

AFFINE PROCESSES WITH STOCHASTIC DISCONTINUITIES

Robert Wardenga joint work with M. Keller-Ressel and T. Schmidt

ICCF Lisbon, 08.09.2017

Piscontinuous Affine Processes Introduction – Jumps of Stochastic Processes

 $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \le t \le T}, \mathbb{P})$ a filtered probability space with an adapted process X. The jumps of the process X can be exhausted by

- predictable, i.e. the limit of a sequence of stopping times (announcing times)
- accessible, i.e. $\exists (\tau_n)_{n \in \mathbb{N}}$ stopping times:

 $\mathbb{P}(\text{"jump time"} = \tau_n \text{ for some } n) = 1$

- totally inaccessible, for all predictable times $\boldsymbol{\tau}$

 $\mathbb{P}(\text{"jump time"} = \tau) = 0$

$\overset{\text{Piscontinuous Affine Processes}}{\vdash} Introduction -A Glance at Financial Time Series$

Figure: Daily closing price of the Deutsche Bank stock starting january 1st 2015

$\overset{\text{Discontinuous Affine Processes}}{-Introduction}$ –A Glance at Financial Time Series

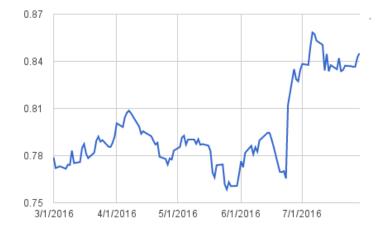


Figure: EUR GBP exchange rate starting from march 1st 2016

$\overset{\text{Discontinuous Affine Processes}}{-Introduction}$ –A Glance at Financial Time Series

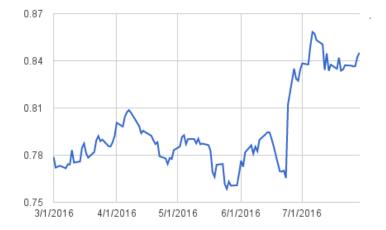


Figure: EUR GBP exchange rate starting from march 1st 2016 I still believe in (predictable) jumps

Discontinuous Affine Processes Affine Semimartingales –Definition

Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ a filtered probability space, and $\mathbb{F} := (\mathcal{F}_t)_{t \geq 0}$ satisfying the usual conditions.

Definition

A *d*-dimenisonal semimartingale *X* on *D* (e.g. $\mathbb{R}^m_{\geq} \times \mathbb{R}^n$) is called an affine semimartingale if there exist \mathbb{C} and \mathbb{C}^d -valued (deterministic) functions $\phi_s(t, u)$ and $\psi_s(t, u)$, respectively, such that

$$\mathbb{E}\left[\mathrm{e}^{\langle u,X_t\rangle}|\mathcal{F}_s\right] = \exp\left(\phi_s\left(t,u\right) + \langle\psi_s\left(t,u\right),X_s\rangle\right)$$

hold for all $u \in \mathcal{U}, 0 \leq s \leq t$ and $x \in D$. If $\phi_s(t, u) = \phi_{t-s}(u)$ and $\psi_s(t, u) = \psi_{t-s}(u)$ for all $u \in i\mathbb{R}^d, 0 \leq s \leq t$ the process X is called time homogeneous

$$\mathcal{U} := \left\{ u \in \mathbb{C}^d : \langle \Re u, x \rangle \leq 0 \text{ for all } x \in D
ight\}$$

Piscontinuous Affine Processes Affine Semimartingales –Some Technical Assumpions

Let X be an affine Semimartinglae satisfying the following

Assumption (Full support)

Let X satisfy $conv(supp(X_t) = D \text{ for all } t > 0$

Discontinuous Affine Processes Affine Semimartingales –Some Technical Assumpions

Let X be an affine Semimartinglae satisfying the following

Assumption (Full support)

Let X satisfy $conv(supp(X_t) = D \text{ for all } t > 0$

Assumption (Quasi-Regularity)

Let ϕ , ψ satisfy

- 1. ϕ and ψ are of finite variation in s and both cádlág in s and t.
- 2. For all $0 < s \le t$ the functions

 $u \mapsto \phi_{s-}(t, u)$ and $\psi_{t-}(t, u)$

are continuous on $\ensuremath{\mathcal{U}}$

Discontinuous Affine Processes Affine Semimartingales –Some Technical Assumpions

Let X be an affine Semimartinglae satisfying the following

Assumption (Full support)

Let X satisfy $conv(supp(X_t) = D \text{ for all } t > 0$

Assumption (Quasi-Regularity)

Let ϕ , ψ satisfy

- 1. ϕ and ψ are of finite variation in s and both cádlág in s and t.
- 2. For all $0 < s \le t$ the functions

$$u \mapsto \phi_{s-}(t, u)$$
 and $\psi_{t-}(t, u)$

are continuous on $\ensuremath{\mathcal{U}}$

- in contrast to [Filipovic (2005)] and [Duffie et al.(2003)] we don't require stochastic continuity
- let $J = \{s \in \mathbb{R}_{\geq 0} | \mathbb{P} (\Delta X_s \neq 0) > 0\}$

