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Although historically models in mathematical finance were based on Brown-

ian motion and thus are models with continuous price paths, jump processes

play now a key role across all areas of finance (see e.g. [5]). One reason for

this move into a new class of processes is that because of their distributional

properties diffusions in many cases cannot provide a realistic picture of empir-

ically observed facts. Another reason is the enormous progress which has been

made in understanding and handling jump processes due to the development

of semimartingale theory on one side and of computational power on the other

side.

The simplest jump process is a process with just one jump. Let T be

a random time – actually a stopping time with respect to an information

structure given by a filtration (Ft)t≥0 – then

Xt = 1l{T≤t} (t ≥ 0) (1)

has the value 0 until a certain event occurs and 1 then. As simple as this

process looks like, as important it is in modeling credit risk, namely as the

process which describes the time of default of a company. The next step are

processes which are integer-valued with positive jumps of size 1 only, so-called

counting processes (Xt)t≥0. Xt describes the number of events which have

occurred between time 0 and t. This could be the number of defaults in a large

credit portfolio or of claims customers report to an insurance company. The
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standard case is a Poisson process (Nt)t≥0 where the distribution ofXt is given

by a Poisson distribution with parameter λt. Equivalently one can describe

this process by requiring that the waiting times between successive jumps are

independent, exponentially distributed random variables with parameter λ.

The natural extension in a compound Poisson process (Xt)t≥0, i.e. a pro-

cess with stationary independent increments where the jump size is no longer

1, but given by a probability law µ. Let (Yk)k≥1 be a sequence of indepen-

dent random variables with distribution L(Yk) = µ for all k ≥ 1. Denote by

(Nt)t≥0 a standard Poisson process with parameter λ > 0 as above which is

independent of (Yk)k≥1, then we can represent (Xt)t≥0 in the form

Xt =

Nt
∑

k=1

Yk. (2)

A typical application of compound Poisson processes is to model the cu-

mulative claim size up to time t in a portfolio of insurance contracts where the

individual claim size is distributed according to µ. For the sake of analytical

tractability it is often useful to compensate this process, i.e. to substract the

average claim size E[Xt]. Assuming that µ has a finite expectation and using

stationarity and independence we conclude E[Xt] = tE[X1] and therefore get

the representation

Xt = tE[X1] + (Xt − E[Xt]). (3)

The compensated process (Xt − E[Xt])t≥0 is a martingale and therefore (3)

is a decomposition of the process in a linear drift E[X1] · t and a martingale.

Representation (3) motivates the definition of a general semimartingale as a

process which is adapted to a filtration (Ft)t≥0, has paths which are right-

continuous and have left limits (càdlàg paths) and allows a decomposition

Xt = X0 + Vt +Mt (t ≥ 0) (4)

where V = (Vt)t≥0 is an adapted, càdlàg process of finite variation and

M = (Mt)t≥0 is a local martingale. There exist processes which are not semi-

martingales. An important class of examples are fractional Brownian motions
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with the exception of usual Brownian motion which is a semimartingale. We

do not go beyond semimartingales in this discussion mainly because for semi-

martingales there is a well-developed theory of stochastic integration, a fact

which is crucial for modeling in finance.

The representation (4) is not unique in general. It becomes unique with a

predictable process V if we consider special semimartingales. A semimartin-

gale can be made special by taking the big jumps away, e.g. jumps with

absolute jump size bigger than 1. This follows from the well-known fact

that a semimartingale with bounded jumps is special [11, I.4.24]. Denote by

∆Xt = Xt −Xt− the jump at time t if there is any, then

Xt −
∑

s≤t

∆Xs1l{|∆Xs|>1} (5)

has bounded jumps. Further let us note that any local martingale M (with

M0 = 0) admits a unique (orthogonal) decomposition into a local martingale

with continuous paths M c and a purely discontinuous, local martingale Md

([11, I.4.18]). Assuming X0 = 0 we got the following unique representation for

semimartingales

Xt = Vt +M c +Md +
∑

s≤t

∆Xs1l{|∆Xs|>1}. (6)

In order to analyse Md in more detail we introduce the random measure

of jumps

µX(ω; dt, dx) =
∑

s>0

1l{∆Xs(ω) 6=0}ε(s,∆Xs(ω))(dt, dx) (7)

where εa denotes as usual the unit mass in a. Thus µX is a random measure

which for ω fixed places a point mass of size 1 on each pair (s,∆Xs(ω)) ∈
R+×R if for this ω the process has a jump of size ∆Xs(ω) at time s. Expressed

differently for any Borel subset B ⊂ R, µX(ω; [0, t] × B) counts the number

of jumps with size in B which can be observed along the path (Xs(ω))0≤s≤t.

