An Introduction to R

Thorsten Schmidt*

October 22, 2015

1 First steps

We try some first inputs in the command line of R. For the first time, type $17+2$ and press enter and you will see the following:

```
> 17 + 2
[1] 19
```

The output [1] 19 says that this is the first output, and the output is 19 . If you do it again you will get [2] 19 and so on. In the following the sign $>$ will show you what to type and the following line(s) is the output.

R takes automatically control of brackets:

```
> sqrt (pi*x `2
+ 5)
```

The + sign shows that R expects you to finish the line. It appears by pressing enter after 2 .

Storing data in variables can be done as follows:
$>x<-119+2$

There is no output. But now 121 is stored in x and you can bring it up as follows:
> x
[1] 121

In the following we leave aside the outputs from R and just give the commands. Typically we use a table for assessing R commands as follows:

Objects in R

objects()	Gives you a list of currently used storage variables, or ob- jects. For example objects "a" "b" "x"
As this is a function, calling it	
without brackets give you the	
definition of the function. This	
is very helpful in accessing what	
happens on calling functions, in	
particular the ones which you	
write yourself.	
Removes these objects from the	
workspace.	

R has a powerful help. You can invoke it by
> help(mean)
or get a short cut by
> ? mean

One of the most often used function is c. It concatenates objects:
> $c(1,2,5,78)$
[1] $\begin{array}{llll}1 & 2 & 5 & 78\end{array}$

1.1.1 More complicated things

Next we experiment with sequences.
> $1: 10$
creates a sequence from 1 to 10 . There are a number of powerful way to do this. Compute the mean of the first 100 integers.

```
> x <- seq(from=-1, to = 8, by = 0.1) #This is a comment
> y <- x^2
#Store in y
```


1 First steps

And bring it to the screen:
> plot(x,y,type = "l",main="The function x^2", xlab="x", ylab="y")

If you want to add a further line to an existing plot, you use lines:
> lines(x,x^3,type = "l",col="blue")
Exercise 1. Now get help on the command plot, try different functions, like square root and logarithm and so on. Some examples are listed below

The function plot	
plot (\sin)	Functions are objects which have a direct plotting method. You can find out about all such objects with methods (plot)
$\operatorname{plot}(\sin (\operatorname{seq}(-\mathrm{pi}, \mathrm{pi}, \mathrm{by}=0.01))$,	type="l" gives lines instead of type="l", col=8,lwd=4,bty="l") just circles, col="red" gives the color, lwd: line width, bty="l" specifies the frame: "o" is stan- dard, "n" is none. For legends see below.

Interactive Features	
$\begin{aligned} & x<-1: 10 \\ & y<-x \wedge 2 \\ & \text { plot }(x, y) \\ & \text { identify }(x, y) \end{aligned}$	Allows you by clicking on the point to identify the item. Right-Mouse click ends the session.
```locator() plot(x,y,type="b") points(x,x,col="red") legend(1,100,legend= c("A","B"), lty=c(-1,1), pch=c(1,1),ncol= 2, col=c(1,2))```	Allows you to identify an arbitrary point in the plot, for example to place a legend at the right place   Add a legend to the above graph. The place $(1,100)$ is in the coordinates of the graph! It can simply be picked by using locator. lty gives the line types, -1 is no line, and pch gives the point type.

### 1.1.2 Distributions

Typcial distributions are included in the following form:
$\mathrm{d} \operatorname{dist}(\mathrm{x}, \ldots)=.f_{\ldots} . . .(x):$ density or probability functions
$\mathrm{pdist}(\mathrm{x}, \ldots .)=.F_{\ldots}(x):$ cumulative distribution function: $\mathbb{P}(X \leq x)$ for $X \sim F$
qdist( $\mathrm{y}, \ldots . ..)=F_{\ldots . .}^{-1}(y):$ quantilefunction
rdist( $\mathrm{n}, \ldots$ ) : generates $n$ random variables
of the distribution dist. dist can be for example: norm, exp, binom, beta, gamma, t , norm and many others (see table in the appendix). So dnorm gives the density
of the normal distribution, pexp gives $1-e^{-x}$, the cdf of the $\operatorname{Exp}(1)$-distribution, qunif is the inverse cdf of the uniform distribution, i.e. the identity on $[0,1]$ and rbeta $(100,0.5,0.5)$ simulates 100 i.i.d. Beta( $0.5,0.5$ )-distributed random variables.

Exercise 2. Plot the densities function of the normal, the $t$ and the $\Gamma$ distributions. Vary with different parameters and colors in the plot.

For example, you could do the following:

dnorm ( $\mathrm{x}, 1,2$ ) gives a normal distribution with standard deviation of 2 and not variance of 2 .

Simulation of random variables in $R$ is very easy. Try for example the following:

Simulations	
data <- rnorm(100)	This gives you some statistics   on the data.
mean(data)	
$\operatorname{var}$ (data)	
sd(data)	
summary (data)	
quantile( data, probs $=c(0,0.2, ~ 0.9))$	

Exercise 3. You can experiment, plot and so on. Try different distributions like $t$ and $\Gamma$ to get a feeling on them. Try help on sd, var, median, max, min, fivenum, IQR.

### 1.1.3 Further statistics

Compute histograms: ${ }^{1}$


Try also smoothScatter or the following example on nonparametric density estimation:

[^0]| Kernel estimators |  |
| :---: | :---: |
| ```x <- rnorm(100) y <- 2*x +rnorm(100) plot(x,y) lines(ksmooth(x,y,kernel="normal", bandwidth=1),col="green") lines(ksmooth(x,y,kernel="normal", bandwidth=2.5),col="red") z <- rgamma(100,shape=2) density(z) plot(density(z)) x <- seq(0.01,max(z),by=0.01) lines(x,dgamma(x,2),col="red")``` | This gives the NadarayaWatson kernel estimator with different bandwidths chosen. <br> A nonparametric method of estimating a density. |

Now if you feel well with R, go ahead and try some of your favorite simulations.
Exercise 4. Monte-Carlo experiment. What is $\mathbb{E}\left(\xi^{n}\right)$ with $n=1,2,3,4$ when $\xi$ is normally distributed. Or exponential, Gamma, $t$. Solve the question by Monte-Carlo:

```
> x <- rnorm(100)
> y <- x^4 #transformation with n=4
>mean(y) #The Monte Carlo estimate of the 4th moment
```

The background is of course the strong law of large numbers.

If you feel an expert, then try the following (difficult) financial application:
Exercise 5. Simulate a Brownian motion. Simulate a geometric Brownian motion (the Black-Scholes Model). Compute the price of a call option via Monte-Carlo, i.e. simulate 1000 payoffs and compute the mean

Hints: if $\left(W_{t}\right)_{t \geq 0}$ is a Brownian motion, it has independent and stationary increments. Moreover the increments are normally distributed:

$$
W_{t+\Delta}-W_{t} \sim \mathcal{N}(0, \Delta)
$$

We obtain a Brownian motion by accumulating independent, normally distributed random variables. Use the command cumsum for this. Simulate paths and plot for a double check. Finally, simulated $W_{1}$, the value of the Brownian motion at 11000 times and give a histogram. Is it a normal distribution (try qqplot). Has it mean zero? Has it variance 1? Yes - then you got it!

### 1.1.4 Defining our own functions

Of course a very powerful method is defining your own function. We start by giving a function for plotting a nice graph of a density. Note the substitute used for obtaining greek letters and inserting the values of variables in the title of the plot.

