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7.1. Kushner-Stratonovich and Zakai equation

Let X solve the martingale problem associated to A : D(A) ✓ B(Rd) ! B(Rd) and let
dYt = h(Xt)dt +dWt . It can be shown under certain conditions that the normalized filter
satisfies the Kushner-Stratonovich equation

dpt( f ) = pt(A f )dt +
�
pt( f h)�pt( f )pt(h)

��
dYt �pt(h)dt

�
, f 2 D(A),

and the unnormalized filter satisfies the Zakai equation

drt( f ) = rt(A f )dt +rt( f h)dYt , f 2 D(A).

Deduce the Kushner-Stratonovich equation from the Zakai equation and the Kallianpur-
Striebel formula pt( f ) = rt( f )/rt(1).

Hint: Apply Itō’s formula to rt( f )/rt(1). What is the generator A applied to the constant
function 1?

7.2. Kalman-Bucy filter

Let X and Y be real-valued processes solving the SDE

dXt =
�
a

0

+a
1

Xt
�
dt +bdW 1

t ,

dYt =
�
L

0

+L
1

Xt
�
dt +BdW 2

t ,

with normally distributed initial condition (X
0

,Y
0

), where W 1 and W 2 are two independent
Wiener processes on R and where B2 > 0.
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Assume that pt ⇠N ( ˆXt , ˆSt) for some ˆXt and ˆSt and that the Kushner-Stratonovich equa-
tion holds for the functions f (x) = x and f (x) = x2. Show that

d ˆXt =
�
a

0

+a
1

ˆXt
�
dt +

ˆStL1

B2

�
dYt � (L

0

+L
1

ˆXt)dt
�
,

d ˆSt

dt
= 2a

1

ˆSt +b2 � ( ˆStL1

)2

B2

,

with initial conditions

ˆX
0

= E[X
0

|Y
0

], ˆS
0

= Var(X
0

|Y
0

).

Remark: The assumption that pt is normally distributed and that the Kushner-Stratonovich
equation holds for the functions f (x)= x and f (x)= x2 is justified in [1, Proposition 6.14].

7.3. Filtering the drift in a conditionally Gaussian model

We work on a finite time interval [0,T ]. Let (Wt)t2[0,T ] be standard Brownian motion, X
an independent random variable with finite exponential moments, and Yt = tX +sWt ,
t 2 [0,T ].

a) Define an equivalent probability measure ˜P on FT such that Y becomes a mar-
tingale and independent of X . Show that the unnormalized filter is given by

rt(A) =
Z

A
exp

✓
s

�2xYt �
1

2

s

�2x2t
◆

µ(dx).

Note that this shows that Yt is a su�cient statistic for X .

b) Suppose in addition that X is normally distributed. Then pt is normally distributed
by a). Calculate the mean ˆXt and covariance ˆSt of pt and verify that you get the
same result as in Exercise 7.2.
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7.4. Filtering the drift in the Black-Scholes model

Use the process Yt of Exercise 7.3.b) as a model for log prices, where t is measured in
years.

a) Download daily S&P 500 quotes (or any other quotes you are interested in) for a
period of one year, ending today.1 Propose a reasonable estimator for s . What
value do you get for your dataset?

b) Use the equation for ˆSt and realistic parameter values to derive 95% confidence
intervals for the posterior distribution of X given Ft(Y ). How many years of data
are necessary to get reasonable precision?
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1Go to http://finance.yahoo.com/q?s=gspc, select ‘Historical Prices’, set the appropriate date range,
click on ‘Download to Spreadsheet’ at the bottom of the page, and load the closing prices into your
favorite software (MATLAB, R, . . . ).
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