

Stochastic Filtering (SS2016) Exercise Sheet 1

Lecture and Exercises: JProf. Dr. Philipp Harms Due date: April 27, 2016

1.1. Measures

Let $(\mathbb{X}, \mathscr{X})$ be a measurable space.

- a) Give the definitions of the set $\mathscr{M}(\mathbb{X})$ of σ -finite measures and the subset $\mathscr{P}(\mathbb{X})$ of probability measures.
- b) The spaces $\mathscr{M}(\mathbb{X})$ and $\mathscr{P}(\mathbb{X})$ are endowed with the σ -algebra generated by the mappings $\pi_A : \mu \mapsto \mu(A), A \in \mathscr{X}$. Give the definition of this σ -algebra and show that $\mathscr{P}(\mathbb{X})$ is a measurable subset of $\mathscr{M}(\mathbb{X})$.
- c) Show that the mappings $\pi_f: \mu \mapsto \int f d\mu$, where *f* runs through the set of bounded measurable functions on \mathbb{X} , generate the same σ -algebra.

1.2. Kernels

Fix two measurable spaces $(\mathbb{X}, \mathscr{X})$ and $(\mathbb{Y}, \mathscr{Y})$.

- a) Give the definitions of kernels and probability kernels from X to Y.
- b) Show that the mapping $\delta : \mathbb{X} \times \mathscr{Y} \to [0,1], (x,A) \mapsto \mathbb{1}_A(f(x))$ is a probability kernel from \mathbb{X} to \mathbb{Y} iff $f : \mathbb{X} \to \mathbb{Y}$ is measurable.
- c) Show that $P : \mathbb{X} \times \mathscr{Y} \to [0,1]$ is a probability kernel from \mathbb{X} to \mathbb{Y} iff $P : \mathbb{X} \to \mathscr{P}(\mathbb{Y})$ is measurable.

1.3. Conditioning

Let *X* and *Y* be random variables on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ with values in measurable spaces $(\mathbb{X}, \mathscr{X})$ and $(\mathbb{Y}, \mathscr{Y})$. Moreover, let \mathscr{G} be a σ -algebra contained in \mathscr{F} .

- a) What are the definitions of the regular conditional probabilities $P_{X|\mathscr{G}}$ and $P_{X|Y}$?
- b) Are $\mathbb{P}[X \in \cdot | Y]$ and $P_{X|Y}(Y, \cdot)$ random probability measures, i.e., probability kernels on (Ω, \mathscr{F}) ? Which properties need to be verified?
- c) Show that $P_{X|\sigma(Y)}(\omega, A) = P_{X|Y}(Y(\omega), A)$ holds identically.

1.4. Bayes' formula

Let *X* and *Y* be random variables with values in measurable spaces $(\mathbb{X}, \mathscr{X})$ and $(\mathbb{Y}, \mathscr{Y})$, respectively. Assume that the law of (X, Y) can be written in the form $\Lambda(x, y)\mu_X(dx)\mu_Y(dy)$ for some non-negative measurable function $\Lambda : \mathbb{X} \times \mathbb{Y} \to \mathbb{R}$ and some probability measures $\mu_X \in \mathscr{P}(\mathbb{X})$ and $\mu_Y \in \mathscr{P}(\mathbb{Y})$.

a) Show that the following is a regular conditional probability of *X* given *Y*:

$$P_{X|Y}(y,A) = \frac{\int_A \Lambda(x,y)\mu_X(dx)}{\int \Lambda(x,y)\mu_X(dx)}$$

(In the expression above, the fraction is set to zero if the denominator vanishes.)

b) Use a) to calculate the regular conditional probability of *X* given *Y* if (X, Y) is multivariate Gaussian.

Hint: the solution is $P_{X|Y}(y, dx) \sim \mathcal{N}(\hat{X}, \hat{\Sigma})$ with

$$\hat{X} = \mathbb{E}[X] + \operatorname{Cov}(X, Y) \operatorname{Var}(Y)^{-1}(y - \mathbb{E}[Y]),$$

$$\hat{\Sigma} = \operatorname{Var}(X) - \operatorname{Cov}(X, Y) \operatorname{Var}(Y)^{-1} \operatorname{Cov}(Y, X),$$

where $Var(Y)^{-1}$ is the generalized inverse of the (co-)variance matrix of *Y*.

1.5. Hidden Markov Models

Let (X, Y) be a Markov process. Show that the following statements are equivalent:

- a) The transition kernel of (X, Y) is of the form P(x, dx')K(x', dy').
- b) *X* is Markov in the filtration generated by (X, Y), and Y_{k+1} is independent of (X_k, Y_k) conditional on X_{k+1} , for each $k \in \mathbb{N}$.
- c) X_{k+1} is independent of Y_k conditional on X_k , and Y_{k+1} is independent of (X_k, Y_k) conditional on X_{k+1} , for each $k \in \mathbb{N}$.

1.6. Hidden Markov Models

a) Show that the process (X, Y) defined by

$$X_{k+1} = f(X_k, \alpha_k), \qquad Y_{k+1} = g(X_{k+1}, \beta_k), \quad k = 0, 1, 2, \dots$$

is a Hidden Markov Model, where $f : \mathbb{X} \times [0,1] \to \mathbb{X}$ and $g : \mathbb{X} \times [0,1] \to \mathbb{Y}$ are measurable functions, and where $(\alpha_k)_{k \in \mathbb{N}}$ and $(\beta_k)_{k \in \mathbb{N}}$ are independent sequences of i.i.d. [0,1]-valued random variables.

b) Conversely, show that any Hidden Markov Model is of this form if $\mathbb X$ and $\mathbb Y$ are Borel spaces.

Hint. You may use [1, Theorem 6.10] and the discussions preceding this theorem.

References

[1] Olav Kallenberg. *Foundations of modern probability*. 2nd ed. Springer Verlag, New York, 2002.