With this notation (5) can be written as

Xt −
∫ t

0

∫

R

x1l{|x|>1}µ
X(ds, dx). (8)
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The purely discontinuous local martingale Md, i.e. the process of compen-

sated jumps of absolute size less than 1, has then the form

Md
t =

∫ t

0

∫

R

x1l{|x|≤1}(µ
X − νX)(ds, dx), (9)

where νX is another random measure, the (predictable) compensator of µX .

Whereas µX counts the exact number of jumps, νX roughly stands for the

expected, i.e. the average number of jumps. The integral with respect to µX−
νX in (9) in general cannot be separated in an integral with respect to µX

and another one with respect to νX . This is because the sum of the small

jumps
∑

s≤t

∆Xs1l{|∆Xs|≤1} =

∫ t

0

∫

R

x1l{|x|≤1}µ
X(ds, dx) (10)

does not converge in general.

For many applications it is sufficient to reduce generality and to consider

the subclass of Lévy processes, i.e. processes with stationary and independent

increments. The components in (6) and (9) are then

Vt = bt (t ≥ 0)

M c
t =

√
cWt (t ≥ 0)

νX([0, t] ×B) = tK(B),

(11)

where b, c are real numbers, c ≥ 0, (Wt)t≥0 is a standard Brownian motion,

andK, the Lévy measure, is a (possible infinite) measure on the real line which

satisfies
∫

(1∧ x2)K(dx) <∞. The law of X is completely determined by the

triplet of local characteristics (b, c,K) since these are the parameters which

appear in the classical Lévy–Khintchine formula. This formula expresses the

characteristic function ϕXt
(u) = E[exp(iuXt)] in the form

ϕXt
(u) = exp(tψ(u)) (12)

with the characteristic exponent

ψ(u) = iub− 1

2
u2c+

∫

(

eiux − 1 − iux1l{|x|≤1}

)

K(dx). (13)



Jump processes 5

The truncation function h(x) = x1l{|x|≤1} could be replaced by other ver-

sions of truncation functions, e.g. smooth functions which are identical to the

identity in a neighborhood of the origin and go to 0 outside of this neighbor-

hood. Changing h affects the drift parameter b, but neither c nor K. All the

information on the jump behaviour of the process (Xt)t≥0 is contained in K.

The frequency of large jumps, expressed by the weight K puts on the tails,

determines finiteness of the moments of the process as the following result

states (for proofs of the Propositions see [15])

Proposition 1. Let X = (Xt)t≥0 be a Lévy process with Lévy measure K,

then E[|Xt|p] is finite for any p ∈ R+ if and only if
∫

{|x|>1}
|x|pK(dx) <∞.

We note that if X1 and consequently any Xt has finite expectation then

one does not have to truncate in (13), i.e. h(x) = x1l{|x|≤1} can be replaced

by h(x) = x.

The sum of the big jumps which is subtracted in (5) is finite since there

are only finitely many of them from 0 to t for every path. The fine structure of

the paths is determined by the frequency of the small jumps. A process is said

to have finite activity if almost all paths have only a finite number of jumps

along finite time intervals. The simplest examples are Poisson and compound

Poisson processes. A process is said to have infinite activity if almost all paths

have infinitely many jumps along any time interval of finite length.

Proposition 2. Let X = (Xt)t≥0 be a Lévy process with Lévy measure K.

Then X has finite activity if K(R) <∞ and has infinite activity if K(R) = ∞.

Since a Lévy measure has a priori finite mass in the tails, i.e.
∫

{|x|>1}
K(dx)

<∞, the finiteness of K(R) means finiteness of
∫

{|x|≤1}
K(dx). Consequently

having a finite or an infinite number of jumps along finite time intervals is

determined by the mass of K around the origin. From the distribution of mass

around the origin one can also see if the sum of (infinitely many) small jumps

converges or does not. First let us recall that a standard Brownian motion

has paths of infinite variation. Therefore a Lévy process has infinite variation
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as soon as it has a continuous martingale component, i.e. c > 0 in (11), but

infinite variation can also come from the jumps.

Proposition 3. Let X = (Xt)t≥0 be a Lévy process with triplet (b, c,K), then

almost all paths of X have finite variation if c = 0 and
∫

{|x|≤1}
|x|K(dx) <∞.

If this integral is infinite or c > 0 then almost all paths of X have infinite

variation.
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Fig. 1. Simulation of a purely discontinuous Lévy process

with infinite activity and finite variation

Figure 1 shows a simulated path of a purely discontinuous, infinite activity

process with finite variation, wheras Figure 2 shows a corresponding path with

infinite variation.