```
gnorm <- function(x) {
 m=0 # mean
 s=1 # sd
 y <- dnorm(x,m,s)
 plot(x,y,type="l",
 main =substitute(paste("Normal Density with ",mu == m,
 ", ",sigma == s),list(m=mu,s=sigma)))
}
```

We call this function for example by gnorm(seq $(-2,2, b y=0.1))$. Simply typing gnorm recalls the definition of this function.

## 2 Copulas and multivariate random variables

This section will have a focus on simulation, with a small section on estimation at the end. We start with the simulation of multivariate distributions ${ }^{1}$ (.mnorm, .mt, .mghyp in R) and give important implications for estimating correlations with heavy tails.

### 2.1 Multivariate models

Now we turn to the multivariate distributions. Define an easy function for the multivariate normal as follows ${ }^{2}$. To address a covariance (or correlation) matrix simply by the correlations, we use equicorr

```
equicorr <- function (d, rho)
{
 if (rho < (-(d - 1)^(-1)))
 stop(paste("rho must be at least", -(d - 1)^(-1)))
 J <- matrix(rho, nrow = d, ncol = d)
 D <- diag(rep(1 - rho, d))
 J + D
}
```

Taking $X=\mu+A Z$ with $Z$ being a vector of independent, standard normal variables gives a vector of normal variables with mean $\mu$ and covariance matrix $\Sigma=A A^{\prime}$, which we use in the following. Recall that the Cholesky-Decomposition of $\Sigma$ gives $A$.

```
rmnorm <- function (n, Sigma = equicorr(d, rho), mu = rep(0, d),
 d = 2, rho = 0.7)
{
 d <- dim(Sigma)[1]
```

[^1]```
    A <- t(chol(Sigma))
    X <- matrix(rnorm(n * d), nrow = n, ncol = d)
    mu.matrix <- matrix(mu, nrow = n, ncol = d, byrow = TRUE)
    return(t(A %*% t(X)) + mu.matrix)
}
```

This function gives us an easy way to call a simulation of a multivariate normal distribution.

| ```data <- rmnorm(2000,rho=0.4) plot(data)``` | 2-d Normal distribution, $\rho=0.4$ |
| :---: | :---: |

2.1.1 The probability and quantile transforms

An imporant idea needed here is the so-called probability transform: for a continuous random variable X with distribution function F the random variable

$$
F(X)
$$

is uniformly distributed.
Exercise 6. Implement a test for this: Simulate at-distribution and compute the (probability) transform $F(X)$. Test if this is uniformly distributed (Kolmogorov-Smirnov, or via a qqplot)

From a uniform random variable U we obtain a random variable with cumulative distribution function via the quantile transform:

$$
X \sim F^{-1}(U)
$$

```
> x <- runif(100)
> y <- qbeta(x)
> hist(y)
```

We can also test this via a nonparametric estimate of the cdf, the empirical distribution function. This is implemented in the function ecdf from the package stats:

| Emprical distribution | |
| :--- | :--- |
| require(stats)
 F10 <- ecdf(rnorm (10))
 summary (F10)
 plot(F10) | See help(ecdf) for more infor-
 mation. |
| plot(F10, verticals= TRUE,
 do.points = FALSE) | |

2.2 Copulas

For computing or simulation a copula we take a random vector (X_{1}, X_{2}) and transform it to

$$
\left(F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right)\right)
$$

The distribution of this vector is a copula. For any copula, there exists a random vector, such that its cdf is the copula. In this section we aim at simulating some copulas. The Gauss copula is obtained from the normal distribution:

| Gauss copula | | | |
| :--- | :--- | :--- | :--- |
| | | | |
| data <- rmnorm(2000, rho=0.7) | | | |
| U <- pnorm(data) | | | |
| plot(U) | | | |

The t-copula shall be compared to the Gauss copula and we define a function for simulating multivariate t-random variables.

```
rmt <- function (n, df = 4, Sigma = equicorr(d, rho),
    mu = rep(0, d), d=2, rho = 0.7)
{
    d <- dim(Sigma)[1]
    chi <- 2 * rgamma(n, shape = df/2)
    m1 <- rmnorm(n, Sigma = Sigma)
    m2 <- matrix(rep(sqrt(df)/sqrt(chi), d), ncol = d)
    mu.matrix <- matrix(mu, nrow = n, ncol = d, byrow = TRUE)
    return(m1 * m2 + mu.matrix)
}
```

Lets plot the t-random variables and the probability transforms.

```
data <- rmt(2000,rho=0.4,df=4)
plot(data,main="t")
U <- pt(data,df=4)
plot(U,main="t-copula")
```

Exercise 7. Simulate 100 Gaussian vectors (X_{i}, Y_{i}) with correlations $\rho=-0.8,0,0.8$ and transform X_{i} and Y_{i} to exponential, log-normal and normal variables with mean and variances of your choice. Plot the resulting data and the associated probability transforms (copula).

| 2-dimensional Normal and t-random variables | |
| :---: | :---: |
| ```data1 <- rmnorm(1000,d=2,rho=0.5) data2 <- rmt(1000,d=2,rho=0.5) var(data1) var(data2) cor(data1) cor(data2)``` | We use rmnorm and rmt to generate the 2 -dimensional random variables. Then we check for the resulting variances. Correlation is estimated via for. |
| cor.test (data2[,1], data2[, 2]) | If we want to have a confidence interval for the correlation, we use cor.test |

Next, we visualize these data.

| ```xmin=min(c(data1[,1],data2[,1])) xmax}=\operatorname{max}(c(data1[,1],\operatorname{data2[,1])) ymin}=min(c(data1[,2],data2[,2])) ymax=max(c(data1[,2],data2[,2])) par(mfrow=c(2,1)) plot(data1,xlab="x_i",ylab="y_i", xlim=c(xmin,xmax),ylim=c(ymin,ymax), main="Multivariate Normal, rho=0.5") plot(data2,xlab="x_i",ylab="y_i", xlim=c(xmin,xmax),ylim=c(ymin,ymax), main="Multivariate t_3, rho=0.5")``` | We first compute xmin,... to achieve the same scaling on both graphs. The output is split into two parts, using the parcommand. par (op) switches back to the single output window ${ }^{3}$. |
| :---: | :---: |

