(X_{\sigma_i^n+m})_{m\in\mathbb{N}_0}$ unter \mathbb{P}_i^A eine (δ_i, P) -MK, die unabhängig von der σ -Algebra $\mathscr{F}_{\sigma_i^n}^X$ ist. Wegen

$$Z_k = (\tau_i^{k+1}, X_{\sigma_i^k}, \dots, X_{\sigma_i^{k+1} - 1}), \quad k = 0, \dots, n - 1,$$

$$\tau_i^{k+1} = (\sigma_i^{k+1} - \sigma_i^k) \mathbb{1}_{\{\sigma_i^{k+1} < \infty\}} + \infty \mathbb{1}_{\{\sigma_i^{k+1} = \infty\}}, \quad k = 0, \dots, n - 1,$$

sind Z_0, \ldots, Z_{n-1} bezüglich $\mathscr{F}^X_{\sigma^n_i}$ messbar. Wegen

$$Z_{n} = (\tau_{i}^{n+1}, X_{\sigma_{i}^{n}}, \dots, X_{\sigma_{i}^{n+1}-1}),$$

$$\tau_{i}^{n+1} = (\sigma_{i}^{n+1} - \sigma_{i}^{n}) \mathbb{1}_{\{\sigma_{i}^{n+1} < \infty\}} + \infty \mathbb{1}_{\{\sigma_{i}^{n+1} = \infty\}},$$

$$\sigma_{i}^{n+1} = \inf\{k \in \mathbb{N} : X_{\sigma_{i}^{n}+k} = i\}$$

folgt

$$\mathbb{P}_{i}\left(\bigcap_{k=0}^{n} \{Z_{k} \in A_{k}, \tau_{i}^{k+1} < \infty\}\right) = \mathbb{P}_{i}^{A}\left(\bigcap_{k=0}^{n} \{Z_{k} \in A_{k}, \tau_{i}^{k+1} < \infty\}\right) \cdot \mathbb{P}_{i}(A)$$

$$= \mathbb{P}_{i}^{A}\left(\bigcap_{k=0}^{n-1} \{Z_{k} \in A_{k}, \tau_{i}^{k+1} < \infty\}\right) \cdot \mathbb{P}_{i}(Z_{0} \in A_{n}, \tau_{i} < \infty) \cdot \mathbb{P}_{i}(A)$$

$$= \mathbb{P}_{i}\left(\bigcap_{k=0}^{n-1} \{Z_{k} \in A_{k}, \tau_{i}^{k+1} < \infty\}\right) \cdot \mathbb{P}_{i}(Z_{0} \in A_{n}, \tau_{i} < \infty)$$

$$= \prod_{k=0}^{n-1} \mathbb{P}_{i}(Z_{0} \in A_{k}, \tau_{i} < \infty) \cdot \mathbb{P}_{i}(Z_{0} \in A_{n}, \tau_{i} < \infty) = \prod_{k=0}^{n} \mathbb{P}_{i}(Z_{0} \in A_{k}, \tau_{i} < \infty).$$

Wegen $\{\sigma_i^n < \infty\} = \{\tau_i^1 < \infty, \dots, \tau_i^n < \infty\}$ folgt nun

$$\widehat{\mathbb{P}}_{i}^{(n)}(Z_{0} \in A_{0}, \dots, Z_{n-1} \in A_{n-1}) = \mathbb{P}_{i}(Z_{0} \in A_{0}, \dots, Z_{n-1} \in A_{n-1} \mid \sigma_{i}^{n} < \infty)$$

$$= \frac{1}{\mathbb{P}_{i}(\sigma_{i}^{n} < \infty)} \mathbb{P}_{i} \left(\bigcap_{k=0}^{n-1} \{ Z_{k} \in A_{k}, \tau_{i}^{k+1} < \infty \} \right)$$

$$= \frac{1}{\mathbb{P}_{i}(\tau_{i} < \infty)^{n}} \prod_{k=0}^{n-1} \mathbb{P}_{i}(Z_{0} \in A_{k}, \tau_{i} < \infty) = \prod_{k=0}^{n-1} \mathbb{P}_{i}^{\{\tau_{i} < \infty\}}(Z_{0} \in A_{k}).$$

Korollar 2.5.5. Der Zustand i sei rekurrent (das heißt $f_{ii} = 1$). Dann ist $(Z_n)_{n \in \mathbb{N}_0}$ unter \mathbb{P}_i eine Folge unabhäniger, identisch verteilter Zufallsvariablen.

Beweis. Folgt aus Satz 2.5.4 und Bemerkung 2.5.3. \Box

Korollar 2.5.6. Es gelte $f_{ii} > 0$. Für jedes $n \in \mathbb{N}$ sind die Zufallsvariablen $\tau_i^1, \ldots, \tau_i^n$ unter $\widehat{\mathbb{P}}_i^{(n)}$ unabhängig und identisch verteilt mit Werten in \mathbb{N} , und es gilt

$$\widehat{\mathbb{P}}_{i}^{(n)}(\tau_{i}^{1}=k_{1},\ldots,\tau_{i}^{n}=k_{n})=\prod_{j=1}^{n}\widehat{\mathbb{P}}_{i}^{(n)}(\tau_{i}=k_{j})=\frac{1}{f_{ii}}\prod_{j=1}^{n}\mathbb{P}_{i}(\tau_{i}=k_{j})$$

 $f\ddot{u}r \ alle \ k_1,\ldots,k_n \in \mathbb{N}.$

Beweis. Folgt aus Satz 2.5.4.

Korollar 2.5.7. Der Zustand i sei rekurrent (das heißt $f_{ii} = 1$). Dann ist $(\tau_i^n)_{n \in \mathbb{N}}$ unter \mathbb{P}_i eine Folge unabhängiger, identisch verteilter Zufallsvariablen mit Werten in \mathbb{N} , und es gilt $\mathbb{P}_i \circ \tau_i^n = \mathbb{P}_i \circ \tau_i$ für alle $n \in \mathbb{N}$.

Beweis. Folgt aus Korollar 2.5.5 und Bemerkung 2.5.3. \Box

Falls $f_{ii}=0$, dann gilt $f_{ii}^{(n)}=0$ für alle $n\in\mathbb{N}$, und mit Bemerkung 2.3.8 folgt $d_i=\infty$; das heißt

$$\mathbb{P}_i\bigg(\bigcap_{n\in\mathbb{N}}\{X_n\neq i\}\bigg)=1.$$

Es gilt also $\sigma_i^1 = \infty$, und folglich ist bereits der Zyklus Z_0 von unendlicher Länge.

