Exercise 9

Submission: 15-12-2015

For a semimartingale $X, X_{0}=0$, the stochastic exponential of $X, \mathcal{E}(X)$, is the unique semimartingale Z that is the solution of

$$
\begin{equation*}
Z_{t}=1+\int_{0}^{t} Z_{s-} d X_{s}, \quad t \geq 0 . \tag{1}
\end{equation*}
$$

Problem 1 (4 Points). (a) Let X and Y be two semimartingales with $X_{0}=Y_{0}=0$.
Show that

$$
\mathcal{E}(X) \mathcal{E}(Y)=\mathcal{E}(X+Y+[X, Y]) .
$$

(b) Let X be a continuous semimartingale, $X_{0}=0$.

Show that

$$
\mathcal{E}(X)^{-1}=\mathcal{E}(-X+[X, X]) .
$$

Problem 2 (4 Points). Assume that $P^{\prime} \stackrel{l o c}{\ll} P$ and $Z=\mathcal{E}(X)$ is the density process. Let

$$
Y_{t}=\sum_{i=1}^{N_{t}} \xi_{i} \quad\left(\left(\xi_{i}\right)_{i \geq 1} \text { are i.i.d random variables and } Y_{0}=0\right)
$$

be a compound Poisson process where N is a Poisson process with intensity λ. We denote $X=H \cdot M$, where H is a constant and M given $M=Y-\langle Y\rangle$ is a local P-martingale.
If $\mathbb{E}\left|\xi_{1}\right|<\infty$;
Compute

$$
M^{\prime \prime}=M-\frac{1}{Z_{-}} \cdot\langle M, Z\rangle .
$$

Problem 3 (4 Points). If $\mathbb{E}\left|\xi_{1}\right|<\infty$ (see Problem 2 for other conditions):
(a) Solves (1) with

$$
X_{t}=\sum_{i=1}^{N_{t}} \xi_{i}-\lambda t \mathbb{E}\left(\xi_{1}\right) .
$$

(b) Show that

$$
Z_{t}=\prod_{i=1}^{N_{t}}\left(1+\xi_{i}\right) \exp \left(-\lambda t \mathbb{E}\left(\xi_{1}\right)\right)
$$

is a martingale.
Problem 4 (4 Points). Let (Ω, \mathcal{F}, P) be a probability space and $W=\left\{W_{t}, \mathcal{F}_{t} ; 0 \leq t<\infty\right\}$ is a Brownian motion defined on it. Let $X=\left\{X_{t}, \mathcal{F}_{t} ; 0 \leq t<\infty\right\}$ be a measurable and adapted process satisfying

$$
P\left(\int_{0}^{T} X_{t}^{2} d t<\infty\right)=1, \quad 0 \leq T<\infty .
$$

We set

$$
Z_{t}=\exp \left(\int_{0}^{t} X_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} X_{s}^{2} d s\right)
$$

Note: The stochastic integral with respect to W is well defined and belongs to $\mathcal{M}_{l o c}^{c}$.
(a) Assume that Z_{t} is a martingale. We define a process $W^{\prime}=\left\{W_{t}^{\prime}, \mathcal{F}_{t} ; 0 \leq t<\infty\right\}$ by

$$
W_{t}^{\prime}=W_{t}-\int_{0}^{t} X_{s} d s, \quad 0 \leq t<\infty .
$$

For each fixed T, show that W^{\prime} is a Brownian motion on $\left(\Omega, \mathcal{F}, P_{T}^{\prime}\right)$.
(b) Recall

$$
d S(t)=\mu S(t) d t+\sigma S(t) d W(t)
$$

is the Black-Scholes stochastic differential equation under P.
Compute the new Black-Scholes stochastic differential equation under the change of measure.

Hint: Assuming Z_{t} is a martingale. If $M \in \mathcal{M}_{l o c}^{c}$, then the process

$$
M_{t}^{\prime}=M_{t}-\int_{0}^{t} X_{s} d\langle M, W\rangle_{s}, \quad 0 \leq t \leq T
$$

which is \mathcal{F}_{t}-measurable is in $\mathcal{M}_{\text {loc }}^{\prime c}$. If $G \in \mathcal{M}_{\text {loc }}^{c}$ and

$$
G_{t}^{\prime}=G_{t}-\int_{0}^{t} X_{s} d\langle G, W\rangle_{s}, \quad 0 \leq t \leq T
$$

then $\left\langle M^{\prime}, G^{\prime}\right\rangle_{t}=\langle M, G\rangle_{t} ; 0 \leq t \leq T$, a.s P and P_{T}^{\prime}. Finally, use the Lévy 's characterization for Brownian motion: Let W be a local martingale, $W_{0}=0 . W$ is a Brownian motion implies $\langle W\rangle_{t}=t$.