Clearly, the t-distribution shows much more outliers and heavy tails in comparison to the normal distribution. The variances, however, are different and after the following resealing still this difference appears.

```
data2[,1] <- sqrt(var(data1[,1])/var(data2[,1]))*data2[,1]
data2[,2] <- sqrt(var(data1[,2])/var(data2[,2]))*data2[,2]
```


Correlation as measure of dependence

In financial application it is very sensible to use correlation in the right way as we discuss in the coures. Here we illustrate this with the following example. We compute normal random variables with correlation of 0.8 and the transform them via the nonlinear function exp. The resulting correlation is much smaller! However, spearmans ρ_{S} does not show this effect. It is a dependence measure invariant to monotone transformations, a very suitable property in financial data. It is also less sensible to outliers.

```
set.seed(13)
sigma <- 4
rho <- 0.8
Sigma <- matrix(c(1,rho*sigma ,
    rho*sigma ,sigma^2 ),nrow=2)
x <- rmnorm(100,Sigma)
y <- exp(x)
cor(y)
cor(y,method="spearman")
```

We use set.seed to guarantee we work all on the same random numbers. The estimated correlation (0.35) differs largely from the initial correlation (0.8). Why is this the case? Illustrate this by plotting the data.

Try also alternatively Kendall's tau and Spearman's rho.

If the data is heavy tailed, sensitive measures like mean or sample correlation may severly fail to estimate the correct values. We show this using kendalls'tau ρ_{τ} in comparison to linear correlation ρ on t_{3} data. Recall the we have $\rho_{S}(X, Y)=\frac{6}{\pi} \arcsin \frac{\rho(X, Y)}{2} \approx$ $\rho(X, Y)$ and $\rho_{\tau}(X, Y)=\frac{2}{\pi} \arcsin \rho(X, Y)$.

| Robust measuring of correlation | |
| :---: | :---: |
| ```r1<-rep(0,1000) r2<-rep (0,1000) for (i in 1:1000){ x <- rmt(90,df=3,rho=0.5) r1[i]<-cor(x)[1,2] r2[i]<- sin(cor(x,method="kendall")[1,2]*pi/2) } par(mfrow=c(2,1)) plot(r1,main="Correlation") plot(r2,main="Kendalls tau")``` | We clearly see that robust measures like Spearman's ρ oder Kendall's τ are much better estimates if the data has heavy tails.
 Correlation
 Kendall's τ |

2.2.1 A first look at copulas

We simulate a number of copulas, starting with normal and t-copulas. The difference to our previous simulations with rmnorm is that we have to transform the marginals to a uniform distribution. This can be done by using the empirical cumulative distribution function (cdf) (which is an approximation, then) or by using the underlying cdf, which we call probability transform.

| Gauss and t-copula | |
| :---: | :---: |
| ```par(mfrow=c(2,2)) data <- rmnorm(2000,rho=0.4) plot(data,main="Normal",lwd=0.3) U <- pnorm(data) plot(U,main="Gauss copula",lwd=0.3) data <- rmt(2000,rho=0.4,df=4) plot(data,main="t",lwd=0.3) U <- pt(data,df=4) plot(U,main="t-copula",lwd=0.3)``` | In this code we use the probability transform by norm and pt which are the cdf's of the normal and t distribution. The parameter lwd=0.3 gives lighter circles. |

Exercise Simulate different mean-variance mixture distributions and their copulas. Compare the copulas obtained by the probability transform to the ones obtained by the empirical cdf (use ecdf).

2.3 Estimating copulas

Typically, copulas can be estimated via maximum-likelihood methods. This requires a more sophisticated implementation, in particular because the density is not so simple. You find the code from the QRMlib in QRMlibparts.R. Alternatively, you simply install the QRMlib. If the package is installed you can load it by

```
library(QRMlib)
```


2.3.1 Estimation via rank correlations

If the number of degrees of freedom is known, it remains only to estimate the correlation parameter. As indicated above, this can be done via Spearman's ρ or Kendall's τ.

| Estimation of the correlation coefficient | |
| :---: | :---: |
| ```N <- 100000 n <- 100 r1 <- rep(0,N);r2 <- r1;r3 <- r1 pb <- txtProgressBar(style=3) for (i in 1:N) { data <- rmt(15,rho=0.5) r1[i] <- cor(data)[1,2] r2[i] <- sin(cor(data,method="spearman")[1,2]*pi/6)*2 r3[i] <- sin(cor(data,method="kendall")[1,2]*pi/2) setTxtProgressBar(pb, i/N) } c(mean(r1), median(r1), var(r1)); ...``` | We use the txtProgressBar to follow the progress of this longer simulation. Using a smaller N speeds it up, leading to similar results. The output is
 [1] 0.4890 .4990 .0284
 [1] $0.470 \quad 0.4770 .0081$
 [1] 0.4910 .4980 .0082 |

| Simulating from a Gumbel copula | |
| :---: | :---: |
| data <- rcopula.gumbel $(1000,3,4)$
 pairs(data)
 $\mathrm{mu}<-0.02$; sigma <- 0.6
 stockdata <- 100*exp(mu+sigma*qnorm(data)) | We transform to log-normal margins, and obtain a Meta lognormal-Gumbel distribution. We also plot the logreturns. |
| ```plot(stockdata) plot(diff(log(stockdata)))``` | Log-Returns |
| ```data2 <- rcopula.gumbel(1000,2.7,2) data3 <- rcopula.gumbel(1000,7,2)``` | |

2 Copulas and multivariate random variables

As a next step we want to test the maximum-likelihood estimation of the copulas. We test some examples. In the QRMlib^{4} we find the necessary tools.

| Estimating a t-copula | |
| :---: | :---: |
| data <- rmt (1000, df = $5, \mathrm{rho}=0.8)$ | t_5 distribution, $\rho=0.8$ |
| list (Means=c(mean(data[,1]), mean(data[,2])),
 Variances=var(data),
 Correlation=cor(data) [1,2]) | \$Means
 [1] -0.017031 0.009217
 \$Variances
 \$Correlation
 [1] 0.7757727 |
| fit.norm(data) | Gives the exact result as above with log-likelihood
 ll. $\max =-2756.518$ |
| fit.mst(data) | The result is nu=5.23 degrees of freedom and a correlation of 0.801 and $\text { 11. } \max =-2648.338$ |

The higher likelihood under the t-copula suggest that this gives a better fit. This is

[^2]not a test for normal copula agains a t-copula, just a simple fitting argument (Can you name the difference?).