Die Zufallsvariable N_i zählt die Anzahl der Besuche des Zustandes i, und damit auch die Anzahl der Zyklen (endlicher Länge), und es gilt $\{\sigma_i^n < \infty\} \subset \{N_i \ge n\}$. Nach den Sätzen 2.3.27 und 2.3.30 wissen wir:

- Gilt $f_{ii} = 1$ (das heißt i ist rekurrent), dann ist $N_i = \infty$ \mathbb{P}_i -fast sicher. Die Zyklen $(Z_n)_{n \in \mathbb{N}_0}$ sind unter \mathbb{P}_i unabhängig und identisch verteilt.
- Gilt $0 < f_{ii} < 1$, dann ist $N_i \sim \text{Geo}(1 f_{ii})$ unter \mathbb{P}_i . Die Zyklen Z_0, \ldots, Z_{n-1} sind unter $\widehat{\mathbb{P}}_i^{(n)}$ unabhängig und identisch verteilt.
- Gilt $f_{ii} = 0$, dann ist $N_i = 0$ \mathbb{P}_i -fast sicher.

2.6 Solidaritätseigenschaften

Definition 2.6.1. Eine Eigenschaft eines Zustandes $i \in E$ heißt eine <u>Solidaritätseigenschaft</u> (oder <u>Klasseneigenschaft</u>), wenn sie für alle $j \in \mathcal{G}_i$ gilt.

Zur Erinnerung:

$$\mathscr{G}_i := \{ j \in E : i \leftrightarrow j \}.$$

Satz 2.6.2. Rekurrenz ist eine Solidaritätseigenschaft.

Beweis. Es seien $i,j\in E$ mit $i\leftrightarrow j$, so dass i rekurrent ist. Nach Satz 2.1.4 existieren $m,q\in\mathbb{N}$, so dass $p_{ij}^{(m)}>0$ und $p_{ji}^{(q)}>0$. Nach Satz 2.3.18 gilt $\sum_{n=1}^{\infty}p_{ii}^{(n)}=\infty$, und nach Korollar 1.5.9 gilt

$$p_{jj}^{(n)} \ge p_{ji}^{(q)} p_{ij}^{(n-q)} \ge p_{ji}^{(q)} p_{ii}^{(n-m-q)} p_{ij}^{(m)}$$
 für alle $n > m + q$.

Also gilt

$$\sum_{n=1}^{\infty} p_{jj}^{(n)} \ge \sum_{n=m+q+1}^{\infty} p_{jj}^{(n)} \ge \sum_{n=m+q+1}^{\infty} p_{ji}^{(q)} p_{ii}^{(n-m-q)} p_{ij}^{(m)} = p_{ji}^{(q)} \left(\sum_{n=1}^{\infty} p_{ii}^{(n)} \right) p_{ij}^{(m)} = \infty.$$

Mit Satz 2.3.18 folgt, dass j rekurrent ist.

Korollar 2.6.3. Transienz ist eine Solidaritätseigenschaft.

Beweis. Folgt aus Satz 2.6.2.

Definition 2.6.4. Die Markov-Kette heißt <u>rekurrent</u> bzw. <u>transient</u>, wenn sie irreduzibel ist, und ein (und damit jeder) Zustand <u>rekurrent</u> bzw. <u>transient</u> ist.

Korollar 2.6.5. Die asymmetrische Irrfahrt $(p \neq \frac{1}{2})$ auf \mathbb{Z} ist transient.

Beweis. Folgt aus Beispiel 2.1.17 (Irreduzibilität) und Satz 2.4.1 (bzw. Satz 2.4.2). □

Korollar 2.6.6 (Satz von Pólya). Folgende Aussagen sind äquivalent:

- (i) Die symmetrische Irrfahrt auf \mathbb{Z}^d ist rekurrent.
- (ii) Es gilt $d \leq 2$.

Beweis. Folgt aus Beispiel 2.1.18 (Irreduzibilität) und Satz 2.4.6.

Satz 2.6.7. Die Periode eines Zustandes ist eine Solidaritätseigenschaft.

Beweis. Es seien $i, j \in E$ mit $i \leftrightarrow j$ und $i \neq j$. Bekanntlich gilt

$$d_{i} = ggT\{n \in \mathbb{N} : p_{ii}^{(n)} > 0\},\$$

$$d_{j} = ggT\{n \in \mathbb{N} : p_{jj}^{(n)} > 0\}.$$

Nach Satz 2.1.4 existieren $m, n \in \mathbb{N}$, so dass $p_{ij}^{(m)} > 0$ und $p_{ji}^{(n)} > 0$. Wir setzen

$$\mathcal{D}_j := \{l \in \mathbb{N} : p_{ij}^{(l)} > 0\}$$

Nach Korollar 1.5.9 gilt

$$p_{ii}^{(m+k+n)} \ge p_{ij}^{(m)} p_{ji}^{(k+n)} \ge p_{ij}^{(m)} p_{jj}^{(k)} p_{ji}^{(n)} > 0 \quad \text{für alle } k \in \mathcal{D}_j \cup \{0\}.$$

Aus $p_{ii}^{(m+n)} > 0$ folgt $m + n = \lambda_0 d_i$ für ein $\lambda_0 \in \mathbb{N}$, und aus $p_{ii}^{(m+n+k)} > 0$ für $k \in \mathcal{D}_j$ folgt $m + n + k = \lambda_k d_i$ für ein $\lambda_k \in \mathbb{N}$. Nun folgt $k = (\lambda_k - \lambda_0)d_i$, woraus $\mathcal{D}_j \subset d_i\mathbb{N}$ folgt. Also gilt $d_i \leq d_j$. Die Ungleichung $d_j \leq d_i$ beweisen wir analog.

Definition 2.6.8. Die Markov-Kette heißt <u>aperiodisch</u> bzw. <u>d-periodisch</u> für ein $d \ge 2$, wenn sie irreduzibel ist, und ein (und damit jeder) Zustand aperiodisch bzw. d-periodisch ist.

Satz 2.6.9. Es sei $i \in E$ ein rekurrenter Zustand. Weiterhin sei $j \in E$ ein Zustand mit $j \neq i$ und $i \rightarrow j$. Dann gelten folgende Aussagen.

- (a) Es gilt $i \leftrightarrow j$.
- (b) Der Zustand j ist rekurrent.
- (c) Es gilt $f_{ij} = f_{ji} = 1$.

Beweis.