Now we discuss some of the standard examples. The Poisson process with

intensity parameter λ which we considered at the beginning has a finite num-

ber of jumps in any finite time interval and is constant between successive

jumps. In terms of (11) it is characterized by b = E[X1] = λ, c = 0 and

K = λε1. For the compound Poisson process (2), the unit mass ε1 in K is

replaced by a probability measure µ, the law of Y1, i.e. K = λµ. For the drift

parameter b one gets λE[Y1]. One gets a Lévy jump diffusion by adding a

general drift term bt and a scaled Brownian motion to (2),
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Fig. 2. Simulation of a purely discontinuous Lévy process

with infinite activity and infinite variation

Xt = bt+
√
cWt +

Nt
∑

k=1

Yk. (14)

This is the model introduced by Merton [14] to describe asset returns.

Merton chose normally distributed variables Yk. In a later paper Kou [12]

used double-exponentially distributed jump sizes Yk. If one replaces in (14)

the Brownian motion with drift by a general diffusion process one gets a jump

diffusion. The key property of jump diffusions is that one adds only a finite

number of jumps in any finite time interval to a process with continuous

paths. In other words, the jump times can be given by successive stopping

times T1 < T2 < T3 < · · · . We also note that the distribution of Xt is not

known for diffusions in general. The same holds for jump diffusions. This

reduces their applicability in mathematical finance. A key advantage of the

pure jump Lévy processes we discuss now is that they are distributionally

very flexible and the distributions are known explicitly.

Generalized hyperbolic Lévy motions (Xt)t≥0 (see Generalized hyperbolic

models in this book or [6], [9]) represent a very large class of Lévy processes

which are generated by generalized hyperbolic (GH) distributions (Barndorff-

Nielsen (1978) [1]), i.e. the distribution of X1, L(X1), is GH. Via (12) this

determines all other distributions L(Xt). GH distributions have an explicit
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Lebesgue density as has the corresponding Lévy measure. GH distributions

can be represented as normal mean-variance mixtures where the mixing dis-

tribution is a generalized inverse Gaussian (GIG) distribution. Moments of

any order exist. Since c = 0 in (13) generalized hyperbolic Lévy motions have

purely discontinuous paths. They are infinite activity processes. Important

subclasses are hyperbolic Lévy motions (Eberlein and Keller (1995) [7]) and

normal inverse Gaussian (NIG) Lévy motions (Barndorff-Nielsen (1998) [2]).

Many well-known distributions can be obtained as limiting cases of GH dis-

tributions, which generate the corresponding processes (see Eberlein and von

Hammerstein (2004) [10]). Among those are the Variance Gamma distribution

(see [13]), scaled and shifted Cauchy distributions, shifted Student-t distribu-

tions, GIG distributions, the Gamma as well as the normal distribution.

The CGMY process introduced in Carr, Geman, Madan, and Yor (2002)

[4] is another purely discontinuous Lévy process which can be defined via the

Lévy density of L(X1)

gCGMY(x) =











C
exp(−G|x|)

|x|1+Y x < 0

C
exp(−Mx)

x1+Y x > 0

(15)

where Y ∈ (−∞, 2). The process has infinite activity iff Y ∈ [0, 2) and it has

infinite variation iff Y ∈ [1, 2). For Y = 0 it reduces to the Variance Gamma

process.

A very classical class are α-stable Lévy processes where 0 < α ≤ 2. For

α = 2 one gets Brownian motion whereas for α < 2 one gets purely discontin-

uous processes. Only for three special cases explicit densities are known: the

Gaussian, the Cauchy, and the Lévy distribution.

An easy to handle extension of Lévy processes are time-inhomogeneous

Lévy processes, i.e. processes with independent increments and absolutely

continuous characteristics, called PIIAC in [11]. For any fixed t, the triplet of

L(Xt) for these processes is given in the form b =
∫ t

0
bsds, c =

∫ t

0
csds, and
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K(dx) =
∫ t

0
Ks(dx)ds. This class of processes has been used extensively in

the context of interest rate models (see e.g. Eberlein and Kluge (2006) [8]).

Jump processes with paths which are rather different from those discussed

so far were introduced by Barndorff-Nielsen and Shephard [3] in the context of

stochastic volatility models. Let (Zt)t≥0 be a subordinator , i.e. a Lévy process,

starting at 0 with increasing paths and consequently without a Gaussian com-

ponent. The volatility process (σ2
t )t≥0 is modeled via an Ornstein–Uhlenbeck

type stochastic differential equation

dσ2
t = −λσ2

t dt+ dZλt

for some λ > 0. The solution (σ2
t )t≥0 moves up entirely by jumps and then

tails of exponentially. σt is fed into a Brownian semimartingale which then

represents the price process.
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Lévy jump diffusion, 6
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