2.3.2 The generalised hyperbolic distribution

Next, we turn to the important class of generalized hyperbolic distributions. We use the notation $X \sim G H_{d}(\lambda, \chi, \psi, \mu, \Sigma, \gamma)$. The GH-distribution is a mixture:

$$
X=\mu+\gamma W+\sqrt{W} A Z
$$

where W has a generalized inverse Gaussian (GIG) distribution, $W \sim \operatorname{GIG}(\lambda, \chi, \psi)$. So μ is the mean, γ is the skewness parameter and $\Sigma=A A^{\prime}$ the covariance matrix (before mixing). As is easy to see by the Fourier-transform, the GH distribution is closed under linear transformations, i.e. $B X+b$ has distribution $G H_{d}\left(\lambda, \chi, \psi, B \mu+b, B \Sigma B^{\prime}, B \gamma\right){ }^{5}$ If $\lambda=\frac{1}{2}(d+1)$, we call the distribution a d-dimensional hyperbolic distribution. We obtain the t_{n} distribution with $\lambda=-\frac{n}{2}, \chi=n, \psi=0$; if $\gamma=0$ this is the (classical) unskewed t_{n}-distribution.

[^3]
Densities and simulation of the generalized hyperbolic distribution

```
x <- seq (-2,5,by=0.01)
plot(x,dghyp(x,0.5,1,1,0,0))
lines(x,dghyp(x,0.5,7,1,0,0), col=19)
lines(x,dghyp(x,-0.5,5,1,0,0), col=22)
lines(x,dghyp(x,-0.5,5,1,0,-1) , col=22)
lines(x,dghyp(x,-0.5,5,1,0,1), col=22)
d1 <- rmghyp(1000,-0.5*4,4,0,rho=0.7)
d2 <- rmghyp(1000,-0.5,5,1,rho=0.7)
d3 <- rmghyp(1000,-0.5,5,1,gamma=-1, ,rho=0.7)
d4 <- rmghyp(1000,-0.5,5,1,gamma=1,rho=0.7)
```


Some simulations. The first one is a t_{4}-distribution. The second line illustrates the skewness effect of γ.

Next, we aim at estimating the parameters of the generalized hyperbolic distribution. First, in the univariate and then in the 2-dimensional case. Simulations are used to analyze the performance of the estimation.

| | we obtain means variances | |
| :---: | :---: | :---: |
| N<- 100 | | |
| n<- 500 | 0.9926 | 0.0172 |
| $\operatorname{chi}<-\operatorname{rep}(0, \mathrm{~N})$ | 1.0503 | 0.0396 |
| rho <- rep (0,N) | 0.2010 | 0.0013 |
| ```for (i in 1:N){ fit <- fit.mNH(rmghyp(1000,-0.5,1,1,rho=0.2)) psi[i] <- fit$mix.pars[2] chi[i] <- fit$mix.pars[3] rho[i] <- fit$correlation[1,2] }``` | | |

A data example

This section aims at analyzing financial data. We first download data conveniently from the yahoo finance sites with the package fImport. Alternatively, any data in .csv (or other) format can be easily imported, for example with the comannds read.table, read.csv. We choose the stock prices from BBVA and Santander (NY), in Dollars.

Import data from finance.yahoo

```
require(fImport)
stocks <- yahooSeries(c("BBVA","STD"),
    nDaysBack=5000)
x <- stocks[,c("BBVA.Adj.Close",
    "STD.Adj.Close")]
plot(stockdata)
dx <- array(c(x[,1],x[,2]),
    dim=c(length(x[, 1]), 2))
dx <- diff(log(dx))
plot(data)
```


| mod.GAUSS <- fit.norm(dx) | The data analysis gives log likelihood max |
| :---: | :---: |
| mod.NIG <- fit.mNH(dx ,
 symmetric=FALSE, case="NIG") | GAUSS 17332.2 |
| ```mod.HYP <- fit.mNH(dx , symmetric=FALSE,case="hyp")``` | t 18177.9 |
| | NIG (symm) 18198.5 |
| mod.NIGs <- fit.mNH(dx , | GH (symm) 18165.9 |
| symmetric=TRUE, case="NIG") | NIG 18199.8 |
| ```mod.HYPs <- fit.mNH(dx , symmetric=TRUE,case="hyp")``` | GH 18167.2 |
| mod.GAUSS\$11.max | The best fit is in both cases, symmetric and asymmetric provided by the NIG distribution. |
| \# and similar | $\begin{array}{rll} \text { lambda } & \text { chi } & \text { psi } \\ -0.50 & 0.00 & 1310.6 \end{array}$ |
| | gamma |
| | -1.991-2.671 |

2.4 Definitions

This functions were used above, taken from QRMlib

```
# Generate a correlation matrix with equal correlations
equicorr <- function (d, rho)
{
    if (rho < (-(d - 1)^(-1)))
        stop(paste("rho must be at least", -(d - 1)^(-1)))
    J <- matrix(rho, nrow = d, ncol = d)
    D <- diag(rep(1 - rho, d))
    J + D
}
# Generate multivariate normal random variables
rmnorm <- function (n, Sigma = equicorr(d, rho),
                                mu = rep(0, d), d = 2, rho = 0.7)
{
    d <- dim(Sigma)[1]
    A <- t(chol(Sigma))
    X <- matrix(rnorm(n * d), nrow = n, ncol = d)
    mu.matrix <- matrix(mu, nrow = n, ncol = d, byrow = TRUE)
```

```
    return(t(A %*% t(X)) + mu.matrix)
}
```

For the multivariate t-distribution we use the representation $t=\mu+\sqrt{W} A Z$ where Z is standardnormal and W has an inverse Gamma distribution.

```
rmt <- function (n, df = 4, Sigma = equicorr(d, rho),
    mu = rep(0, d), d = 2, rho = 0.7)
{
    d <- dim(Sigma)[1]
    chi <- 2 * rgamma(n, shape = df/2)
    m1 <- rmnorm(n, Sigma = Sigma)
    m2 <- matrix(rep(sqrt(df)/sqrt(chi), d), ncol = d)
    mu.matrix <- matrix(mu, nrow = n, ncol = d, byrow = TRUE)
    return(m1 * m2 + mu.matrix)
}
```


3 Risk measures

In this section we take a closer look at the estimation of risk measures, in particular value-at-risk and expected shortfall. We assume that we have a history of losses and want to predict or control outcomes of a future loss. Xonsider the i.i.d. case, i.e. where we observe X_{1}, \ldots, X_{n} random variables which are independent and identically distributed and have the same distribution like $X=X_{n+1}$, the future loss. We want to estimate the risk regarding the unknown future outcome of X. Denote the cdf of X by F.