(a) Es gilt $f_{ii} = 1$ und $i \to j$. Nach Satz 2.1.4 gibt es ein minimales $n \in \mathbb{N}$, so dass $p_{ij}^{(n)} > 0$. Also gilt $\mathbb{P}_i(X_n = j) > 0$ und

$$\mathbb{P}_i(X_1 \neq i, \dots, X_{n-1} \neq i \,|\, X_n = j) = 1.$$

In der Tat, falls

$$\mathbb{P}_i(X_1 \neq i, \dots, X_{n-1} \neq i \mid X_n = j) < 1,$$

dann gilt

$$\mathbb{P}_{i}\left(\bigcup_{k=1}^{n-1} \{X_{k} = i\} \mid X_{n} = j\right) > 0,$$

und folglich existiert ein $k \in \{1, \dots, n-1\}$ mit $\mathbb{P}_i(X_k = i \mid X_n = j) > 0$. Nach Satz 1.2.15 gilt

$$p_{ii}^{(k)} \cdot p_{ij}^{(n-k)} = \mathbb{P}_i(X_k = i, X_n = j) = \mathbb{P}_i(X_k = i \mid X_n = j) \cdot \mathbb{P}_i(X_n = j)$$
$$= \mathbb{P}_i(X_k = i \mid X_n = j) \cdot p_{ij}^{(n)} > 0.$$

Also folgt $p_{ii}^{(k)} > 0$ und $p_{ij}^{(n-k)} > 0$. Letzteres ist ein Widerspruch zur Minimalität von n. Nun erhalten wir

$$p_{ij}^{(n)} = \mathbb{P}_i(X_1 \neq i, \dots, X_{n-1} \neq i \mid X_n = j) \cdot \mathbb{P}_i(X_n = j)$$

= $\mathbb{P}_i(X_1 \neq i, \dots, X_{n-1} \neq i, X_n = j).$

Wir definieren die Stoppzeit

$$\rho_i := \inf\{m > n+1 : X_m = i\}.$$

Mit der Markov-Eigenschaft (Satz 1.2.16) folgt

$$0 = 1 - f_{ii} = \mathbb{P}_i(\tau_i = \infty) \ge \mathbb{P}_i(X_1 \ne i, \dots, X_{n-1} \ne i, X_n = j, \tau_i = \infty)$$

$$= \mathbb{P}_i(X_1 \ne i, \dots, X_{n-1} \ne i, X_n = j, \varrho_i = \infty)$$

$$= \mathbb{P}_i(X_1 \ne i, \dots, X_{n-1} \ne i, \varrho_i = \infty \mid X_n = j) \cdot \mathbb{P}_i(X_n = j)$$

$$= \mathbb{P}_i(X_1 \ne i, \dots, X_{n-1} \ne i \mid X_n = j) \cdot \mathbb{P}_i(\varrho_i = \infty \mid X_n = j) \cdot \mathbb{P}_i(X_n = j)$$

$$= \mathbb{P}_i(X_1 \ne i, \dots, X_{n-1} \ne i, X_n = j) \cdot \mathbb{P}_j(\tau_i = \infty) = p_{ij}^{(n)} \cdot (1 - f_{ji}).$$

Also folgt $f_{ji} = 1$, und insbesondere $j \to i$.

- (b) Folgt aus Satz 2.6.2.
- (c) Folgt nun aus dem Beweis von Teil (a).

Satz 2.6.9 zeigt, dass aus $f_{ii}=1$ (das heißt i ist rekurrent) und $i \to j$ bereits $f_{ji}=1$ (und damit insbesondere $j \to i$) folgt. Die Hauptideen des Beweises sind gewesen:

(1) Mit Hilfe der der Markov-Eigenschaft zeigen wir

$$p_{ij}^{(n)} \cdot \mathbb{P}_j(\tau_i = \infty) = \mathbb{P}_i(X_1 \neq i, \dots, X_{n-1} \neq i, X_n = j, \varrho_i = \infty).$$

(2) Wir überlegen uns

$$\{X_1 \neq i, \dots, X_{n-1} \neq i, X_n = j, \varrho_i = \infty\} \subset \{\tau_i = \infty\}.$$

(3) Folglich gilt $\mathbb{P}_j(\tau_i = \infty) = 0$.

Korollar 2.6.10. Ein rekurrenter Zustand i ist auch wesentlich; das heißt, für alle $j \in E$ mit $i \to j$ gilt auch $j \to i$. Insbesondere ist ein unwesentlicher Zustand i auch transient.

Beweis. Folgt aus Satz 2.6.9.

Bemerkung 2.6.11. Bei der Zerlegung

$$E = \mathscr{U} \cup \left(\bigcup_{\alpha \in I} \mathscr{C}_{\alpha}\right)$$

aus Satz 2.1.26 besteht \mathcal{U} also aus allen transienten Zuständen, und die abgeschlossenen Klassen (\mathcal{C}_{α}) sind gegeben durch die (\mathcal{G}_{i}) mit rekurrenten Zuständen i.

Korollar 2.6.12. Es sei $i, j \in E$ zwei Zustände, so dass i rekurrent ist. Dann gilt

$$f_{ij} = \begin{cases} 1, & falls \ j \in \mathcal{G}_i, \\ 0, & sonst. \end{cases}$$

Beweis. Falls $j \in \mathcal{G}_i$, so folgt $f_{ij} = 1$ aus Satz 2.6.9. Nun gelte $j \in \mathcal{G}_i^c$. Nach Korollar 2.6.10 und Lemma 2.1.24 ist \mathcal{G}_i abgeschlossen. Mit Bemerkung 2.3.4 und Satz 2.1.20 folgt

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)} \le \sum_{n=1}^{\infty} p_{ij}^{(n)} = 0.$$

Bemerkung 2.6.13. Es kann passieren, dass es nur transiente Zustände gibt; beispielsweise für $E = \mathbb{N}_0$ und $p_{i,i+1} = 1$ für alle $i \in \mathbb{N}_0$. Wir werden nun sehen, dass dies mit einem endlichen Zustandsraum nicht möglich ist.

Satz 2.6.14. Der Zustandsraum E sei endlich. Dann gelten folgende Aussagen:

- (a) Die Markov-Kette besitzt mindestens einen rekurrenten Zustand.
- (b) Jeder rekurrente Zustand ist bereits positiv rekurrent. Beweis.
 - (a) Angenommen, alle Zustände sind transient. Nach Satz 2.3.30 gilt $g_{ij} < \infty$ für alle $i, j \in E$. Nun sei $i \in E$ beliebig. Da E endlich ist, folgt der Widerspruch

$$\infty = \mathbb{E}_i \left[\sum_{n=1}^{\infty} \mathbb{1}_{\{X_n \in E\}} \right] = \sum_{j \in E} \mathbb{E}_i \left[\sum_{n=1}^{\infty} \mathbb{1}_{\{X_n = j\}} \right] = \sum_{j \in E} \mathbb{E}_i [N_j] = \sum_{j \in E} g_{ij} < \infty.$$

(b) Es sei $i \in E$ ein rekurrenter Zustand. Es gilt $i \leftrightarrow j$ für alle $j \in \mathcal{G}_i$. Also existiert nach Satz 2.1.4 eine Funktion $\phi : \mathcal{G}_i \to \mathbb{N}$, so dass

$$p_{ji}^{(\phi(j))} > 0$$
 für alle $j \in \mathscr{G}_i$.