Theorem 1

There exist parameters A, $(\gamma_i, \beta_i, \alpha_i, \mu_i)_{i \in \{0, \cdots, d\}}, A : \mathbb{R}_{\geq} \to \mathbb{R}_{\geq}$, increasing and cádlág, $\gamma_i : \mathbb{R}_{\geq} \times \mathcal{U} \to \mathcal{U}, \beta_i : \mathbb{R}_{\geq} \to \mathbb{R}^d$, $\alpha_i : \mathbb{R}_{\geq} \to S^d_+(\mathbb{R}^d)$ and Borel measures $(\mu_i(t, \cdot))_i$ on $D \setminus \{0\}$ s.t. $\int_{D \setminus \{0\}} (1 + |x|) \mu_i(t, dx) \leq \infty$ for all $t \in \mathbb{R}_{\geq}$

1. The Semimartingale characteristics (B, C, ν) of X are of affine form :

$$B_{t} = \int_{0}^{t} \beta_{0}(s) + \langle \bar{\beta}(s), X_{s-} \rangle dA_{s}$$

$$C_{t} = \int_{0}^{t} \alpha_{0}(s) + \langle \bar{\alpha}(s), X_{s-} \rangle dA_{s}$$

$$\nu^{c} (ds, dx) = (\mu_{0}(s, dx) + \langle X_{s-}, \bar{\mu}(s, dx) \rangle) dA_{s}$$

$$\int_{D} e^{\langle u, \xi \rangle} \nu^{d} (\omega, \{t\}, d\xi) = \exp(\gamma_{0}(t, u) + \langle \bar{\gamma}, X_{t-} \rangle)$$

Theorem 1

There exist parameters A, $(\gamma_i, \beta_i, \alpha_i, \mu_i)_{i \in \{0, \cdots, d\}}, A : \mathbb{R}_{\geq} \to \mathbb{R}_{\geq}$, increasing and cádlág, $\gamma_i : \mathbb{R}_{\geq} \times \mathcal{U} \to \mathcal{U}, \beta_i : \mathbb{R}_{\geq} \to \mathbb{R}^d$, $\alpha_i : \mathbb{R}_{\geq} \to S^d_+(\mathbb{R}^d)$ and Borel measures $(\mu_i(t, \cdot))_i$ on $D \setminus \{0\}$ s.t. $\int_{D \setminus \{0\}} (1 + |x|) \mu_i(t, dx) \leq \infty$ for all $t \in \mathbb{R}_{\geq}$

- 1. The Semimartingale characteristics (B, C, ν) of X are of affine form
- 2. The continuous parts of ϕ and ψ satisfy Riccati equations

$$\frac{\mathrm{d}\phi_{s}^{c}(t,u)}{\mathrm{d}A_{s}^{c}} = -R_{0}\left(s,\psi_{s-}(t,u)\right), \quad \phi_{t}\left(t,u\right) = 0$$

$$\frac{\mathrm{d}\psi_{s}^{c}\left(t,u\right)}{\mathrm{d}A_{s}^{c}} = -\bar{R}\left(s,\psi_{s-}\left(t,u\right)\right), \quad \psi_{t}\left(t,u\right) = u$$

$$R_{i}\left(s,u\right) = \left\langle\beta_{i}\left(s\right),u\right\rangle + \frac{1}{2}\left\langle u,\alpha_{i}\left(s\right)\cdot u\right\rangle$$

$$+ \int_{D}\left(\mathrm{e}^{\left\langle x,u\right\rangle} - 1 - \left\langle u,h(x)\right\rangle\right)\mu_{i}\left(s,\mathrm{d}x\right)$$

Theorem 1

There exist parameters A, $(\gamma_i, \beta_i, \alpha_i, \mu_i)_{i \in \{0, \dots, d\}}, A : \mathbb{R}_{\geq} \to \mathbb{R}_{\geq}$, increasing and cádlág, $\gamma_i : \mathbb{R}_{\geq} \times \mathcal{U} \to \mathcal{U}, \beta_i : \mathbb{R}_{\geq} \to \mathbb{R}^d$, $\alpha_i : \mathbb{R}_{\geq} \to S^d_+(\mathbb{R}^d)$ and Borel measures $(\mu_i(t, \cdot))_i$ on $D \setminus \{0\}$ s.t. $\int_{D \setminus \{0\}} (1 + |x|) \mu_i(t, dx) \leq \infty$ for all $t \in \mathbb{R}_{\geq}$

