FREIBURG

Vorlesung: Prof. Dr. Thorsten Schmidt
Exercise: Tolulope Fadina
http://www.stochastik.uni-freiburg.de/lehre/2015WiSe/inhalte/2015SoSeStochastische prozesse

Exercise 1

Submission: 22-10-2015

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and (E, \mathcal{E}) be a measurable space. Let $X=\left(X_{n}\right)_{n \geq 0}$ be a sequence of random variables taking value in E. We call X a stochastic process in E.

A filtration $\left(F_{n}\right)_{n}$ is an increasing family of sub σ-algebras of \mathcal{F}. i.e., $\mathcal{F}_{n} \subseteq \mathcal{F}_{n+1}$ for all n . We can think of \mathcal{F}_{n} as the information available to us at time n. Every process has a natural filtration $\left(\mathcal{F}_{n}^{X}\right)_{n}$ given by $F_{n}^{X}=\sigma\left(X_{k}, k \leq n\right)$.
The process X is called adapted to the filtration $\left(\mathcal{F}_{n}\right)_{n}$, if X_{n} is \mathcal{F}_{n}-measurable for all n. Every process is adapted to a natural filtration. We say X is integrable if X_{n} is integrable for all n.
Definition 1 (Martingale). A sequence ξ_{1}, ξ_{2}, \cdots, of random variables is called a martingale with respect to the filtration $\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots$, if
(1) ξ_{n} is integrable for each $n=1,2, \cdots$
(11) ξ_{1}, ξ_{2}, \cdots, is adapted to $\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots$,
(111) $\mathbb{E}\left[\xi_{n+1} \mid \mathcal{F}_{n}\right]=\xi_{n} \quad$ a.s. for each $n=1,2, \cdots$

Definition 2. Let ($\xi_{k}, k \geq 1$) be i.i.d. (independent and identically distributed) random variables. Then

$$
S_{n}=\sum_{k=1}^{n} \xi_{k}, \quad n \in \mathbb{N},
$$

is a random walk. Random walks have stationary and independent increments,

$$
\xi_{k}=S_{k}-S_{k-1} \quad k \geq 1
$$

Stationary simply implies that the $\left(\xi_{k}\right)_{k \geq 1}$ have identical distribution.
Definition 3. A process $X_{n}, n \in \mathbb{N}$ with stationary independent increments is called a Lévy process. i.e., the increment $X_{n_{k}}-X_{n_{k-1}}$ are independent and $X_{n_{k}}-X_{n_{k-1}} \sim X_{n_{k}-n_{k-1}}$, for $k=1, \cdots, n$

Definition 4 (Markov chain). A discrete process $\left\{X_{n}, n=0,1, \cdots\right\}$ with discrete state space $X_{n} \in\{0,1,2, \cdots\}$ is a Markov chain if it has the Markov property

$$
\mathbb{P}\left[X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right]=\mathbb{P}\left[X_{n+1}=j \mid X_{n}=i\right]
$$

Problem 1. Let $\xi \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{H} \subset \mathcal{G}$ be σ-algebras. Show that

$$
\begin{equation*}
\mathbb{E}[\mathbb{E}[\xi \mid \mathcal{G}] \mid \mathcal{H}]=\mathbb{E}[\xi \mid \mathcal{H}] \quad \text { a.s. } \tag{1}
\end{equation*}
$$

Problem 2. Show that if $\xi=\left(\xi_{n}\right)_{n \geq 1}$ is a martingale with respect to $\mathcal{F}=\left(\mathcal{F}_{n}\right)_{n \geq 1}$, then

$$
\mathbb{E}\left(\xi_{1}\right)=\mathbb{E}\left(\xi_{2}\right)=\cdots
$$

Hint: What is the expectation of $\mathbb{E}\left(\xi_{n+1} \mid \mathcal{F}_{n}\right)$?
Problem 3. Suppose that $\xi=\left(\xi_{n}\right)_{n \geq 1}$ is a martingale with respect to the filtration $\mathcal{G}=\left(\mathcal{G}_{n}\right)_{n \geq 1}$. Show that ξ is a martingale with respect to the filtration

$$
\mathcal{H}_{n}=\sigma\left(\xi_{1}, \cdots, \cdots, \xi_{n}\right)
$$

Hint: Observe that $\mathcal{H}_{n} \subset \mathcal{G}_{n}$ and use the tower property of conditional expectation, (1).
Problem 4. Let $\xi=\left(\xi_{k}\right)_{k \geq 1}$ be independent and in L^{1} (see Definition (2)) show that

$$
S_{n}^{\prime}=\sum_{k=1}^{n}\left(\xi_{k}-\mathbb{E}\left[\xi_{k}\right]\right)
$$

satisfies the Martingale property.
Problem 5. Given a martingale $\left(S_{n}\right)_{n \geq 1}$, show that

$$
\mathbb{E}\left[S_{n} \mid \mathcal{F}_{m}\right]=\mathbb{E}\left[S_{n} \mid S_{m}\right], \quad \text { for } m<n
$$

which implies the Markov property.

