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Generalized Linear Models

We already saw that transforming the input variables suitable might be
helpful. This is the idea of a generalized linear model (GLM), see Casella &
Berger (2002).

Definition

A GLM consists of three components:
1 Response variables (random) Y1, . . . ,Yn,
2 a systematic component of the form α +βββ

>xxxi, i = 1, . . . ,n,

3 a link function g satisfying

E[Yi] = g(α +βββxxxi), i = 1, . . . ,n.
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Regularization of multiple linear regression

One problem in practice is parsimony of a linear regression: suppose
you have many covariates and you want to include only those which are
relevant.
It would be possible to iteratively throw out those parameters which are
not significant. This procedure, however is not optimal. Many others
have been proposed.
We concentrate on continuous subset selection methods: it is better to
introduce a penalty for including two many parameters, which we call
regularization. This is moreover a standard procedure for ill-posed
problems. We will consider a famous example: the LASSO introduced in
Robert Tibshirani (1996). „Regression Shrinkage and Selection via the
Lasso“. In: Journal of the Royal Statistical Society. Series B
(Methodological) 58.1, S. 267–288.
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LASSO
The least absolute shrinkage and selection operator minimizes the
following function

min
βββ∈Rp

{1
n
‖ YYY − xxxβββ ‖2

2 +λ ‖ βββ ‖1

}
.

The parameter λ has to be chosen and allows to vary the level of
regularization. Clearly this model prefers to set non-significant
parameters to zero.
Let us illustrate the lasso with an example taken from Chris Franck,
http://www.lisa.stat.vt.edu/?q=node/5969. The data stems from
Stamey et.al.1.
The data describes clinical measures from 97 men about to undergo
radical prostatectomy. It is of interest to estimate the relation between the
clinical measures and the prostate specific antigen (measures are: lcavol
- log (cancer volume), lweight - log(prostate weight volume), age, lbph -
log (benign prostatic hyperplasia), svi - seminal vesicle invasion, lcp -
log(capsular penetration), Gleason (score), ppg45 - percent Gleason
scores 4 or 5, Y =lpsa - log(prostate specific antigen))

1Thomas A Stamey u. a. (1989). „Prostate specific antigen in the diagnosis and treatment of
adenocarcinoma of the prostate. II. Radical prostatectomy treated patients.“ In: The Journal of
urology 141.5, S. 1076–1083.
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We start by examining bi-variate regressions.
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It is obvious that some variables have fewer impact and some others
seem to be more important. The question is how to effectively select
those.
We illustrate how cross-validation may be used in this case. This means
we separate the data into a training set and a validation set. The tuning
parameter λ is chosen based on the training set and validated on the
validation set.
We use a 10-fold cross validation, ie. the set is split into 10 pieces.
Iteratively, each piece is chosen as the validation set while the remaining
9 sets are used to estimate the model.
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This is the so-called lasso path. The shrinkage factor is antiproportional to λ .

Lasso path − coefficients  as a function of shrinkage factor s
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This is the cross-validation result. A rule of thumb is to select that value of s
that is within 1 standard error of the lowest value.
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We see that the optimal choice of λ is far from trivial. Alternative
approaches are at hand, compare the recent results by Johannes
Lederer and coauthors, J. Lederer und C. Müller (2014). „Don’t Fall for
Tuning Parameters: Tuning-Free Variable Selection in High Dimensions
With the TREX“. In: ArXiv e-prints. eprint: 1404.0541 (stat.ME).
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Logistic regression

One important regression approach for classification is logistic regression. In
this case, the response is always binary. One therefore needs to transform
the whole real line to [0,1] and two approaches are common: first, via the
logistic function

σ(x) =
ex

1+ ex ,

(leading to g = σ−1, the so-called logit function) by a cumulative distribution
function (when this is Φ - standard normal - this approach is called probit
model).