Wir setzen

$$m := \max_{j \in \mathscr{G}_i} \phi(j)$$
 und $\beta := \min_{j \in \mathscr{G}_i} p_{ji}^{(\phi(j))}$.

Da E endlich ist, gilt $m < \infty$ und $\beta > 0$. Wir definieren die Folge von endlichen Stoppzeiten $(\nu_n)_{n \in \mathbb{N}}$ rekursiv durch $\nu_1 := \phi(i)$ und

$$\nu_n := \nu_{n-1} + \phi(X_{\nu_{n-1}}), \quad n \ge 2.$$

Dann ist die Folge $(\nu_n)_{n\in\mathbb{N}}$ wohldefiniert; das heißt, es gilt $\mathbb{P}_i(X_{\nu_{n-1}}\in\mathscr{G}_i)=1$ für alle $n\geq 2$. Beweis per Induktion nach n:

• Induktionsanfang n = 2: Nach Satz 2.1.20 gilt

$$\mathbb{P}_i(X_{\nu_1} \in \mathscr{G}_i) = \mathbb{P}_i(X_{\phi(i)} \in \mathscr{G}_i) = \sum_{j \in \mathscr{G}_i} \mathbb{P}_i(X_{\phi(i)} = j) = \sum_{j \in \mathscr{G}_i} p_{ij}^{(\phi(i))} = 1.$$

• Induktionsschritt $n \to n+1$: Mit der starken Markov-Eigenschaft (Satz 1.4.1), Satz 2.1.20 und der Induktionsvoraussetzung gilt

$$\begin{split} \mathbb{P}_{i}(X_{\nu_{n}} \in \mathscr{G}_{i}) &= \sum_{j \in \mathscr{G}_{i}} \mathbb{P}_{i}(X_{\nu_{n-1}} = j, X_{\nu_{n-1} + \phi(j)} \in \mathscr{G}_{i}) \\ &= \sum_{j \in \mathscr{G}_{i}} \sum_{k \in \mathscr{G}_{i}} \mathbb{P}_{i}(X_{\nu_{n-1}} = j, X_{\nu_{n-1} + \phi(j)} = k) \\ &= \sum_{\substack{j \in \mathscr{G}_{i} \\ \mathbb{P}_{i}(X_{\nu_{n-1}} = j) > 0}} \sum_{k \in \mathscr{G}_{i}} \mathbb{P}_{i}(X_{\nu_{n-1} + \phi(j)} = k \mid X_{\nu_{n-1}} = j) \cdot \mathbb{P}_{i}(X_{\nu_{n-1}} = j) \\ &= \sum_{\substack{j \in \mathscr{G}_{i} \\ \mathbb{P}_{i}(X_{\nu_{n-1}} = j) > 0}} \left(\sum_{k \in \mathscr{G}_{i}} p_{jk}^{(\phi(j))} \right) \mathbb{P}_{i}(X_{\nu_{n-1}} = j) \\ &= \mathbb{P}_{i}(X_{\nu_{n-1}} \in \mathscr{G}_{i}) = 1. \end{split}$$

Nun sei $n \in \mathbb{N}$ beliebig. Dann gilt $\nu_n \leq nm$. Für jedes $j \in \mathscr{G}_i \setminus \{i\}$ setzen wir

$$A_j := \{\nu_{n-1} < \infty\} \cap \{X_{\nu_{n-1}} = j\} = \{X_{\nu_{n-1}} = j\}.$$

Falls $\mathbb{P}_i(A_j) > 0$, dann ist $(X_{\nu_{n-1}+m})_{m \in \mathbb{N}_0}$ nach der starken Markov-Eigenschaft (Satz 1.4.1) eine (δ_j, P) -MK, die unabhängig von der σ -Algebra $\mathscr{F}^X_{\nu_{n-1}}$ ist. Es folgt mit Satz 2.1.20

$$\mathbb{P}_{i}(\tau_{i} > nm) \leq \mathbb{P}_{i}(\tau_{i} > \nu_{n}) \leq \mathbb{P}_{i}(X_{\nu_{1}} \neq i, \dots, X_{\nu_{n-1}} \neq i, X_{\nu_{n}} \neq i) \\
= \sum_{j \in \mathscr{G}_{i} \setminus \{i\}} \mathbb{P}_{i}(X_{\nu_{1}} \neq i, \dots, X_{\nu_{n-2}} \neq i, X_{\nu_{n-1}} = j, X_{\nu_{n-1} + \phi(j)} \neq i) \\
= \sum_{j \in \mathscr{G}_{i} \setminus \{i\}} \mathbb{P}_{i}(X_{\nu_{1}} \neq i, \dots, X_{\nu_{n-2}} \neq i, X_{\nu_{n-1}} = j, X_{\nu_{n-1} + \phi(j)} \neq i \mid X_{\nu_{n-1}} = j) \\
\cdot \mathbb{P}_{i}(X_{\nu_{n-1}} = j) \\
= \sum_{j \in \mathscr{G}_{i} \setminus \{i\}} \mathbb{P}_{i}(X_{\nu_{1}} \neq i, \dots, X_{\nu_{n-2}} \neq i, X_{\nu_{n-1}} = j \mid X_{\nu_{n-1}} = j) \\
\cdot \mathbb{P}_{j}(X_{\phi(j)} \neq i) \cdot \mathbb{P}_{i}(X_{\nu_{n-1}} = j) \\
= \sum_{j \in \mathscr{G}_{i} \setminus \{i\}} \mathbb{P}_{i}(X_{\nu_{1}} \neq i, \dots, X_{\nu_{n-2}} \neq i, X_{\nu_{n-1}} = j) \underbrace{(1 - p_{ji}^{(\phi(j))})}_{\leq 1 - \beta} \\
\leq (1 - \beta) \mathbb{P}_{i}(X_{\nu_{1}} \neq i, \dots, X_{\nu_{n-1}} \neq i) \leq \dots \leq (1 - \beta)^{n}.$$

Da $1-\beta \in [0,1),$ folgt nun mit Lemma 2.3.25 und der geometrischen Reihe

$$\frac{\mu_{ii}}{m} = \frac{1}{m} \mathbb{E}_i[\tau_i] = \frac{1}{m} \sum_{n=0}^{\infty} \mathbb{P}_i(\tau_i > n) = \frac{1}{m} \sum_{n=0}^{\infty} \sum_{k=0}^{m-1} \underbrace{\mathbb{P}_i(\tau_i > mn + k)}_{\leq \mathbb{P}_i(\tau_i > nm)}$$
$$\leq \sum_{n=0}^{\infty} \mathbb{P}_i(\tau_i > nm) \leq \sum_{n=0}^{\infty} (1 - \beta)^n < \infty,$$

und daher $\mu_{ii} < \infty$.

