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Our goal today

Bayesian Optimization
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Bayesian Optimization (BO)

Typically we are interested in a problem

x∗ = arg min
x∈X

f (x)

with some ”well behaved” function f : X → Rd .
However, in many cases f is not explicitly known and it also might be
multimodal.
Also the evaluations of f might contain errors or might be very
expensive.
A nowadays famous application is (hyper-) parameter tuning in Machine
Learning. Such parameters are: the number of layers / units per layers,
penalties, learning rates, etc.
A classical example is the optimal design of experiments, or the case
when statistics is needed but the likelihood is intractable.
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Currently feasiable are: grid search. This will need many function
evaluations, which is not good if evaluations are expensive.
Random search is a well-known alternative. The usage of
pseudo-random numbers even improves performance.
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The problem

Let us illustrate the problem with a few pictures1

Where to choose the next point x where we evaluate f (x)??

1Source: Javier González, Introduction to Bayesian Optimization. Masterclass, 2017 at
Lancaster University.
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Let us consider some possible curves. Here is one:

Clearly, we would choose to evaluate at the minimun and are finished. But
this is not the only possible curve !
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Three curves
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Many curves

If we think of a continuum of course, we arrive at the Bayesian representation
of the problem.
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We consider a density over the possible curves, which is called prior.

Where should we optimally place our next evaluation xn??
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The approach is clear: we have a prior distribution p.
Given some data D we update through Bayes’ rule

p(x|D) =
p(D |x)p(x)

P(D)
.

Clearly, this is only possible if P(D) 6== 0. If this is the case, we will use a
conditionaly density given by

f (x|y) = f (x,y)
f (y)

where f (x,y) is the joint density of x and y and f (y) is the marginal
density.
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Historical overview

Bayesian optimization dates back at least to works by Kushner2 in 1964
and Mockus3 in 1978.
Since about 10 years there is a considerable interest of these methods
in the machine learning community.

2Harold J Kushner (1964). „A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise“. In: Journal of Basic Engineering 86.1, S. 97–106.

3J Močkus (1975). „On Bayesian methods for seeking the extremum“. In: Optimization
Techniques IFIP Technical Conference. Springer, S. 400–404.
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Mathematical formulation

In most cases the prior is chosen to be Gaussian - this is the case we
will also focus here. There are other variants (Student processes) and
interesting research questions in this direction
A Gaussian process is a family (X(x))x∈X of random variables, where
for any (finite) x1, . . . ,xn the joint distribution of

X(x1), . . . ,X(xn)

is Gaussian.
The Gaussian process can be characterized by its mean function

m(x) := E[X(x)]

and its covariance function

c(x,y) := Cov(X(x),X(y)).

We are able to observe (at a certain cost) X(x) for a fixed sample
x1, . . . ,xn
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Typically we specify some kind of regression for our setup, like

X(x) = βx+ εx

where the ε(xi), i = 1, . . . ,n are i.i.d.
However, if x1 is close to x2 we would expect close outcomes rather than
independent outcomes.
This motivatives covariance functions of the form

c(x,y)∝ e−K(x,y)

with a kernel function K. Often, K(x,y) =‖ x− y ‖α
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Example

Gaussian process regression For example suppose that our observation is
unbiased, i.e. we observe Y (x) such that

E[Y (x)] = f (x).

A model for this is the Gaussian regression

Y (x) = f (x)+ ε(x).

The posterior distribution is given by

X(z)|X(x) = f ∼N (µ,σ2)

where µ = µ( f ,x,z) and σ = σ( f ,x,z) are given by

µ = m(z)+K(z,x)
f −m(x)

K(x,x)+σ2In

σ
2 = K(z,z)−K(z,x)

K(x,z)
K(x,x)+σ2In

.
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At the core is the following result. Consider the case where (X ,Y ) is a
two-dimensional normal random variable with mean (a,A) and covariance
matrix (

b2 ρbB
ρbB B2

)
.

Lemma

The conditional distribution of X given Y is Gaussian and

E[X |Y ] = a+ρ
b
B
(Y −A)

E[(X−E[X |Y ])2|Y ] = b2(1−ρ
2).
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Beweis.

First consider standard normal X and Y with correlation ρ. The conditional
density of X given Y = y is

f (x|y) = f (x,y)
f (y)

=
2π
√

1−ρ2
√

2π

exp
(
− 1

2(1−ρ2)
(x2−2ρxy+ y2)

)
exp
(
− y2

2

)
=

1√
2π(1−ρ2)

exp
(
− (x−ρy)2

2(1−ρ2)

)
.

Note that E[X |Y ] = ρY and that X−ρY is independent of Y as
Cov(X−ρY,Y ) = ρ−ρ = 0.
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...

For the general case observe that Z1 := b−1(X−a) and Z2 := B−1(Y −A) are
standard normal and Cov(Z1,Z2) = ρ. Hence, X conditional on Y is again
normally distributed and

E[X |Y ] = E[a+bZ1|Y ] = a+bρZ2 = a+
ρb
B

(Y −A).

and we conclude by computing the conditional variance,

E[(X−E[X |Y ])2] = E[(bZ1−ρbZ2)
2|Y ] = b2E[(Z1−ρZ2)

2] = b2(1−ρ
2).
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Acquisition

The next step is to acquire new data through an acquisition cirterium.
Recall we have the observation X(x) where we are now interested in
choosing x optimally.
The predictive variance is

γ(x) =
f (x∗)−µ(x)

σ(x)
.

Kushner suggest to study the probability of improvement

αPI(x) = Φ(γ(x)).

Mockus suggest the expected improvement and a further alternative
(Srinivas e.a. 2010) is the lower confidence bound

αLCB(x) = µ(x)−κσ(x).
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