If F is continuous, or at least if $\mathbb{P}(X=\alpha)$, then the value at risk of X at confidence level α (typically 0.95 or 0.99) is

$$
\operatorname{VaR}_{\alpha}(X):=F^{-1}(\alpha)
$$

$F^{-1}(\alpha)$ is a particular quantile of X. If X is continuous at α, the quantile to the level α is unique and we denote it by $q_{\alpha}(X)$. It coincides with $F^{-1}(\alpha)$ in this case. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then

$$
\operatorname{VaR}_{\alpha}(X)=\mu+\sigma \Phi^{-1}(\alpha)
$$

where Φ is the cdf of the standard normal distribution. In the normal context value-at-risk is coherent, otherwise it is not, because the subadditivity fails. The second risk measure what we want to consider is the expected shortfall (average value-at-risk or conditional value at risk). It is defined by

$$
\mathrm{ES}_{\alpha}(X)=\frac{1}{1-\alpha} \int_{q_{\alpha}(X)}^{1} q_{u}(X) d u
$$

Note that for this definition we do not need continuity of X. If X is continuous, we also have that

$$
\operatorname{ES}_{\alpha}(X)=\mathbb{E}\left(X \mid X>\operatorname{VaR}_{\alpha}(X)\right)
$$

In the Gaussian case, i.e. if $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, we obtain

$$
\mathrm{ES}_{\alpha}(X)=\mu+\sigma \frac{\phi\left(\Phi^{-1}(\alpha)\right.}{1-\alpha}
$$

We start with an analysis of the IBEX index.

```
ibexd <- yahooSeries("`IBEX",nDaysBack=5000)
ibex <- ibexd[,"^IBEX.Adj.Close"]
plot(ibex,type="l")
ibex.d <- diff(ibex[1:length(ibex)])
ibex.loss.d <- -1*ibex.d
plot(density(ibex.loss.d))
mean(ibex.loss.d)
sd(ibex.loss.d)
```

We take the IBEX index as an example. Mean and sd compute to -0.35150

To compute the value-at-risk we first assume that the index loss has a normal distribution with mean -0.35 and sd of 150 .

| | The obtained risk measures are | |
| :---: | :---: | :---: |
| \{ | $\mathrm{VaR}_{0.95}$ | 246.37 |
| mu + sigma* qnorm(alpha) | $\mathrm{ES}_{0.95}$ | 309.06 |
| \} | $\mathrm{VaR}_{0.99}$ | 348.60 |
| | $\mathrm{ES}_{0.99}$ | 399.43 |
| ```ES.Gauss <- function(alpha=0.95,mu,sigma) { mu + sigma/(1-alpha)*dnorm(qnorm(alpha)) }``` | | |

```
plot(density(ibex.loss.d)
x <- seq(-1000,1000,by=10)
lines(x,dnorm(x,mean=-0.35,sd=150),col="red")
#We mark the risk measures in the graph
lines(c(246.37,246.37),c(0,0.0015))
text(250,0.0015,"VaR 0.95",adj=c(0,0))
lines(c(309.07,309.07),c(0,0.001))
text(311,0.001,"ES 0.95",adj=c (0,0))
lines(c(348.60,348.60),c(0,0.0006))
text(350,0.0006,"VaR 0.95",adj=c(0,0))
lines(c(399.43,399.43),c(0,0.0004))
text(400,0.0004,"ES 0.95",adj=c(0,0))
```

Next, we want to asses the quality of the risk measures. At the moment we employ two estimating possibilities:
(i) Naive: we substitute the estimated parameters $\hat{\mu}=\operatorname{mean}(\mathrm{X})$ and $\hat{\sigma}=\operatorname{sd}(\mathrm{X})$. This gives the estimate

```
VaR.Gauss(alpha,mean(data),sd(data))
```

(ii) Empirical: this uses the empirical quantile and is simply implemented by

```
VaR.emp <- function(x,alpha){
quantile(x,alpha)
}
```

We analyze the quality of this measures by a Monte-Carlo simulation:

```
mu <- -0.3525174
sigma <- 150.0785
N<- 1000; n<- 100; alpha <- 0.95
var.est1 <- rep(0,N); var.est2 <- rep(0,N)
for (i in 1:N){
data <- rnorm(n,mu,sigma)
var.est1[i] <- VaR.emp(data,alpha)
var.est2[i] <-
    VaR.Gauss(alpha,mean(data),sd(data))
}
plot(density(var.est2))
lines(density(var.est1))
lines(c(246.5,246.5),c(0,0.020)) #True VaR
```

[1] $239.76912 \quad 31.15811$
\$Naive
[1] $245.75854 \quad 23.45826$

3.1 Performance of the risk estimates

This is, however, until now a statistical analysis. In a financial sense we are much more interested in the question how often is the calculated risk capital sufficient to cover the occurring losses? This shall be addressed in the following. We perform a method similar to a backtesting approach and the routines can simply be extended to this.

```
mu <- -0.3525174
sigma <- 150.0785
```

N<- 1000
n<- 100 \# Learning period
M<- 100 \# Backtesting period
alpha <- 0.95
var.true <- VaR.Gauss(alpha,mu,sigma)
var.est1 <- rep(0,N)
var.est2 <- rep(0,N)
var.est3 <- rep(0,N)
counts <- rep $(0,4)$

```
for (i in 1:N){
data <- rnorm(n,mu,sigma)
var.est1[i] <- VaR.emp(data,alpha)
var.est2[i] <- VaR.Gauss(alpha,mean(data),sd(data))
var.est3[i] <- mean(data)+sd(data)*qt(alpha,n-1)
newperiod <- rnorm(M,mu,sigma)
counts[1] <- counts[1]+ sum(newperiod>var.est1[i])
counts[2] <- counts[2]+ sum(newperiod>var.est2[i])
counts[3] <- counts[3]+ sum(newperiod>var.est3[i])
counts[4] <- counts[4]+ sum(newperiod>var.true)
}
```

The output is as follows (counts $/ \mathrm{M} / \mathrm{N}$) :

| Method | Empirical | Naive | t | True VaR |
| :--- | :---: | :---: | :---: | :---: |
| Perc. failure | 0.05860 | 0.05320 | 0.05166 | 0.05005 |

Surprisingly, all the risk measures perform quite bad. This is due to the well-known effect that the distribution has to be estimated and estimating the parameters changes the original normal distribution to a t distribution. Still, it is surprising that the according t-estimate propagated in the literature performs so bad. This is due to the fact that the estimator is biased in probability. There is a theoretical solution to this, which we discussed in class. Here we aim at finding an empirical solution to this. We aim at computing the quantile factor q such that

$$
\operatorname{VaR}_{0.95}^{*}:=\operatorname{mean}(\text { data })+\operatorname{sd}(\text { data }) * q
$$

does produce an average number of $1-\alpha$ failures.

```
# Estimate the quantile level q empirically
N<- 1000
n<- 100 # Learning period
M<- 100 # Backtesting period
newperiod <- rep(0,N*M)
for (i in 1:N){
    data <- rnorm(n,mu,sigma)
    newperiod[(1+(i-1)*M):(i*M)] <- (rnorm(M,mu,sigma)-mean(data))/sd(data)
}
```

