
Artificial Intelligence

Albert-Ludwigs-Universität Freiburg

Thorsten Schmidt
Abteilung für Mathematische Stochastik

www.stochastik.uni-freiburg.de
thorsten.schmidt@stochastik.uni-freiburg.de
SS 2017

Our goal today

Some preliminaries
Structured Probabilistic Models
Stochastic Gradient Descent

Deep Learning
Gradient-based learning
Rectified linear units

SS 2017 Thorsten Schmidt – Artificial Intelligence 119 / 139

Literature (incomplete, but growing):

I. Goodfellow, Y. Bengio und A. Courville (2016). Deep Learning.
http://www.deeplearningbook.org. MIT Press

D. Barber (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press

R. S. Sutton und A. G. Barto (1998). Reinforcement Learning : An Introduction. MIT Press

G. James u. a. (2014). An Introduction to Statistical Learning: With Applications in R.
Springer Publishing Company, Incorporated. isbn: 1461471370, 9781461471370

T. Hastie, R. Tibshirani und J. Friedman (2009). The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc. url:
https://statweb.stanford.edu/~tibs/ElemStatLearn/

K. P. Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press

CRAN Task View: Machine Learning, available at
https://cran.r-project.org/web/views/MachineLearning.html

UCI ML Repository: http://archive.ics.uci.edu/ml/ (371 datasets)

SS 2017 Thorsten Schmidt – Artificial Intelligence 120 / 139

http://www.deeplearningbook.org
https://statweb.stanford.edu/~tibs/ElemStatLearn/
https://cran.r-project.org/web/views/MachineLearning.html
http://archive.ics.uci.edu/ml/

Structured Probabilistic Models

Machine Learning often involves high-dimensional probability distributions
and numerous interaction between the dimensions need to be specified. One
possibility to achieve this are structured probabilistic models and we discuss
two possibilities.

1 Directed graphical models describe the conditional factorization via
directed graphs. The density is factorized as follows:

p(xxx) = ∏
i

p(xi|x j : j ∈ Ji)

with subsets J1,J2, . . . of the index set of xxx.
The example (left1) describes the density

p(a,b,c,d,e) = p(a)p(b|a)p(c|a,b)p(d|b)p(e|c).

1Taken from Goodfellow e.a.(2016), Figure 3.7.
SS 2017 Thorsten Schmidt – Artificial Intelligence 121 / 139

2 Undirected graphical models describe the unconditional factorization
via undirected graphs. The density is factorized as follows:

p(xxx) = ∏
i

p(x j : j ∈ Ji)

with subsets J1,J2, . . . of the index set of xxx.
The example (left2) describes the density

p(a,b,c,d,e)∝ φ
1(a,b,c)φ 2(b,d)φ 3(c,e).

2Taken from Goodfellow e.a.(2016), Figure 3.8.
SS 2017 Thorsten Schmidt – Artificial Intelligence 122 / 139

Stochastic Gradient Descent

Most of the algorithms we saw had to solve an optimization problem. A
standard algorithm to solve these problems is the gradient descent
algorithm (→ blackboard - proposed by A. Cauchy in 1847).
However, if the training set is too large, this becomes computationally
very expensive: consider a cost functional of the type

J(θ) =
1
m

m

∑
i=1

L(xi,yi,θ)

with some differentiable loss function L.
Gradient descent requires the computation of

∂θ =
1
m

m

∑
i=1

∂θ Lxi,yi,θ),

leading to a computational cost of O(m).
As can be seen above, the gradient is actually an average - as for
estimating an expectation it might be feasible to consider a small
subsample of {1, . . . ,m} leading to approximately the same result: this is
the stochastic gradient descent approach.

SS 2017 Thorsten Schmidt – Artificial Intelligence 123 / 139

Select uniformly a subsample {i1, . . . , in} ⊂ {1, . . . ,m} and compute the
vector

g(θ) :=
1
n

n

∑
k=1

∂θ Lxik ,yik ,θ).

The algorithm computes the n-th approximation of the minimum θ∗ by

θ
n = θ

n−1− εg(θ n−1)

with stepsize (or learning rate) ε.
It is quite surprising that a variant of the gradient descent arises here.
Typically, gradient descent is a slow and quite unreliable procedure (see
Wikipedia for some examples and R code). However, the stochastic
gradient descent is very successfully applied in machine learning - it
often finds a solution close to a minimum quick enough (see Goodfellow
e.a. (2016) Section 5.9 for further comments).