The most common estimation method used is maximum-likelihood. We
take a small detour towards this exciting statistical concept going back to Sir
Ronald Fisher.
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Maximum-likelihood

A statistical model is given by a family of probability measures (Pθ )θ∈Θ

on a common measurable space (Ω,F ). It is typically called
parametric, if Θ is of finite dimension.
The likelihood-function for the observation E is given by

L(θ) = Pθ (E)

If Pθ (E) = 0 for all θ ∈Θ one proceeds via the density: assume Pθ � P∗

for all θ ∈Θ and denote the densities by fθ := dPθ/dP∗. Then, for the
observation x,

L(θ) = fθ (x).

This looks complicated, but is in most cases quite simple: consider i.i.d.
random variables X1, . . . ,Xn with common density fθ . Then P∗ is clearly
the Lebesgue-measure. Due to the i.i.d.-property,

L(θ) =
n

∏
i=1

fθ (xi).
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Definition

Any maximizer θ̂ of the likelihood-function is called maximum-likelihood
estimator for the model (Pθ )θ∈Θ.

In the above example, we need to maximize ∏
n
i=1 fθ (xi), which is typically

infeasible. One therefore considers the log-likelihood function

`(θ) := lnL(θ)

which is often much easier to maximize. Typically one can apply first-order
conditions or needs to solve numerically.
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Example (ML for the normal distribution)

Consider Xi ∼N (µ,1). Then the density is

fθ (x) =
1√
2π

exp
(
− 1

2
(x−µ)2

)
.

We obtain the log-likelihood function

l(θ) = const.− 1
2

n

∑
i=1

(xi−µ)2.

The first derivative is
∂µ l(θ) =

n

∑
i=1

xi−nµ
!
= 0

and we obtain the maximum-likelihood estimator (second derivative is < 0)

µ̂ = x̄ =
∑

n
i=1
n

xi.

Exercise: compute the ML estimator for σ ! Read Czado & Schmidt (2011)
on ML-estimation and further estimation procedures.
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Back to logistic regression. We look at the by now infamous Challenger
O-ring data set (taken from Caslla & Berger (2002))

1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0
53 57 58 63 66 67 67 67 68 69 70 70 70 70 72 73 75 75 76 76 78 79 81

The table reports failures with associated temperature.
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library(gdata,quietly=TRUE,verbose=FALSE, warn.conflicts=FALSE) # for reading xls
data = read.xls("ChallengerData.xls") # Taken From Casella & Berger (2002)
plot (data$Temp, data$Failure,xlim=c(30,85))

summary(out.int <- glm(Failure ~ Temp, family=binomial , data = data))

a= out.int$coefficients[1]
b= out.int$coefficients[2]
x=seq(30,85,by=1)
lines(x,exp(a+b*x)/(1+exp(a+b*x)))

x=31; exp(a+b*x)/(1+exp(a+b*x))

The estimated probability
for a failure at 31° is 0.9996088.
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Logistic regression naturally classifies the data into two fields: the ones
with probability above 0.5, where we would optimally decide for outcome
one and the ones with probability below 0.5, where we would decide for
outcome 0.
Hence, we obtain a decision boundary, given by the hyperplane

α +βββxxx = 0.

If the decision boundary separates the two groups, then the data is
called linearly separable. Note that this is can not be achieved in the
Challenger dataset.
Note that the logistic regression also provides probabilities of false
decisions: at the boundary this is 50/50, but further out the probability of
a false decision decrease. Significant decisions requires the probability
of a false decision to be below a significance level, e.g. α = 0.05 or
α = 0.01.
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With significance level α = 0.05 obtained decision boundaries.
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Load the R example2 from the homepage and revisit the above steps. Try
your own examples.

2Called LogisticRegression.R
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The likelihood-function has to be maximized numerically.
A first-order iterative scheme is the gradient-descent algorithm. Look
this algorithm up and recall its properties and functionality.
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Support vector machines

The first example of a tool we visit but which is not typical for classical
statistics is Support Vector Machines.
For the introduction we mainly follow Hastie et. al. (2009) and Steinwart
& Covel3.