The outcome is surprisingly clear:
> quantile(newperiod,0.95)
95\%
1.668395

By simply adding

```
var.est4[i] <- mean(data)+sd(data)*1.668395
```

We can incorporate our new VaR-estimator in the above test and obtain

| Method | Empirical | Naive | t | New VaR | True VaR |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Perc. failure | 0.05860 | 0.05320 | 0.05166 | $\mathbf{0 . 5 0 5 1}$ | 0.05005 |

In accordance with our theoretical considerations the new factor is very close to

$$
\sqrt{\frac{n+1}{n}} t_{n-1}
$$

Accordingly we obtain the modified VaR estimator by

$$
\begin{equation*}
\operatorname{VaR}_{\alpha}^{*}:=\operatorname{mean}(\text { data })+\operatorname{sd}(\text { data }) * q t(a l p h a) * \operatorname{sqrt}((\mathrm{n}+1) /(\mathrm{n})) . \tag{3.1}
\end{equation*}
$$

Exercise 8. Translate this considerations to a t-distribution and proceed with the following steps:

- Estimate at (or a generalised inverse Gaussian) distribution from the IBEX data.
- Propose VaR-estimates: naive estimation, empricial estimation and an estimation with is according to (3.1).
- Study mean, variance and distribution of these estimates with a simulation study.
- Implement a backtesting procedure and analyze as above how this estimations perform.

Exercise 9. What are appropriate criteria for the expected shortfall? How can this mechanisms be transported?

4 Estimation of diffusions and affine models

We discuss the implementation of some estimation methods for continuous, affine, onedimensional diffusions. A great survey on the estimation methods can be found in [?]. Essentially, we consider models of the class

$$
d X_{t}=\mu\left(X_{t}, \theta\right) d t+\sigma\left(X_{t}, \theta\right) d W_{t},
$$

i.e. continuous Markov processes. Famous examples are the affine models and, in particular, the Vasicek and the Cox-Ingersoll-Ross models.

4.1 Simulation

The Vasicek model is a special Ornstein-Uhlenbeck process. In classical notation we state it by

$$
d X_{t}=\kappa\left(\theta-X_{t}\right) d t+\sigma d W_{t}
$$

It has the explicit solution ${ }^{1}$

$$
X_{t}=\theta+\left(X_{0}-\theta\right) e^{-\kappa t}+\sigma e^{-\kappa t} \int_{0}^{t} e^{\kappa s} d W_{s}
$$

For a simulation we can use this explicit solution, which is however not feasible for more general diffusions. In these cases we have the possibility to approximate the solution by discretization. The simplest one is the Euler-Maruyama discretization,

$$
x_{t_{i}}=\mu\left(x_{t_{i-1}}\right)\left(t_{i}-t_{i-1}\right)+\sigma\left(x_{t_{i-1}}\right) \epsilon_{i}
$$

where $\epsilon_{1}, \epsilon_{2}, \ldots$ are independent and $\epsilon_{i} \sim \mathcal{N}\left(0, t_{i}-t_{i-1}\right)$. Of a faster convergence is the Milstein scheme, where

$$
x_{t_{i}}=x_{t_{i-1}}+\mu\left(x_{t_{i-1}}\right)\left(t_{i}-t_{i-1}\right)+\sigma\left(x_{t_{i-1}}\right) \epsilon_{i}+\frac{\sigma\left(x_{t_{i-1}}\right)}{2} \frac{\partial \sigma\left(x_{t_{i-1}}\right)}{\partial x}\left(\epsilon_{i}^{2}-\left(t_{i}-t_{i-1}\right)\right)
$$

In the Vasicek model, both methods coincide. For $t_{i}-t_{i-1}$ small enough, the methods are very close:

[^4]```
vas.sim <- function (n,theta,sigma,kappa,Delta,vas0,method="exact") {
 simul <- rep(0,n); simul[1] <- vas0
 for (i in 2:n){
 simul[i] <- theta + (simul[i-1]-theta)*exp(-1*kappa *Delta)
 + sigma*rnorm(1,0,sqrt((1-exp(-2*kappa*Delta))/2/kappa))
 }
 return (simul)
}
```

For the Euler method we use
simul[i] <- simul[i-1]
+kappa*(theta-simul[i-1])*Delta
+sigma*rnorm(1, 0,sqrt(Delta))
instead. For delta smaller than 0.1 the difference is typically very small. The Milstein method is only relevant for the CIR process.


Exercise 10. Implement the simulation of the CIR process with all three methods and compare their performance.

The simulation of the CIR process is much more difficult, as you will experience. What to do if the process gets below zero?

### 4.2 Maximum-Likelihood estimation

For the maximum-likelihood estimation we rely on R's routine optim. In the Vasicek model we have the exact density and can simply maximise the log-likelihood. We assume that we observe $x_{i \Delta}, i=0, \ldots, n-1$, i.e. $n$ data points. The first point $x_{0}$ is deterministic. Then

$$
\begin{aligned}
l l(x ; \theta) & =-\frac{n-1}{2} \ln (2 \pi)-\frac{n-1}{2} \ln (V)-\frac{1}{2 V} \sum_{i=1}^{n-1}\left(x_{i \Delta}-\beta-\left(x_{(i-1) \Delta}-\beta\right) e^{-\alpha \Delta}\right)^{2}, \\
V & =\frac{\sigma^{2}}{2 \alpha}\left(1-e^{-2 \alpha \Delta}\right) .
\end{aligned}
$$

We maximize ${ }^{2}$ this function with respect to $\theta=(\alpha, \beta, \sigma)^{\prime}$. We will see that estimation of $\beta$ and $\sigma$ is by far simpler than estimating $\alpha$.

