

Stochastische Prozesse

Vorlesung: Prof. Dr. Thorsten Schmidt Exercise: Dr. Tolulope Fadina http://www.stochastik.uni-freiburg.de/lehre/2015WiSe/inhalte/2015WiSeStochProz

Exercise 6

Submission: 24-11-2015

Problem 1 (4 Points). (a) Let X be a submartingale, $n \in \mathbb{Z}^+$ and let $\lambda > 0$. Show that

$$\lambda \mathbb{P}\left(\max_{1 \le i \le n} |X_i| \ge 3\lambda\right) \le 4\mathbb{E}[|X_0|] + 3\mathbb{E}[|X_n|].$$

- (b) Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of integrable random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ which converges weakly in $L^1(\mathbb{P})$ to an integrable random variable X. Show that for each σ -field $\mathcal{G} \subset \mathcal{F}$, the sequence $\mathbb{E}[X_n|\mathcal{G}]$ converges to $\mathbb{E}[X|\mathcal{G}]$ weakly in $L^1(\mathbb{P})$
- **Problem 2** (4 Points). (a) Let $X = (X_t)_{0 \le t < \infty}$ be a local martingale and τ is a stopping time. Show that $Y_t = X_{t \land \tau}$ is also a local martingale.
 - (b) $X = (X_n)_{n \in \mathbb{N}}$ be i.i.d with $\mathbb{P}(X_1 = 1) = p$ and $\mathbb{P}(X_1 = -1) = q = 1 p$. Furthermore,

$$S_n = \sum_{i=1}^n X_i$$

and

$$\tau = \inf\{n \ge 1 : S_n \ge b\}\tag{1}$$

where $b \in \mathbb{N}$. For $\{\cdots\} = \emptyset$ in (1) set $\tau = \infty$ and on $\{\tau = \infty\}$

$$S_{\tau} = \lim_{n \to \infty} S_n,$$

if the limit exists. Show that

$$\mathbb{P}(\tau < \infty) = \left(\frac{p}{q}\right)^b$$
 for $p < q$.

Problem 3 (4 Points). Let $X = (X_t)_{0 \le t < \infty}$ be a right-continuous martingale with respect to \mathcal{F}_t . X is said to be square integrable if $\mathbb{E}[X_t^2] < \infty$ and $X_0 = 0$ a.s., and we write $X \in \mathcal{M}_2$. Let X be a process in \mathcal{M}_2 or in \mathcal{M}_{loc} , and we assume its quadratic variation $\langle X \rangle$ is integrable. i.e., $\mathbb{E}[\langle X \rangle_{\infty}] < \infty$. Show that

- (a) X is a martingale
- (b) X and submartingale X^2 are both uniformly integrable, in particular

$$X_{\infty} = \lim_{t \to \infty} X_t$$

exists almost surely and

$$\mathbb{E}[X^2_\infty] = \mathbb{E}[\langle X \rangle_\infty]$$

Hint: Conditions (a)-(d) are equivalent: (a)X is uniformly integrable family of random variables, (b) X converges in L^1 as $t \to \infty$, (c) X converges almost surely to an integrable variable X_{∞} , such that X_t is a martingale (respectively submartingale), (d) there exists an integrable random variable Y such that $X_t = \mathbb{E}[Y|\mathcal{F}_t]$ P-a.s. for every $t \ge 0$. Note: conditions (a) - (c) also holds for non-negative right-continuous submartingale X.

If $X \in \mathcal{M}_{loc}$ and τ is a stopping time of \mathcal{F}_t , then $\mathbb{E}[X_{\tau}^2] \leq \mathbb{E}[\langle X \rangle_{\tau}]$, where

$$X_{\infty}^2 = \underline{\lim}_{t \to \infty} X_t^2.$$

- **Problem 4** (4 Points). (a) Show that for any optional time τ and predictable process X, the random variable $X_{\tau} \mathbf{1}_{\{\tau < \infty\}}$ is \mathcal{F}_{τ} -measurable.
 - (b) Let $A \in \mathcal{V}$. Show that there exist a unique pair (B, C) of adapted increasing processes such that A = B C and Var(A) = B + C. Using the formula predictable B = C and Var(A) are also predictable.

Hint: If A is predictable, B, C and Var(A) are also predictable.