Fassen wir die wesentlichen Ideen für den Beweis von Satz 2.6.14(b) kurz zusammen:

- (1) Für einen rekurrenten Zustand i führen wir ein:
 - m ist die maximale Anzahl an Schritten, um mit positiver Wahrscheinlichkeit von einem beliebigen Zustand aus \mathcal{G}_i wieder in i zu landen.

 \bullet β ist die minimale zugehörige Übergangswahrscheinlichkeit.

Da E endlich ist, gilt $m < \infty$ und $\beta > 0$.

(2) Wegen der geometrischen Reihe gilt

$$\frac{\mathbb{E}[\tau_i]}{m} \le \sum_{n=0}^{\infty} \mathbb{P}_i(\tau_i > nm) \le \sum_{n=0}^{\infty} (1-\beta)^n < \infty.$$

Lemma 2.6.15. Es sei $i \in E$ ein rekurrenter Zustand. Weiterhin sei $j \in E$ ein Zustand mit $j \neq i$ und $i \rightarrow j$. Wir setzen

$$\nu := \sum_{n=1}^{\infty} \mathbb{1}_{\{X_n = i\} \cap \{\tau_j > n\}} = \sum_{n=1}^{\tau_j - 1} \mathbb{1}_{\{X_n = i\}} \quad und \quad p := \mathbb{P}_i(\tau_j < \tau_i).$$

Dann gelten folgende Aussagen:

- (a) Es gilt p > 0.
- (b) Es gilt $\nu \sim \text{Geo}(p)$ unter \mathbb{P}_i .

Bemerkung: Die Zufallsvariable ν zählt die Anzahl der Besuche des Zustandes i, bevor der Zustand j das erste Mal erreicht wird.

Beweis. Wir setzen

$$F := \bigcup_{n \in \mathbb{N}} \{(n, i_1, \dots, i_n) \in \mathbb{N} \times E^n : i_k \neq j \text{ für alle } k = 1, \dots, n\},$$

$$G := \bigcup_{n \in \mathbb{N}} \{(n, i_1, \dots, i_n) \in \mathbb{N} \times E^n : i_k = j \text{ für ein } k = 1, \dots, n\}.$$

Nach Korollar 2.5.5 gilt für jedes $k \in \mathbb{N}_0$

$$\mathbb{P}_{i}(\nu = k) = \mathbb{P}_{i}(\sigma_{i}^{k} < \tau_{j} < \sigma_{i}^{k+1})
= \mathbb{P}_{i}(Z_{0} \in F, \dots, Z_{k-1} \in F, Z_{k} \in G)
= \mathbb{P}_{i}(Z_{0} \in F) \cdot \dots \cdot \mathbb{P}(Z_{k-1} \in F) \cdot \mathbb{P}_{i}(Z_{k} \in G)
= \mathbb{P}_{i}(Z_{0} \in F)^{k} \cdot \mathbb{P}_{i}(Z_{0} \in G)
= \mathbb{P}_{i}(\tau_{i} < \tau_{i})^{k} \cdot \mathbb{P}_{i}(\tau_{i} < \tau_{i}) = (1 - p)^{k} p.$$

Nach Satz 2.6.9 gilt $\mathbb{P}_i(\tau_j < \infty) = f_{ij} = 1$, und damit

$$\nu = \sum_{n=1}^{\tau_j - 1} \mathbb{1}_{\{X_n = i\}} < \infty \quad \mathbb{P}_i\text{-fast sicher.}$$

Nun folgt p > 0, und damit auch $\nu \sim \text{Geo}(p)$ unter \mathbb{P}_i .

Lemma 2.6.16 (Starke Markov-Eigenschaft für rekurrente Zustände). Es seien $i, j \in E$ zwei Zustände mit $i \leftrightarrow j$, so dass i rekurrent ist. Für jedes $n \in \mathbb{N}$ ist der Prozess $(X_{\sigma_i^n+m})_{m\in\mathbb{N}}$ unter \mathbb{P}_j eine (δ_i, P) -MK, die von der σ -Algebra $\mathscr{F}_{\sigma_i^n}^X$ unabhängig ist.

Beweis. Nach Satz 2.6.9 gilt $f_{ji}=1.$ Mit Lemma 2.3.13(a) folgt

$$\mathbb{P}_j(\sigma_i^n < \infty) = f_{ji} f_{ii}^{n-1} = 1,$$

und daher $\mathbb{P}_j = \mathbb{P}_j^{\{\sigma_i^n < \infty\}}$ für alle $n \in \mathbb{N}$. Außerdem gilt

$$\{\sigma_i^n < \infty\} = \{\sigma_i^n < \infty\} \cap \{X_{\sigma_i^n} = i\}$$
 für alle $n \in \mathbb{N}$.

Also folgt die Aussage aus Satz 1.4.1.

Satz 2.6.17. Positive Rekurrenz ist eine Solidaritätseigenschaft.