3I. Steinwart und C. Scovel (2007). „Fast rates for support vector machines using Gaussian
kernels“. In: Ann. Statist. 35.2, S. 575–607.
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We start by formally introducing the statistical classification problem.
We have a finite training set

T = ((x1,y1), . . . ,(xn,yn)) ∈ (X×Y )n,

where X ⊂ Rd and Y = {−1,1}.
The standard batch model assumes that the samples (xi,yi)1≤i≤n are
i.i.d. according to an unknown probability measure P on X×Y .
Furthermore, a new sample (x,y) is drawn from P independently of T .
A classifier C assigns to every T a measurable function f = fT : X → R.
The prediction of C for y is

sign f (x)

with the convention sign(0) := 1.
We measure the quality of the classification f by the classification risk

R( f ) := P({(x,y) : sign f (x) 6= y}).
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Clearly, it is the goal to achieve the smallest possible risk, the so-called
Bayes risk

RP := inf{R( f )| f : X → R measurable}.
A function which attains this level is called a Bayes decision function.
Let us start with an illustrative introduction to SVM (Pictures taken from
Hastie et.al. (2009))
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Consider the hyperplane described by
x>β + β0 = 0, with ‖ β ‖= 1 and the
classification G :

sign(x>β +β0).

The maximal margin is obtained by
the following optimization problem

max
β ,β0:‖β‖=1

M

subject to yi(x>i β +β0)≥M, i = 1, . . . ,n
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Such classifiers, computing a linear combination of the input and
returning the sign were called perceptrons in the late 1950s
(Rosenblatt, 1958) and set the foundations for later models of neural
networks in the 80s and the 90s.
We reformulate this criterion as follows: first, we get rid of ‖ β ‖= 1 by
considering

1
‖ β ′ ‖

yi(x>i β
′+β

′
0)≥M

or, equivalently
yi(x>i β

′+β
′
0)≥M‖ β

′ ‖.
With β ′,β ′0 satisfying these equations, any (positive) multiple will also
satisfy these, we rescale to ‖ β ′ ‖= M−1 and arrive at

min
β ,β0

1
2
‖ β ‖2

subject to yi(x>i β +β0)≥ 1, i = 1, . . . ,n.
(1)

This is a convex optimization problem and can be solved via the
classical Karush-Kuhn-Tucker conditions.
It should be noted that the solution does only depend on a small amount
of the data, and hence has a certain kind of robustness. On the other
side, it will possibly not be optimal under additional information on the
underlying distribution.
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Non-linearly separable data

When the data does not separate fully we will allow some points to be on
the wrong side.
In this regard, define the slack variables ξ1, . . . ,ξn and consider

yi(x>i β +β0)≥M−ξi (2)
or

yi(x>i β +β0)≥M(1−ξi) (3)

with ξi ≥ 0, ∑ξi ≤ K with a constant K.
The first conditions seems more natural, while the second choice
measures the overlap in relative distance, which chances with the width
of the margin, M. However, (2) leads to a non-convex optimization
problem. The second problem is convex and is the ”standard” support
vector classifier.
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The case for data which is not fully
linearly separable.
Misclassification occurs when ξi > 1.
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Summarizing we arrive at the following minimization problem (again
choosing ‖ β ‖= M−1) for the support vector classifier.

min ‖ β ‖ subject to
{

yi(x>i β +β0)≥ (1−ξi),∀i
ξi ≥ 0,∑ξi ≤ K.

For a detailed description how to solve this convex optimization problem
see Section 12.2.1 in Hastie et. al. (2009).
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The kernel trick

It seems quite restrictive to consider only linear classification rules. We
have already seen that in linear regression we were able to overcome
this problem by a suitable transformation of the data. This can also be
achieved here and is often called the kernel trick.
We first give a rather informative introduction and thereafter discuss the
mathematical properties.
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