FREIBURG

Vorlesung: Prof. Dr. Thorsten Schmidt
Exercise: Dr. Tolulope Fadina
http://www.stochastik.uni-freiburg.de/lehre/2015WiSe/inhalte/2015WiSeStochProz

Exercise 4

Submission: 10-11-2015

Let $(\Omega, \mathcal{G}, \mathbb{P})$ be a probability space endowed with a filtration \mathbb{F}. A positive \mathbb{F}-adapted process λ is given. We denote

$$
\Lambda_{t}:=\int_{0}^{t} \lambda_{s} d s, \quad t \geq 0
$$

We assume there exist a random variable Θ constructed on Ω independent of \mathcal{F}_{∞}, with the exponential law of parameter 1. i.e.,

$$
P\{\Theta \geq t\}=\exp (-t)
$$

We define the random time τ as the first time when the process Λ_{t} is above the random level Θ. i.e.,

$$
\tau=\inf \left\{t \geq 0: \Lambda_{t} \geq \Theta\right\}
$$

Note: $\{\tau \geq s\}=\left\{\Lambda_{s} \leq \Theta\right\}$. We assume $\Lambda_{t}<\infty$, for all t, and $\Lambda_{\infty}=\infty$.

Problem 1 (4 Points). (a) Show that a random variable Θ with exponential distribution satisfies

$$
\mathbb{P}\{\Theta>t+s \mid \Theta>s\}=\mathbb{P}\{\Theta>t\}, \quad \text { for } 0 \leq s \leq t
$$

(b) Let $\left(X_{t}\right)_{t \geq 0}$ be a Poisson process with parameter $\lambda=1$. We set $Y_{t}=X_{\Lambda_{t}}$. Show that

$$
Y_{t}-\Lambda_{t}
$$

is a martingale.
Problem 2 (4 Points). (a) Show that the conditional distribution of τ given the σ-algebra \mathcal{F}_{t}, for $t \geq s$ is

$$
P\left\{\tau>s \mid \mathcal{F}_{t}\right\}=\exp \left(-\Lambda_{s}\right)
$$

Hint: $\left(\Lambda_{t}\right)_{t \geq 0}$ is an increasing and \mathcal{F}_{t}-adapted process.
(b) If $t<s$, show that the conditional distribution of τ given the σ-algebra \mathcal{F}_{t} is

$$
P\left\{\tau>s \mid \mathcal{F}_{t}\right\}=\mathbb{E}\left[\exp \left(-\Lambda_{s}\right) \mid \mathcal{F}_{t}\right]
$$

Problem 3 (4 Points). Let $D_{t}=\mathbb{1}_{\{\tau \leq t\}}$ and $\mathbb{D}_{t}=\sigma\left(D_{s} ; s \leq t\right)$. We introduce the smallest right-continuous filtration \mathbb{G} which contains \mathbb{F} and turns τ to a stopping time. $\mathbb{G}_{t}=\mathcal{F}_{t} \vee \mathbb{D}_{t}$. Let Y be an integrable random variable. Show that

$$
\mathbb{1}_{\{\tau>t\}} \mathbb{E}\left[Y \mid \mathbb{G}_{t}\right]=\mathbb{1}_{\{\tau>t\}} \frac{\mathbb{E}\left[Y \mathbb{1}_{\{\tau>t\}} \mid \mathcal{F}_{t}\right]}{\mathbb{E}\left[\mathbb{1}_{\{\tau>t\}} \mid \mathcal{F}_{t}\right]}=\mathbb{1}_{\{\tau>t\}} \exp \left(\Lambda_{t}\right) \mathbb{E}\left[Y \mathbb{1}_{\{\tau>t\}} \mid \mathcal{F}_{t}\right]
$$

Hint: From the Monotone class theorem, any \mathbb{G}_{t}-measurable random variable Y_{t} satisfies

$$
\mathbb{1}_{\{\tau>t\}} Y_{t}=\mathbb{1}_{\{\tau>t\}} y_{t}
$$

where y_{t} is an \mathcal{F}_{t}-measurable random variable.

Problem 4 (4 Points). Let $D_{t}=\mathbb{1}_{\{\tau \leq t\}}$ and $\mathbb{D}_{t}=\sigma\left(D_{s} ; s \leq t\right)$. We introduce the smallest right-continuous filtration \mathbb{G} which contains \mathbb{F} and turns τ to a stopping time. $\mathbb{G}_{t}=\mathcal{F}_{t} \vee \mathbb{D}_{t}$. If Y is an integrable \mathcal{F}_{T}-measurable random variable. Show that, for $t<T$,

$$
\mathbb{E}\left[Y \mathbb{1}_{\{T<\tau\}} \mid \mathbb{G}_{t}\right]=\mathbb{1}_{\{\tau>t\}} \exp \left(\Lambda_{t}\right) \mathbb{E}\left[Y \exp \left(-\Lambda_{T}\right) \mid \mathcal{F}_{t}\right]
$$