```
vas.ll <- function (params,Delta,Data) {
 alpha <- params[1]
 beta <- params[2]
 sigma <- params[3]
 n <- length(Data)
 vassigma2 <- (sigma^2)*(1-exp(-2*alpha*Delta))/2/alpha
 summe <- -1/2/vassigma2* sum ((Data[2:n]-beta-
 (Data[1:(n-1)]-beta)*exp(-1*alpha*Delta))^2)
 return((1-n)/2*log(2*pi) - (n-1)/2*log(vassigma2)+summe)
}
vas.mle<- function (Delta,Data,output=FALSE){
 startvalue <- c(0.1,0.1,0.1) # arbitrary
 MLE.out <- optim (startvalue,vas.ll,gr = NULL, method = "Nelder-Mead",
 lower = -Inf, upper = Inf, control = list(fnscale=-1),
 hessian = FALSE, Delta,Data)
 return (c(MLE.out[[1]][1],MLE.out[[1]][2],MLE.out[[1]][3]))
}
```

It should be noted that optim is a numerical procedure which depends on the start value. The Nelder-Mead method seems to be quite robust. The BFGS method has a better performance, but choosing $\alpha=\beta=\sigma=0.5$ and starting with 0.1 leads to convergence but no sensible result.

We compare our results to the ones from Hurn et. al (2007) in the following exercise.
Exercise 11. Simulate 2000 runs of a MLE estimation of a Vasicek model with parameters $\alpha=0.2, \beta=0.08$ and $\sigma=0.1$. Assume that you observe in each run 500 data points with $\Delta=1 / 12$ and $x_{0}=\beta$.

We state the outcome in terms of mean error and root mean square error $\left(N^{-1} \sum_{i=1}^{N}\left(\hat{\theta}_{i}-\right.\right.$ $\theta)$ and $\sqrt{N^{-1} \sum_{i=1}^{N}\left(\hat{\theta}_{i}-\theta\right)^{2}}$. We use the parameters $\theta_{1}=(0.2,0.08,0.1)$ and $\theta_{2}=$ $(0.3,0.4,0.5)$ for a simulation study. The start value of the optimization is $\theta_{0}=$ $(0.1,0.1,0.1)^{\prime}$.

[^5]|  | Mean error in $\alpha$ <br> $($ RMS error in $\alpha)$ | Mean error in $\beta$ | Mean error in $\sigma$ |
| :--- | :---: | :---: | :---: |
|  | (RMS error in $\beta$ ) | $($ RMS error in $\sigma)$ |  |
| MLE $\theta_{1}$ | 0.110200 | 0.000246 | -0.002569 |
|  | $(0.183036)$ | $(0.077009)$ | $(0.023177)$ |
| MLE $\theta_{2}$ | 0.100273 | -0.031805 | 0.001530 |
|  | $(0.197201)$ | $(0.288133)$ | $(0.016250)$ |
| MLE. corr $\theta_{1}$ | 0.108214 | -0.000351 | 0.000142 |
|  | $(0.180004)$ | $(0.076279)$ | $(0.003229)$ |

It is important that these estimators are biased! Even if the mean error is very small, a t.test rejects the hypothesis that the bias is zero immediately. So for MLE.corr we crudely estimated the bias by simulation and subtracted it. In contrast to typical bootstrap approaches this did not give an increasing variance, so this seems to be currently the best way to estimate the parameters. The estimation of $\alpha$ should be possible to improve, however. The t.test for the bias now does not reject on $\hat{\beta}$ and $\hat{\sigma}$. Note !

We used the following code:

```
alpha=0.2; beta=0.08; sigma=0.1; delta=1/12
n=500; N=2000
thetahat = array(rep(0,3*N),dim=c(N,3))
for (i in 1:N){
 thetahat[i,]= (vas.mle(delta,vas.sim(n,alpha,beta,sigma,delta,0))
 - c(alpha,beta,sigma))
}
cat("\n Mean errors: \n")
print(c(mean(thetahat[,1]),mean(thetahat[,2]),mean(thetahat[,3])))
cat("\n RMS erros: \n")
print(c(sqrt(mean(thetahat[,1]^2)),sqrt(mean(thetahat[,2]^2))
 ,sqrt(mean(thetahat[,3]^2))))
cat("\n Test for bias: \n")
print(c(t.test(thetahat[,1],alternative="two.sided")$p.value,
 t.test(thetahat[,2],alternative="two.sided")$p.value,
 t.test(thetahat[, 3],alternative="two.sided")$p.value),digits=3)
```

The density of the (centered) estimators are easily plotted:


and for the second sets of parameters:



In particular, the plots of the estimators for $\alpha$ and $\beta$ show significant skewness. Also the bias is illustrated (not always, though). It is important to recall that we have $N=2000$ observations.

### 4.2.1 GMM

The generalized method of moments (GMM) is a flexible and powerful method for estimation. We follow Chaussé (2010) and give a short outline and the implementation for the estimation of affine processes with R. In this regard we will be able to profit from the gmm-package available.

Assume that we aim at estimating $\theta_{0} \in \mathbb{R}^{p}$ and we have $q>p$ moment conditions of the form

$$
\mathbb{E}\left(g\left(\theta_{0}, X_{i}\right)\right)=0, \quad i=, \ldots, n
$$

$X_{1}, \ldots, X_{n}$ is the observation or a transformation of it, in our case we would see a discrete observation of a stochastic process. $\theta_{0}$ is the unique solution of the above
equation and element of a compact space. We also need some boundedness of higher moments (see ...).

As $q$ is typically greater than $q$ we have no solution of

$$
\bar{g}(\theta):=\frac{1}{n} \sum_{i=1}^{n} g\left(\theta, x_{i}\right),
$$

(which otherwise would be our estimator). We therefore rely on minimizing a quadratic distance

$$
\bar{g}(\theta)^{\top} W \bar{g}(\theta)
$$

It can be shown that the optimal weigth matrix $W$ is

$$
W^{*}=\left(\lim _{n \rightarrow \infty} \operatorname{Var}\left(\sqrt{n} \bar{g}\left(\theta_{0}\right)\right)\right)^{-1}
$$

This matrix, however, must be estimated and there are different schemes available for this (two-step as in Hansen (1982) or iterative procedures as in Hansen et. al (1996)). Under weak conditions we have asymptotic normality and consistency.

Example 4.2.1. Suppose we have i.i.d. observations which are $\mathcal{N}\left(\mu, \sigma^{2}\right)$ distributed. We could use the following moment conditions:

$$
\mathbb{E}\left(\begin{array}{c}
X_{i}-\mu \\
\left(X_{i}-\mu\right)^{2}-\sigma^{2} \\
X_{i}^{3}-\mu\left(\mu^{2}+2 \sigma^{2}\right)
\end{array}\right)=0
$$

to estimate with GMM. Note that we do not use the density, i.e. the method will be clearly less efficient as maximum-likelihood. On the other side we gain in robustness agains miss specification of the density. Implementation is done as follows (borrowed from Chaussé, 2010)