Beweis. Es seien $i, j \in E$ mit $i \leftrightarrow j$, so dass i positiv rekurrent ist; das heißt $\mu_{ii} < \infty$. Wir setzen

$$\widehat{\tau}_i := \inf\{n \in \mathbb{N} : X_{\tau_j + n} = i\},\$$

$$\widehat{\tau}_i := \inf\{n \in \mathbb{N} : X_{\tau_i + n} = j\}.$$

Wegen $\tau_i = \sigma_i^1$ gilt mit der starken Markov-Eigenschaft (Lemma 2.6.16)

$$\mathbb{E}_{i}[\widehat{\tau}_{i}] = \mathbb{E}_{i}[\mathbb{E}_{i}[\widehat{\tau}_{i} \mid X_{\tau_{i}}]] = \mathbb{E}_{i}[\tau_{i}] = \mu_{ii}.$$

Wegen $\tau_i \leq \tau_i + \widehat{\tau}_i$ folgt

$$\mu_{jj} = \mathbb{E}_j[\tau_j] \le \mathbb{E}_j[\tau_i] + \mathbb{E}_j[\widehat{\tau}_j] = \mu_{ji} + \mu_{ij}.$$

Also reicht es, zu zeigen, dass $\mu_{ij} < \infty$ und $\mu_{ji} < \infty$. Nach Lemma 2.6.15 gilt p > 0, wobei $p := \mathbb{P}_i(\tau_i < \tau_i)$, und es gilt $\nu \sim \text{Geo}(p)$ unter \mathbb{P}_i , und folglich

$$\mathbb{E}_{i}[\nu+1] = \frac{1-p}{p} + 1 = \frac{1}{p}.$$

Weiterhin gilt

$$\tau_j \le \sigma_i^{\nu+1} = \sum_{k=1}^{\nu+1} \tau_i^k.$$

Nun sei $k \in \mathbb{N}$ beliebig. Dann gilt

$$\{\nu \geq k-1\} = \{\sigma_i^{k-1} < \tau_j\} \in \mathscr{F}^X_{\sigma_i^{k-1}}.$$

Weiterhin gilt

$$\tau_i^k = \sigma_i^k - \sigma_i^{k-1} = \inf\{n \in \mathbb{N} : X_{\sigma_i^{k-1} + n} = i\}.$$

Nach der starken Markov-Eigenschaft (Lemma 2.6.16) sind $\{\nu \geq k-1\}$ und τ_i^k unter \mathbb{P}_i unabhängig. Also folgt mit Korollar 2.5.7 und Lemma 2.3.25

$$\mu_{ij} = \mathbb{E}_{i}[\tau_{j}] \leq \mathbb{E}_{i}[\sigma_{i}^{\nu+1}] = \mathbb{E}_{i}\left[\sum_{k=1}^{\nu+1} \tau_{i}^{k}\right] = \mathbb{E}_{i}\left[\sum_{k=1}^{\infty} \tau_{i}^{k} \mathbb{1}_{\{\nu+1 \geq k\}}\right]$$
$$= \sum_{k=1}^{\infty} \mathbb{E}_{i}[\tau_{i}^{k}] \mathbb{P}_{i}(\nu \geq k-1)$$
$$= \mathbb{E}_{i}[\tau_{i}] \sum_{k=1}^{\infty} \mathbb{P}_{i}(\nu+1 \geq k) = \mathbb{E}_{i}[\tau_{i}] \mathbb{E}_{i}[\nu+1] = \frac{\mu_{ii}}{p} < \infty.$$

Für jedes $k \in \mathbb{N}$ gilt wegen der Definition von ν

$$\sigma_i^{\nu+1} - \tau_j = \inf\{m \in \mathbb{N} : X_{\tau_j+m} = i\},$$

$$\tau_i = \inf\{m \in \mathbb{N} : X_m = i\}.$$

Wegen $\tau_j = \sigma_j^1$ folgt mit der starken Markov-Eigenschaft (Lemma 2.6.16)

$$\mathbb{P}_i \circ (\sigma_i^{\nu+1} - \tau_i) = \mathbb{P}_i \circ \tau_i,$$

und daher mit der Rechnung von oben

$$\mu_{ji} = \mathbb{E}_j[\tau_i] = \mathbb{E}_i[\sigma_i^{\nu+1} - \tau_j] = \mathbb{E}_i[\sigma_i^{\nu+1}] - \mu_{ij} < \infty.$$

Bemerkung 2.6.18. Falls E endlich ist, dann folgt Satz 2.6.17 auch direkt aus den Sätzen 2.6.2 und 2.6.14(b).

Korollar 2.6.19. Null-Rekurrenz ist eine Solidaritätseigenschaft.

Beweis. Folgt aus Satz 2.6.17.

Definition 2.6.20. Die Markov-Kette heißt <u>positiv rekurrent</u> bzw. <u>null-rekurrent</u>, wenn sie irreduzibel ist, und ein (und damit jeder) Zustand positiv rekurrent bzw. nullrekurrent ist.

Korollar 2.6.21. Jede irreduzible Markov-Kette mit endlichem Zustandsraum ist positiv rekurrent.

Beweis. Folgt aus Satz 2.6.14. \Box

Kapitel 3

Ergodensatz für positiv rekurrente Markov-Ketten

Wir erinnern an das Standardmodell einer Markov-Kette

$$(\Omega, \mathscr{F}, X, (\mathbb{P}_{\pi})_{\pi \in \Pi})$$

zu einer Übergangsmatrix P auf dem Zustandsraum E.

3.1 Stationäre Verteilungen

Definition 3.1.1. Ein stochastischer Vektor $\pi: E \to [0,1]$ heißt eine <u>stationäre</u> Verteilung, falls

$$\pi = \pi P$$
,

das heißt

$$\pi_j = \sum_{i \in E} \pi_i p_{ij} \quad \text{für alle } j \in E.$$

Lemma 3.1.2. Es sei π eine stationäre Verteilung.

- (a) Es gilt $\pi = \pi P^n$ für alle $n \in \mathbb{N}$.
- (b) Es gilt $\mathbb{P}_{\pi} \circ X_n = \pi$ für alle $n \in \mathbb{N}$.

Beweis.

- (a) ✓
- (b) Folgt nun aus Satz 1.2.15.

Definition 3.1.3. Ein nichtnegativer Vektor $\pi: E \to \mathbb{R}_+$ mit $\pi \neq 0$ heißt ein invariantes Maß, falls

$$\pi = \pi P$$
.

Definition 3.1.4. Für alle $i, j \in E$ definieren wir

$$\nu_{ij} = \sum_{n=0}^{\tau_i - 1} \mathbb{1}_{\{X_n = j\}} \in \overline{\mathbb{N}}_0.$$

Bemerkung 3.1.5.

- (a) Die Zufallsvariable ν_{ij} zählt die Anzahl der Besuche des Zustandes j hier ab dem Zeitpunkt 0 bevor der Zustand i das erste Mal erreicht wird.
- (b) Für jedes $i \in E$ gilt $\nu_{ii} = 1$ \mathbb{P}_i -fast sicher.
- (c) Ist i rekurrent, so gilt $\tau_i < \infty$ \mathbb{P}_i -fast sicher, und daher $\nu_{ij} < \infty$ \mathbb{P}_i -fast sicher.
- (d) In dem Fall ist ν_{ij} die Aufenthaltsdauer im Zustand j relativ zur Zykluslänge τ_i .

Lemma 3.1.6. Es sei $i \in E$ ein rekurrenter Zustand.