SS 2017 Thorsten Schmidt – Artificial Intelligence 124 / 139

Deep Learning

"Deep"learning contrasts ßhallow"learning: such algorithms are for
example linear regression, SVMs...: they have an input layer and an
output layer. We have experienced the kernel trick: inputs may be
transformed once before application of the algorithm.
In deep learning there are one ore more hidden layers between input
and output. Intuitively, at each layer we take the input, make a
transformation and generate the output for the next layer.
More formally, this corresponds to iteratively applied functions: a deep
network is of the form

f (x) = f n ◦ · · · ◦ f 1(x) = f n(f n−1(· · · f 2(f 1(x)) · · ·)).

f k is called the k-the layer of the network.

SS 2017 Thorsten Schmidt – Artificial Intelligence 125 / 139

A bit of the history

The terminology of deep learning stems from early research on artifical
intelligence and we dive shortly into this exciting subject. Two aspects
were important at those times: to be inspired by the human brain and, on
the other side, to try to understand the brain better through the
construction of similar algorithms. Nowadays, we are more pragmatic
and generalize the earlier ideas in several respects.
A neuron3 takes several inputs, say x1, . . . ,xn and gives

1{∑n
i=1 wixi>θ}

as an output - wi ∈ R are several weights and θ ∈ R is a threshold. This
description of a neuron was given 1943 by W. McCulloch and W. Pitts.
It was the idea of F. Rosenblatt in 1958 to introduce a simple neural net,
called perceptron (after perception) which takes (possibly several)
neurons as inputs and generates a more complex decision mechanism.

3See the wikipedia article on perceptrons.
SS 2017 Thorsten Schmidt – Artificial Intelligence 126 / 139

Feed-forward neural networks

x3

x2

x1

g1(x)

g2(x)

g3(x)

h1(g(x))

h2(g(x))

h3(g(x))

f1(x)

f2(x)

Networks of this type are called either feed-forward neural networks or
multi-layer perceptrons (when the nodes are actually neurons).
x1, . . . ,xn constitute the input layer. They give the input to all connected
neurons in the first layer. There are 3 hidden units in our case and two
hidden layers. The output is, as previously f (x) = h(g(x)).

SS 2017 Thorsten Schmidt – Artificial Intelligence 127 / 139

One problem which can not be achieved by a single layer perceptron is
learning XOR (→ Exercise).

SS 2017 Thorsten Schmidt – Artificial Intelligence 128 / 139

The universal approximation theorem

One important property of feed-forward neural networks is, that even in
the single-layer case they can approximate arbitrary functions very well.
The result is the so-called universal approximation theorem proved in
Kurt Hornik (1991). „Approximation capabilities of multilayer feedforward
networks“. In: Neural networks 4.2, S. 251–257.
We study the mathematical details of this results.

SS 2017 Thorsten Schmidt – Artificial Intelligence 129 / 139

We consider special classes of feed-forward neural networks, which can
be thought of a small generalization of multi-layer perceptrons: in each
step, a neuron transforms the input vector x in an affine form to a>x+b
and sends the output φ(a>x+b). The outputs are weighted and summed
up by each connected neuron.
If there is only one hidden layer and only one output unit, we arrive at the
output

n

∑
i=1

ciφ(a>i x+bi).

Hence, the functions implemented by such a network with n hidden units
is

N (n) = N (n)(φ) =
{

h : Rd → R : h(x) =
n

∑
i=1

ciφ(a>i x+bi)
}

and for an arbitrary large number of units we set N (φ) = ∪nN (n).
We consider functions in the Lp(µ)-space with a finite measure µ. This
are measurable functions f : Rd → R, such that

‖ f‖p :=
(∫
| f (x)|pµ(dx)

)1/p

< ∞.

SS 2017 Thorsten Schmidt – Artificial Intelligence 130 / 139

A subset S of Lp is called dense, if for every f ∈ Lp and ε > 0 there is a
function g ∈ S, such that ‖ f −g‖p < ε.

Theorem (Hornik (1991))

If φ is bounded and not constant, then N (φ) is dense in Lp(µ) for any finite
measure µ on Rd .

This result also holds on the Banach space C(K), K compact, with respect to
the sup-norm. Further results are found in Hornik (1991).

SS 2017 Thorsten Schmidt – Artificial Intelligence 131 / 139

The proof
We will not discuss all the details of the proof, but have a look at certain
components.
First, observe that N is a linear subspace of Lp(µ) (elements are
bounded!)
If N is not dense, then the Hahn-Banach theorem yields the existence
of a (non-zero) continuos linear function Λ such that Λ vanishes on N .
The goal is to construct a contradiction by this.
Currently, Λ seems not to be so tractable, but duality of Hilbert spaces
actually gives a very good description of such functionals. In particular,
in our case we know that

Λ f =
∫

f gµ(dx)

with some g ∈ Lq(µ) and q = p/(p−1).
Now we can write

Λ f =
∫

f dµ
′

with (by Hölders inequality) some finite (but possibly signed) measure µ ′.
As Λ vanishes on N , ∫

φ(a>x+b)µ ′(dx) = 0

for all a ∈ Rd and b ∈ R.
SS 2017 Thorsten Schmidt – Artificial Intelligence 132 / 139

We have ∫
φ(a>x+b)µ ′(dx) = 0 (1)

for all a ∈ Rd and b ∈ R. It is clear that this can not hold for any function φ .
Hornik was able to show, that if φ is bounded and not constant, then (1) will
not hold for any finite signed measure µ ′.