```
g1 <- function(tet, x) {
 m1 <- (tet[1] - x)
 m2 <- (tet[2]^2 - (x - tet[1])^2)
 m3 <- x^3 - tet[1] * (tet[1]^2
 + 3 * tet[2] ^2)
 f <- cbind(m1, m2, m3)
 return(f) }
Dg <- function(tet, x) {
 G <- matrix(c(1, 2 * (-tet[1] + mean(x)),
 -3 * tet[1]^2 - 3 * tet[2]^2,
 0, 2 * tet[2], -6 * tet[1] * tet[2]),
 nrow = 3, ncol = 2)
 return(G) }
x <- rnorm(200, mean = 4, sd = 2)
gmm(g1, x, c(mu = 0, sig = 0), grad = Dg))
```

This runs the hmm function with moment conditions given in the function g 1 and data in x . The starting vector is simply $(0,0)$ with names given. The gradient is provided in Dg , which improves the performance.

Many existing methods can be seen as a special case of GMM, as for example the maximum-likelihood estimation.

### 4.2.2 GMM for affine models

Considering the Vasicek model, we again use the Euler discretization

$$
x_{t_{i}}-x_{t_{i-1}} \approx \alpha\left(\beta-x_{t_{i-1}}\right)\left(t_{i}-t_{i-1}\right)+\epsilon_{i} ;
$$

$\epsilon_{1}, \ldots$ are independent and $\sim \mathcal{N}\left(0, \sigma^{2}\left(t_{i}-t_{i-1}\right)\right)$. This leads to the following moment conditions;

$$
\mathbb{E}\left(\begin{array}{c}
\epsilon_{i} \\
\epsilon_{i} X_{t_{i-1}} \\
\epsilon_{i}^{2}-\sigma^{2} *\left(t_{i}-t_{i-1}\right) \\
\left(\epsilon_{i}^{2}-\sigma^{2} *\left(t_{i}-t_{i-1}\right)\right) X_{t_{i-1}}
\end{array}\right)=0 .
$$

```
vas.g <- function(theta, x) {
 t <- length(x)
 et <- diff(x) - theta[1]*(theta[2] - x[-t])*Delta
 ht <- et^2 - (theta[3])^2*vas.gmm.Delta
 g <- cbind(et, et * x[-t], ht , ht * x[-t])
```

```
 return(g)
}
```

We call of the function hmm as follows: we set vas.gmm. Delta as global variable using <<- The function does not always converge in which case we obtain a warning. Then the starting values must be improved, eg. by using a linear regression or a moment estimator. It is remarkable that using the explicit solution of the moments does not provide an improvement of the method.

```
vas.gmm<- function (Delta,data,output=FALSE,tet0 = c(0.1,0.1,0.1))
{
 vas.gmm.Delta <<- Delta # global
 gmm_res <- gmm(vas.g, data, t0 = tet0,
 control = list(maxit = 1000, reltol = 1e-10))
 coef(gmm_res)
}
```

	Mean error in $\alpha$   $($ RMS error in $\alpha)$	Mean error in $\beta$   $($ RMS error in $\beta)$	Mean error in $\sigma$   $($ RMS error in $\sigma)$
MLE $\theta_{1}$	0.110200	0.000246	-0.002569
	$(0.183036)$	$(0.077009)$	$(0.023177)$
MLE $\theta_{2}$	0.100273	-0.031805	0.001530
	$(0.197201)$	$(0.288133)$	$(0.016250)$
GMM $^{3} \theta_{1}$	0.111979	-0.002128	0.000158
	$(0.181764)$	$(0.076595)$	$(0.003086)$
GMM $\theta_{2}$	0.101213	0.002594	-0.009704
	$(0.183155)$	$(0.259188)$	$(0.018861)$

The performance of the estimators is best viewed with the density plots of the bias of our 2000 simulations: for $\theta_{1}=(0.2,0.08,0.1)^{\prime}$ we obtain a small advantage in the first coordinate while the estimator of $\sigma$ has a bias. Note that the precision in $\sigma$ is by far higher as in the two other coordinates. For $\theta_{2}=(0.3,0.4,0.5)^{\prime}$ this pattern becomes clearer: for $\beta$ the GMM performs better while for $\sigma$ there is a clear bias.

4 Estimation of diffusions and affine models


Exercise 12. Implement a GMM estimator of a CIR model.

## A Commands

The distributions (norm, gamma, beta... ) are listed in the appendix.
Command Examples
Comment
$c \quad c(1,2)$
d... dnorm(0)
$\operatorname{dim} \quad \operatorname{dim}(X)$
function rtnew <- function(N, $\mathrm{n}=2)$ ( $\mathrm{rt}(\mathrm{N}, \mathrm{n})\}$
matrix matrix(1:4,ncol=2)
par $\operatorname{par}(m f r o w=c(2,1)), \operatorname{par}(o p)$
q... qnorm(0.95)
r... rnorm(100)
rep $\quad \operatorname{rep}(2,100)$
seq $\quad \operatorname{seq}(1,10, b y=0.1)$
$t \quad t(X)$
$\% * \% \quad \mathrm{~A} \% * \% \mathrm{t}(\mathrm{X})$
Mathematical functions
sin, cos, sqrt, exp, log

## A Commands

## A. 1 Distributions

$\ldots$...-)Distribution	S-Name	Parameters
Beta	beta	shape1, shape2, ncp= 0
Binomial	binom	size, prob
Cauchy	cauchy	location= 0, scale= 1
$\chi^{2}$	chisq	df, ncp= 0
Exponential	exp	rate= 1
F	f	df1, df2 ( $\mathrm{ncp}=0$ )
Gamma	gamma	shape, rate= 1
Geometrische	geom	prob
Hypergeometrische	hyper	m, $\mathrm{n}, \mathrm{k}$
Log-Normal	lnorm	meanlog= 0, sdlog= 1
Logistische	logis	location= 0, scale= 1
Multinomial	multinom	size, prob
Multivariate Normal   (Im package mvtnorm)	mvnorm	$\begin{aligned} & \text { mean }=\operatorname{rep}(0, d), \text { sigma }= \\ & \operatorname{diag}(d)(\text { with } d=\text { Dimension }) \end{aligned}$
Multivariate $t$   (Im package mvtnorm)	mtnorm	(complicated; nur p...., q.... und r....)
Negative Binomial	nbinom	size, prob
Normal	norm	mean= 0 , sd= 1
Poisson	pois	lambda
Wilcoxon's signedsum of ranks	signrank	n
Students $t$	t	df, ncp= 0
Uniforme	unif	$\min =0, \max =1$
Weibull	weibull	shape, scale= 1
Wilcoxon's sum of ranks	wilcox	m, n

We will meet further multivariate distributions in the QRMIib


[^0]:    ${ }^{1}$ You can look at Bret Largets introdution: http://www.stat.wisc.edu/~larget/R/eda-R.pdf for further explanations and examples.

[^1]:    ${ }^{1}$ The functions .mnorm .mt are taken from the QRM lib. See the appendix for details and code.
    ${ }^{2}$ This and the following functions are taken from the QRMlib. We list them again in the appendix, for your reference.

[^2]:    ${ }^{4}$ This library provides a lot of fitting algorithms: fit.AC, fit.Archcopula2d, fit.gausscopula, fit.mNH, fit.mst, fit.norm, fit.tcopula, fit.tcopula.rank besides other fitting routines for univariate distributions or extreme-value methods.

[^3]:    ${ }^{5}$ There are many special cases, hyperbolic, NIG, Variance Gamma and so on.

[^4]:    ${ }^{1}$ See Cucchiero, for example

[^5]:    ${ }^{2}$ Typically it may happen that the maximization does not converge. This should be covered by using checking if MLE. out returns non-zero convergence.