- (a) Für jedes $j \in \mathscr{G}_i^c$ gilt $\nu_{ij} = 0$ \mathbb{P}_i -fast sicher.
- (b) Für jedes $j \in E$ gilt $\mathbb{E}_i[\nu_{ij}] < \infty$.

Beweis.

(a) Wegen Satz 2.1.20 gilt

$$\mathbb{P}_{i}(\nu_{ij} > 0) \le \mathbb{P}_{i}\left(\bigcup_{n \in \mathbb{N}_{0}} \{X_{n} = j\}\right) \le \sum_{n=0}^{\infty} \mathbb{P}_{i}(X_{n} = j) = \sum_{n=0}^{\infty} p_{ij}^{(n)} = 0.$$

(b) Es sei $j \in E$ beliebig. Wegen Teil (a) dürfen wir annehmen, dass $j \in \mathcal{G}_i$. Wegen Bemerkung 3.1.5(b) dürfen wir außderdem annehmen, dass $j \neq i$. Da $\tau_j = \sigma_j^1$, gilt mit der starken Markov-Eigenschaft für rekurrente Zustände (Lemma 2.6.16) für jedes $n \in \mathbb{N}$

$$\mathbb{P}_i(\nu_{ij} \ge n) = \mathbb{P}_i(\sigma_j^n < \tau_i) = \mathbb{P}_i(\tau_j < \tau_i, \sigma_j^n < \tau_i) = \mathbb{P}_i(\tau_j < \tau_i)\mathbb{P}_j(\sigma_j^{n-1} < \tau_i)$$
$$= \dots = \mathbb{P}_i(\tau_j < \tau_i)\mathbb{P}_j(\tau_j < \tau_i)^{n-1}.$$

Nach Lemma 2.6.15 gilt $\mathbb{P}_i(\tau_j < \tau_i) > 0$. Da $\nu_{ij} < \infty \mathbb{P}_i$ -fast sicher, gilt

$$\lim_{n \to \infty} \mathbb{P}_i(\nu_{ij} \ge n) = 0,$$

und daher $\mathbb{P}_j(\tau_j < \tau_i) < 1$. Nun folgt mit Lemma 2.3.25 und der geometrischen Reihe

$$\mathbb{E}_{i}[\nu_{ij}] = \sum_{n=1}^{\infty} \mathbb{P}_{i}(\nu_{ij} \geq n) = \sum_{n=1}^{\infty} \mathbb{P}_{i}(\tau_{j} < \tau_{i}) \mathbb{P}_{j}(\tau_{j} < \tau_{i})^{n-1}$$
$$= \frac{\mathbb{P}_{i}(\tau_{j} < \tau_{i})}{1 - \mathbb{P}_{j}(\tau_{j} < \tau_{i})} = \frac{\mathbb{P}_{i}(\tau_{j} < \tau_{i})}{\mathbb{P}_{j}(\tau_{i} < \tau_{j})} < \infty.$$

Bemerkung 3.1.7. Für $j \in \mathscr{G}_i$ mit $j \neq i$ gilt nach Lemma 2.6.15 $\nu_{ij} \sim \text{Geo}(p)$ unter \mathbb{P}_j , wobei $p := \mathbb{P}_j(\tau_i < \tau_j)$. Hier sind wir an der Verteilung von ν_{ij} unter \mathbb{P}_i interessiert.

Definition 3.1.8. Es sei $i \in E$ ein rekurrenter Zustand.

(a) Wir definieren den Vektor $\pi_i = (\pi_{ij})_{j \in E}$ durch

$$\pi_{ij} := \mathbb{E}_i[\nu_{ij}] = \sum_{n=0}^{\infty} \mathbb{P}_i(X_n = j, \tau_i > n), \quad j \in E.$$

(b) Ist i positiv rekurrent, so definieren wir den Vektor $\pi_i^* = (\pi_{ij}^*)_{j \in E}$ durch

$$\pi_{ij}^* := \frac{\pi_{ij}}{\mu_{ii}}, \quad j \in E.$$

Bemerkung 3.1.9. Die Größe π_{ij} ist die mittlere Aufenthaltsdauer im Zustand j relativ zur Zykluslänge τ_i .

Satz 3.1.10. Es sei $i \in E$ rekurrent.

- (a) Es gilt $\pi_{ii} = 1$, und $\pi_{ij} = 0$ für alle $j \in \mathscr{G}_i^c$.
- (b) Der Vektor π_i ist ein invariantes $Ma\beta$.
- (c) Ist i sogar positiv rekurrent, dann gilt $\pi_{ii}^* = \frac{1}{\mu_{ii}}$, und $\pi_{ij}^* = 0$ für alle $j \in \mathscr{G}_i^c$.
- (d) Ist i sogar positiv rekurrent, dann ist π_i^* eine stationäre Verteilung.

Beweis.

- (a) Folgt aus Bemerkung 3.1.5(b) und Lemma 3.1.6(a).
- (b) Es sei $j \in E$ mit $j \neq i$ beliebig. Wir beachten

$$\{\tau_i > n\} = \{X_1 \neq i, \dots, X_n \neq i\}.$$

Mit der Markov-Eigenschaft (Satz 1.2.16) gilt

$$\pi_{ij} = \mathbb{E}_{i} \left[\sum_{n=0}^{\tau_{i}-1} \mathbb{1}_{\{X_{n}=j\}} \right] = \mathbb{E}_{i} \left[\sum_{n=1}^{\tau_{i}} \mathbb{1}_{\{X_{n}=j\}} \right] = \mathbb{E}_{i} \left[\sum_{n=0}^{\tau_{i}-1} \mathbb{1}_{\{X_{n+1}=j\}} \right]$$

$$= \sum_{n=0}^{\infty} \mathbb{P}_{i}(X_{n+1} = j, \tau_{i} > n)$$

$$= \sum_{n=0}^{\infty} \sum_{k \in E} \mathbb{P}_{i}(X_{n} = k, X_{n+1} = j, \tau_{i} > n)$$

$$= \sum_{n=0}^{\infty} \sum_{\substack{k \in E \\ \mathbb{P}_{i}(X_{n}=k) > 0}} \mathbb{P}_{i}(X_{n} = k, X_{n+1} = j, \tau_{i} > n \mid X_{n} = k) \cdot \mathbb{P}_{i}(X_{n} = k)$$

$$= \sum_{n=0}^{\infty} \sum_{\substack{k \in E \\ \mathbb{P}_{i}(X_{n}=k) > 0}} \mathbb{P}_{i}(X_{n} = k, \tau_{i} > n \mid X_{n} = k) \cdot p_{kj} \cdot \mathbb{P}_{i}(X_{n} = k)$$

$$= \sum_{n=0}^{\infty} \sum_{\substack{k \in E \\ \mathbb{P}_{i}(X_{n}=k) > 0}} \mathbb{P}_{i}(X_{n} = k, \tau_{i} > n) \cdot p_{kj} = \sum_{n=0}^{\infty} \pi_{ik} p_{kj} = (\pi_{i} P)_{j}.$$