A first step is the transformation∫
φ(a>x+b)µ ′(dx) =

∫
φ(t +b)µa(dt)

with the projection measure µa(B) = µ ′(x ∈ Rd : a>x ∈ B).
One proceeds further and arrives at∫

φ(t)h(αt +β)dt.

Now one can apply Fourier transform and arrives at µa = 0 for all a ∈ Rd .

SS 2017 Thorsten Schmidt – Artificial Intelligence 133 / 139

Rate of convergence

It was moreover shown in Andrew R Barron (1994). „Approximation and
estimation bounds for artificial neural networks“. In: Machine Learning
14.1, S. 115–133 that the mean integrated squared error between
(single-layer) network and target function is bounded by

O(1/n)+O(nd/N) logN.

Here, n is the number of nodes, d is the input dimension and N is the
number of training observations.
However, the result only considers a single layer and the analysis is
therefore limited.

SS 2017 Thorsten Schmidt – Artificial Intelligence 134 / 139

Gradient-based learning

A remarkable difference between the neural networks and previously
seen algorithms is that neural networks have typically non-convex
target functions.
Therefore, gradient methods (possibly stochastic ones) come into play in
contrast to linear-quadratic sovlers we saw before. Let us study some
common cost functions.

Learning with maximum-likelihood

Once we have a probabilistic model, we automatically have a
log-likelihood function which can solve as loss function. The advantage
of this approach is that we do not need to specify an additional criterion.

SS 2017 Thorsten Schmidt – Artificial Intelligence 135 / 139

What kind of distance to we minimize when we look at
maximum-likelihood ?
Although more complicated schemes may be possible, think of i.i.d.
observations from the density (or probability function) p(x,θ). Then, the
log-likelihood is

l(x,θ) =
n

∑
i=1

log p(xi,θ).

Of course, this can be viewed as

l(x,θ) = m
1
m

n

∑
i=1

log p(xi,θ) = mEn
x [log p(X ,θ)]

where En
x is the empirical distribution at the observation x = (x1, . . . ,xn).

Then, we actually minimize the Kullback-Leibler divergence4 given by

DKL(pn
x , pθ) := En

x [log pn
x(X)− log pθ (X)]

where pn is the epmirical distribution at the observation x and p is our
model density (note that the first term does not depend on θ).

4DKL(P,Q) = EP[log dP
dQ (X)].

SS 2017 Thorsten Schmidt – Artificial Intelligence 136 / 139

Conditional maximum-likelihood

For supervised learning we additionally have supervision data, such
that we actually observe (xi,yi), i = 1, . . . ,n. Conditional maximum
likelihood then maximizes (in the i.i.d.-situation)

n

∑
i=1

log p(yi|xi,θ).

Here, p(y|x,θ) is the density (or probability function) of y given x and
parameter θ .
Hence, a possible cost function for supervised learning is given by

J(θ) =−
n

∑
i=1

log p(yi|xi,θ)

SS 2017 Thorsten Schmidt – Artificial Intelligence 137 / 139

Rectified linear units

Inspired from perceptrons, our hidden units will typically produce an
output of the form

φ(a>x+b).

This generalizes the neuron where φ(y) = 1{y>θ} and it is an important
question which φ is most suited ? Typically one would think of sigmoids,
probability transforms or logit link functions. It is quite surprising, that the
most applied activation function is the rectified linear unit

φ(y) = max{0,y}.

However, there are good reasons for this: in this case, φ is piecewise
linear and the second derivative vanishes (a.s.). Hence the gradient
direction is far more useful than in other cases !

SS 2017 Thorsten Schmidt – Artificial Intelligence 138 / 139

Some generalizations are available:

max{0,yi}+αi min{0,yi}, i = 1, . . . ,d.

A leaky ReLU fixes a small α while a parametric ReLU learns α during
the procedure.
A further treatment are maxout units (skipped here - see Goodfellow,
Chapter 6.3.1.)

SS 2017 Thorsten Schmidt – Artificial Intelligence 139 / 139

	Some preliminaries
	Structured Probabilistic Models
	Stochastic Gradient Descent

	Deep Learning
	Gradient-based learning
	Rectified linear units

