

Stochastische Prozesse

Vorlesung: Prof. Dr. Thorsten Schmidt Exercise: Dr. Tolulope Fadina http://www.stochastik.uni-freiburg.de/lehre/2015WiSe/inhalte/2015WiSeStochProz

Exercise 4

Submission: 10-11-2015

Let $(\Omega, \mathcal{G}, \mathbb{P})$ be a probability space endowed with a filtration \mathbb{F} . A positive \mathbb{F} -adapted process λ is given. We denote

$$\Lambda_t := \int_0^t \lambda_s ds, \quad t \ge 0.$$

We assume there exist a random variable Θ constructed on Ω independent of \mathcal{F}_{∞} , with the exponential law of parameter 1. i.e.,

$$P\{\Theta \ge t\} = \exp(-t).$$

We define the random time τ as the first time when the process Λ_t is above the random level Θ . i.e.,

$$\tau = \inf\{t \ge 0 : \Lambda_t \ge \Theta\}.$$

Note: $\{\tau \ge s\} = \{\Lambda_s \le \Theta\}$. We assume $\Lambda_t < \infty$, for all t, and $\Lambda_\infty = \infty$.

Problem 1 (4 Points). (a) Show that a random variable Θ with exponential distribution satisfies

$$\mathbb{P}\{\Theta > t + s \mid \Theta > s\} = \mathbb{P}\{\Theta > t\}, \text{ for } 0 \le s \le t.$$

(b) Let $(X_t)_{t\geq 0}$ be a Poisson process with parameter $\lambda = 1$. We set $Y_t = X_{\Lambda_t}$. Show that

$$Y_t - \Lambda_t$$

is a martingale.

Problem 2 (4 Points). (a) Show that the conditional distribution of τ given the σ -algebra \mathcal{F}_t , for $t \geq s$ is

$$P\{\tau > s \mid \mathcal{F}_t\} = \exp(-\Lambda_s).$$

Hint: $(\Lambda_t)_{t\geq 0}$ is an increasing and \mathcal{F}_t -adapted process.

(b) If t < s, show that the conditional distribution of τ given the σ -algebra \mathcal{F}_t is

$$P\{\tau > s \mid \mathcal{F}_t\} = \mathbb{E}[\exp(-\Lambda_s) \mid \mathcal{F}_t].$$

Problem 3 (4 Points). Let $D_t = \mathbb{1}_{\{\tau \leq t\}}$ and $\mathbb{D}_t = \sigma(D_s; s \leq t)$. We introduce the smallest right-continuous filtration \mathbb{G} which contains \mathbb{F} and turns τ to a stopping time. $\mathbb{G}_t = \mathcal{F}_t \vee \mathbb{D}_t$. Let Y be an integrable random variable. Show that

$$\mathbb{1}_{\{\tau>t\}}\mathbb{E}[Y \mid \mathbb{G}_t] = \mathbb{1}_{\{\tau>t\}} \frac{\mathbb{E}[Y\mathbb{1}_{\{\tau>t\}} \mid \mathcal{F}_t]}{\mathbb{E}[\mathbb{1}_{\{\tau>t\}} \mid \mathcal{F}_t]} = \mathbb{1}_{\{\tau>t\}} \exp(\Lambda_t)\mathbb{E}[Y\mathbb{1}_{\{\tau>t\}} \mid \mathcal{F}_t].$$

Hint: From the Monotone class theorem, any \mathbb{G}_t -measurable random variable Y_t satisfies

$$\mathbb{1}_{\{\tau > t\}} Y_t = \mathbb{1}_{\{\tau > t\}} y_t$$

where y_t is an \mathcal{F}_t -measurable random variable.

Problem 4 (4 Points). Let $D_t = \mathbb{1}_{\{\tau \leq t\}}$ and $\mathbb{D}_t = \sigma(D_s; s \leq t)$. We introduce the smallest right-continuous filtration \mathbb{G} which contains \mathbb{F} and turns τ to a stopping time. $\mathbb{G}_t = \mathcal{F}_t \vee \mathbb{D}_t$. If Y is an integrable \mathcal{F}_T -measurable random variable. Show that, for t < T,

$$\mathbb{E}[Y\mathbb{1}_{\{T < \tau\}} \mid \mathbb{G}_t] = \mathbb{1}_{\{\tau > t\}} \exp(\Lambda_t) \mathbb{E}[Y \exp(-\Lambda_T) \mid \mathcal{F}_t].$$