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Generalized hyperbolic Lévy motions constitute a broad subclass of Lévy pro-

cesses which are generated by generalized hyperbolic (GH) distributions. GH

distributions were introduced in [1] in connection with a project with geol-

ogists. The Lebesgue density of this 5-parameter class can be given in the

following form

dGH(λ,α,β,δ,µ)(x) = a(λ, α, β, δ, µ)(δ2 + (x− µ)2)(λ−
1
2 )/2

× Kλ− 1
2
(α

√
δ2 + (x− µ)2) exp(β(x− µ)) (1)

with the norming constant

a(λ, α, β, δ, µ) =
(α2 − β2)λ/2

√
2παλ− 1

2 δλKλ(δ
√
α2 − β2)

.

Kν denotes the modified Bessel function of the third kind with index ν. The

parameters can be interpreted as follows: α > 0 determines the shape, β with

0 ≤ |β| < α the skewness and µ ∈ R the location. δ > 0 serves for scaling and

λ ∈ R characterizes subclasses. It is essentially the weight in the tails which

changes with λ. There are two alternative parametrizations which are scale-

and location-invariant, i.e. they do not change under affine transformations

Y = aX + b for a 6= 0, namely ζ = δ
√
α2 − β2, ρ = β/α and ξ = (1 + ζ)−1/2,

χ = ξρ. Since 0 ≤ |χ| < ξ < 1, for a fixed λ the distributions parametrized

by χ and ξ can be represented by the points of a triangle, the so-called shape

triangle.
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GH distributions arise in a natural way as variance-mean mixtures of nor-

mal distributions. Let dGIG denote the density of a generalized inverse Gaus-

sian distribution with parameters δ > 0, γ > 0 and λ ∈ R, i.e.

dGIG(λ,δ,γ)(x) =
(γ
δ

)λ 1
2Kλ(δγ)

xλ−1 exp
(
−1

2
(
δ2

x
+ γ2x)

)
1l{x>0} (2)

Then if N(µ + βy, y) denotes a normal distribution with mean µ + βy and

variance y one can easily verify that

dGH(λ,α,β,δ,µ)(x) =
∫ ∞

0

dN(µ+βy,y)(x)dGIG(λ,δ,
√

α2−β2)
(y)dy. (3)

Via maximum likelihood estimation one can fit GH distributions to empirical

return distributions from financal time series such as daily stock or index

prices. Fig. 1 shows a fit to daily closing prices of Telekom over a period of

seven years. Fig. 2 shows the same densities on a log scale in order to make the

GH and normal density fitted to daily Telekom returns
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Fig. 1.

fit in the tails visible. One recognizes the hyperbolic shape of the GH density

in comparison to the parabolic shape of the normal density. The characteristic

function of the GH distribution is

ϕGH(u) = eiuµ

(
α2 − β2

α2 − (β + iu)2

)λ
2 Kλ

(
δ
√
α2 − (β + iu)2

)

Kλ(δ
√
α2 − β2)

(4)
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and expectation and variance are

E[GH] = µ+
βδ2

ζ

Kλ+1(ζ)
Kλ(ζ)

,

V ar(GH) =
δ2

ζ

Kλ+1(ζ)
Kλ(ζ)

+
β2δ4

ζ2

(
Kλ+2(ζ)
Kλ(ζ)

− K2
λ+1(ζ)
K2

λ(ζ)

)
(5)

The moment generating function exists for all u such that −α−β < u < α−β.

Therefore moments of all orders are finite.

There are two important subclasses. For λ = 1 one gets the class of hyper-

bolic distributions with density

dH(α,β,δ,µ)(x) =

√
α2 − β2

2αδK1(δ
√
α2 − β2)

exp(−α
√
δ2 + (x− µ)2 +β(x−µ)) (6)

whereas for λ = − 1
2 one gets the class of normal inverse Gaussian (NIG)

distributions with density

dNIG(α,β,δ,µ)(x) =
α

π
exp(δ

√
α2 − β2 +β(x−µ))

K1

(
αδ

√
1 + (x−µ

δ )2
)

√
1 + (x−µ

δ )2
. (7)

The latter one has a particularly simple characteristic function

ϕNIG(u) = eiuµ exp(δ
√
α2 − β2)

exp(δ
√
α2 − (β + iu)2)

. (8)

Many well-known distributions are limit cases of the class of GH distribu-

tions. For λ > 0 and δ → 0 one gets a Variance-Gamma distribution, in the

special case of λ = 1 the result is a skewed and shifted Laplace distribution.

Other limit cases are the Cauchy and the Student-t distribution as well as the

Gamma, the reciprocal Gamma and the normal distribution. For details see

[8].

GH distributions are infinitely divisible and therefore generate a Lévy

process L = (Lt)t≥0 such that the distribution of L1, L(L1), is the given GH

distribution. Analysing the characteristic function in their Lévy–Khintchine

form one sees that the Lévy measure has an explicit density. There is no

Gaussian component. Consequently the generated Lévy process is a process
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Fitted densities on a log scale
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Fig. 2.

with purely discontinuous paths. The paths have infinite activity, which means

that there are infinitely many jumps in any finite time interval (see Jump

Processes in this book).

As a model for asset prices such as stock prices, indices or foreign exchange

rates, we take the exponential of the Lévy process L

St = S0 expLt (9)

For hyperbolic Lévy motions this model was introdued in [5], NIG Lévy pro-

cesses were considered in [2] and the extension to GH Lévy motions appeared

in [3] and [7]. The log returns from this model taken along time intervals of

length 1 are Lt − Lt−1 and therefore they have exactly the GH distribution

which generates the Lévy process. It was shown in [6] that the model (9) suc-

ceeds to produce empirically correct distributions on other time horizons as

well. This time consistency property can e.g. be used to derive correct VAR-

estimates on a two-week horizon according to the Basel II rules. (9) can be

expressed by the following stochastic differential equation

dSt = St−
(
dLt + e∆Lt − 1−∆Lt

)
(10)

The price of an European option with payoff f(ST ) is
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V = e−rTE [f(ST )] (11)

where r is the interest rate and expectation is taken with respect to a risk-

neutral (martingale) measure. As is shown in [4] there are many equivalent

martingale measures due to the rich structure of the driving process L. The

simplest choice is the so-called Esscher transform which was used in [3]. For

the process L to be again a GH Lévy motion under an equivalent martingale

measure, the parameters δ and µ have to be kept fixed (see [9]). Since the

density of the distribution of ST can be derived via inversion of the char-

acteristic function, the expectation in (11) can be computed directly. A nu-

merically much more efficient method based on two-sided Laplace transforms

which is applicable to a wide variety of options has be developed in [9]. As-

sume that e−Rxf(e−x) is bounded and integrable for some R such that the

moment generating function of LT is finite at −R. Write g(x) = f(e−x) and

ψg(z) =
∫
R e

−zxg(x)dx for the bilateral Laplace transform of g. If ζ := − logS0

then the option price V can be expressed in the form

V (ζ) =
eζR−rT

2π

∫

R
eiuζψg(R+ iu)ϕLT (iR− u) du (12)

whenever the integral exists. ϕLT
denotes the characteristic function of the

distribution of LT .
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