Eine ähnliche Rechnung zeigt außerdem

$$\pi_{ii} = 1 = \mathbb{P}_i(X_{\tau_i} = i) = \sum_{n=0}^{\infty} \mathbb{P}_i(X_{n+1} = i, \tau_i = n+1) = \sum_{n=0}^{\infty} \mathbb{P}_i(X_{n+1} = i, \tau_i > n)$$
$$= \dots = (\pi_i P)_i.$$

Insgesamt folgt

$$\pi_i = \pi_i P$$
.

- (c) Folgt aus Teil (a).
- (d) Wegen Lemma 2.3.25 gilt

$$\sum_{i \in E} \pi_{ij} = \sum_{i \in E} \sum_{n=0}^{\infty} \mathbb{P}_i(X_n = j, \tau_i > n) = \sum_{n=0}^{\infty} \mathbb{P}_i(\tau_i > n) = \mathbb{E}_i[\tau_i] = \mu_{ii}.$$

Also ist π_i^* ein stochastischer Vektor, und mit Teil (b) folgt, dass π_i^* eine stationäre Verteilung ist.

Satz 3.1.11. Falls die Markov-Kette positiv rekurrent ist und genau eine stationäre Verteilung π^* besitzt, so ist diese gegeben durch

$$\pi_i^* = \frac{1}{\mu_{ii}}, \quad i \in E.$$

Beweis. Es sei $i \in E$ beliebig. Nach Satz 3.1.10 ist π_i^* eine stationäre Verteilung, und es gilt

$$\pi_{ii}^* = \frac{1}{\mu_{ii}}.$$

Wegen der Eindeutigkeit der stationären Verteilung folgt für alle $i \in E$

$$\pi_i^* = \pi_{ii}^* = \frac{1}{\mu_{ii}}.$$

3.2 Der Ergodensatz

Definition 3.2.1. Für zwei Maße ν und π auf (E, \mathcal{E}) definieren wir den Abstand

$$d(\nu,\pi) := \sup_{A \subset E} |\nu(A) - \pi(A)|.$$

Satz 3.2.2 (Ergodensatz). Die Markov-Kette sei aperiodisch und positiv rekurrent. Dann gelten folgende Aussagen:

(a) Es existiert eine eindeutig bestimmte stationäre Verteilung π , gegeben durch

$$\pi_i = \frac{1}{\mu_{ii}}, \quad i \in E.$$

(b) Für jeden stochastischen Vektor λ als Anfangsverteilung gilt

$$\lim_{n\to\infty} d(\mathbb{P}_{\lambda} \circ X_n, \pi) = 0.$$

(c) Für jeden Zustand $i \in E$ gilt

$$\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j = \frac{1}{\mu_{jj}}, \quad j \in E.$$

Beweis.

(a) Angenommen, wir haben beweisen, dass eine stationäre Verteilung wie in Teil (b) existiert. Es sei λ eine weitere stationäre Verteilung. Dann gilt nach Lemma 3.1.2(b)

$$d(\lambda, \pi) = \lim_{n \to \infty} d(\mathbb{P}_{\lambda} \circ X_n, \pi) = 0.$$

Also gilt $\lambda = \pi$. Mit Satz 3.1.11 folgt nun

$$\pi_i = \frac{1}{\mu_{ii}}, \quad i \in E.$$

- (b) Siehe [Als16, Satz 4.11].
- (c) Nach Teil (b) gilt

$$|p_{ij}^{(n)} - \pi_j| = |\mathbb{P}_i(X_n = j) - \pi_j| \le d(\mathbb{P}_i \circ X_n, \pi) \to 0.$$

Bemerkung 3.2.3. Der Ergodensatz (Satz 3.2.2) gilt insbesondere für jede aperiodische Markov-Kette mit endlichem Zustandsraum. Dies folgt aus Korollar 2.6.21.

Beispiel 3.2.4. Wir betrachten den Zustandsraum $E = \{1, 2, 3\}$ und die Übergangsmatrix

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ 0 & \frac{1}{3} & \frac{2}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}.$$

Die Markov-Kette ist nach Korollar 2.1.11 irreduzibel, da

$$P^{2} = \begin{pmatrix} \frac{1}{4} & \frac{5}{12} & \frac{1}{3} \\ \frac{2}{9} & \frac{1}{3} & \frac{4}{9} \\ \frac{5}{18} & \frac{7}{18} & \frac{1}{3} \end{pmatrix}.$$

Die Markov-Kette ist aperiodisch, da $p_{ii} > 0$, und somit

$$d_i = ggT \{ n \in \mathbb{N} : p_{ii}^{(n)} > 0 \} = 1$$

für alle i = 1, 2, 3. Der stochastische Vektor

$$\pi = \left(\frac{1}{4}, \frac{3}{8}, \frac{3}{8}\right).$$

ist eine stationäre Verteilung, da

$$\pi = \pi P$$
.

Nach dem Ergodensatz (Satz 3.2.2) gilt für jeden stochastischen Vektor λ als Anfangsverteilung

$$\mathbb{P}_{\lambda} \circ X_n \approx \pi \quad \text{für große } n \in \mathbb{N}.$$

Literaturverzeichnis

- [Als16] Alsmeyer, G.: Diskrete Markov-Ketten und Markov-Sprungprozesse. 2016. Vorlesungsskript aus dem WS 2015/16, Universität Münster
- [Bre92] Breiman, L.: *Probability*. Philadelphia : Society for Industrial and Applied Mathematics, 1992
- [Bré99] Brémaud, P.: Markov chains. Gibs fields, Monte-Carlo simulation and queues. New York: Springer-Verlag, 1999
- [Dep16] DEPPERSCHMIDT, A.: *Markovketten.* 2016. Vorlesungsskript aus dem SS 2016, Universität Freiburg
- [Kle13] Klenke, A.: Wahrscheinlichkeitstheorie. Berlin: Springer-Verlag, 2013
- [Nor97] NORRIS, J. R.: Markov chains. Cambridge: Cambridge University Press, 1997
- [Res05] Resnick, S. I.: Adventures in stochastic processes. Boston: Birkhäuser, 2005