Exercise 10

Submission: 12-01-2016

Problem 1 (4 Points). Let $\left(X_{t}\right)_{t \geq 1}$ be sequence of independently identically distributed random variables with $P\left(X_{1}=1\right)=p$ and $P\left(X_{1}=-1\right)=q=1-p$. Define

$$
S(t)=\sum_{i=1}^{t} X_{i}, \quad t \geq 1, \quad S_{0}=0
$$

Show that

$$
P\left(S_{t}=j \mid S_{0}=i\right)=\binom{t}{\frac{t+j-i}{2}} p^{\frac{t+j-i}{2}} \cdot q^{\frac{t-j+i}{2}}
$$

If $t+j-i$ is an even non-negative integer, and

$$
P\left(S_{t}=j \mid S_{0}=i\right)=0 \quad \text { otherwise }
$$

Hint: Use induction. Note that

$$
\binom{t}{\frac{t+j-i}{2}} p^{\frac{t+j-i}{2}}=0
$$

if $|j-i| \geq t+1$.
Problem 2 (4 Points). Verify that

$$
\begin{equation*}
X(t)=\Phi(t)\left(X(0)+\int_{0}^{t} \Phi(t)^{-1}(s) a(s) d s+\int_{0}^{t} \Phi(t)^{-1}(s) \sigma(s) d W(s)\right), \quad t \geq 0 \tag{1}
\end{equation*}
$$

solves the stochastic differential equation

$$
\begin{array}{r}
d X(t)=(A(t) X(t)+a(t)) d t+\sigma(t) d W(t) \tag{2}\\
X_{0}=\xi
\end{array}
$$

where W is a Brownian motion independent of $\xi, A(t), a(t)$ and $\sigma(t)$ are non-random, measurable and locally bounded. Assuming $\Phi(t)=A(t) \Phi(t), \quad \Phi(0)=1$, has a unique (absolutely continuous) solution defined for $0 \leq t<\infty$. Hint: Use the Itô formula.

Problem 3 (4 Points). If $a(t)=0, A(t)=-\alpha<0$, and $\sigma(t)=\sigma>0$ in (2), ((2) becomes the Ornstein-Uhlenbeck Stochastic differential equation, see Exercise 8-Problem 3), and the solution to the SDE is

$$
X(t)=X(0) \exp (-\alpha t)+\sigma \exp (-\alpha t) \int_{0}^{t} \exp (\alpha s) d W(s) \quad t \geq 0
$$

If $\mathbb{E}\left(X_{0}^{2}\right)<\infty$, compute
(a) the expectation: $\mathbb{E}\left(X_{t}\right)$.
(b) the variance: $\operatorname{Var}\left(X_{t}\right)$.
(b) the covariance function: $c\left(X_{s}, X_{t}\right)$.

Problem 4 (2 Points). (Brownian Bridge) Show that X_{t} defined by

$$
\begin{equation*}
X(t)=a\left(1-\frac{t}{T}\right)+b \frac{t}{T}+(T-t) \int_{0}^{t} \frac{d W(s)}{T-s}, \quad 0 \leq t<T \tag{3}
\end{equation*}
$$

solves the stochastic differential equation

$$
\begin{array}{r}
d X(t)=\frac{b-X(t)}{T-t} d t+d W(t) \tag{4}\\
X_{0}=a
\end{array}
$$

for given real numbers $a, b, T>0$.
Hint: Use the Itô formula. if $A(t)=\frac{-1}{T-t}, a(t)=\frac{b}{T-t}$, and $\sigma(t)=1$, then, $\Phi(t)=1-\frac{t}{T}$ in (2) and (2) becomes (4).

Problem 5 (4 Points). Show that the process

$$
Y(t)=\left\{\begin{array}{l}
(T-t) \int_{0}^{t} \frac{d W_{s}}{T-s} ; \quad 0 \leq t<T \\
0 ; \quad t=T
\end{array}\right.
$$

is continuous, has zero mean, its Gaussian, with covariance function

$$
c(s, t)=(s \wedge t)-\frac{s t}{T} ; \quad 0 \leq s, t \leq T
$$

Problem 6 (4 Points). Let $\left(X_{t}\right)_{t \geq 0}$ be a Brownian motion and

$$
Y(t)=e^{-t / 2} X\left(e^{t}-1\right)
$$

Show that $\left(Y_{t}\right)_{t \geq 0}$ is a Gaussian process and a Markov process.