- 1. The Semimartingale characteristics (B, C, ν) of X are of affine form
- 2. The continuous parts of ϕ and ψ satisfy Riccati equations
- 3. The Jumps of ϕ and ψ are determined by γ

$$\begin{array}{lll} \Delta\phi_{s}\left(t,u\right) &=& -\gamma_{0}\left(s,\psi_{s}\left(t,u\right)\right)\\ \Delta\psi_{s}\left(t,u\right) &=& -\bar{\gamma}\left(s,\psi_{s}\left(t,u\right)\right), \quad s\in J \end{array}$$

we call the equations in (2) together with those in (3) generalized measure Riccati equations

R. Wardenga, 08.09.2017

For X with semimartingale triplet (B, C, ν) we define a complex valued random measure on [0, t] by (with $\psi_{s-} := \psi_{s-}(t, u)$),

$$G(ds, \omega, t, u) := \langle \psi_{s-}, dB_s(\omega) \rangle + \frac{1}{2} \langle \psi_{s-}, dC_s(\omega) \psi_{s-} \rangle \\ + \int_D e^{\langle \psi_{s-}, \xi \rangle} - 1 - \langle \psi_{s-}, h(\xi) \rangle \nu^c(\omega, dt, d\xi)$$

For X with semimartingale triplet (B, C, ν) we define a complex valued random measure on [0, t] by (with $\psi_{s-} := \psi_{s-}(t, u)$),

$$G(ds, \omega, t, u) := \langle \psi_{s-}, dB_s(\omega) \rangle + \frac{1}{2} \langle \psi_{s-}, dC_s(\omega) \psi_{s-} \rangle + \int_D e^{\langle \psi_{s-}, \xi \rangle} - 1 - \langle \psi_{s-}, h(\xi) \rangle \nu^c(\omega, dt, d\xi)$$

with an application of Itôs formula:

$$d\phi_{s-}^{c}(t,u) + \left\langle X_{s-}(\omega), d\psi_{s-}^{c}(t,u) \right\rangle = -G(ds,\omega,t,u)$$

For X with semimartingale triplet (B, C, ν) we define a complex valued random measure on [0, t] by (with $\psi_{s-} := \psi_{s-}(t, u)$),

$$G(ds, \omega, t, u) := \langle \psi_{s-}, dB_s(\omega) \rangle + \frac{1}{2} \langle \psi_{s-}, dC_s(\omega) \psi_{s-} \rangle \\ + \int_D e^{\langle \psi_{s-}, \xi \rangle} - 1 - \langle \psi_{s-}, h(\xi) \rangle \nu^c(\omega, dt, d\xi)$$

with an application of Itôs formula:

$$\underbrace{\begin{pmatrix} 1 & X_{s-}^{x^0}(\omega) \\ \vdots & \vdots \\ 1 & X_{s-}^{x_d}(\omega) \end{pmatrix}}_{\Theta_{s-}(\omega)} \cdot \underbrace{\begin{pmatrix} d\phi_{s-}^c(t,u) \\ d\psi_{s-}^{c,1}(t,u) \\ \vdots \\ d\psi_{s-}^{c,d}(t,u) \end{pmatrix}}_{d\Psi_{s-}^c(t,u)} = -\underbrace{\begin{pmatrix} G_0(ds;\omega,t,u) \\ \vdots \\ G_d(ds;\omega,t,u) \end{pmatrix}}_{\mathcal{G}(ds;\omega,t,u)}$$

Invert $\Theta_{s-}(\omega)$ (possible for $(s, \omega) \in [\tau - \varepsilon, \tau] \times E$, $\mathbb{P}(E) > 0$): $d\Psi_{s}^{c}(t, u) = \Theta_{s-}(\omega)^{-1} \cdot \mathcal{G}(ds; \omega, t, u)$

> Invert $\Theta_{s-}(\omega)$ (possible for $(s, \omega) \in [\tau - \varepsilon, \tau] \times E$, $\mathbb{P}(E) > 0$): $d\Psi_{s}^{c}(t, u) = \Theta_{s-}(\omega)^{-1} \cdot \mathcal{G}(ds; \omega, t, u)$

We can disintegrate the characteristic triplet of X:

$$B_t^c = \int_0^t b_s dA_s$$
$$C_t = \int_0^t c_s dA_s$$
$$\nu^c (\omega, dt, dx) = K_{\omega,t} dA_t (\omega)$$

> Invert $\Theta_{s-}(\omega)$ (possible for $(s, \omega) \in [\tau - \varepsilon, \tau] \times E$, $\mathbb{P}(E) > 0$): $d\Psi_{s}^{c}(t, u) = \Theta_{s-}(\omega)^{-1} \cdot \mathcal{G}(ds; \omega, t, u)$

We can disintegrate the characteristic triplet of *X*:

$$B_{t}^{c} = \int_{0}^{t} b_{s} dA_{s}$$

$$C_{t} = \int_{0}^{t} c_{s} dA_{s}$$

$$\nu^{c} (\omega, dt, dx) = K_{\omega,t} dA_{t} (\omega)$$
Take $\omega^{*} \in E$ set $A_{s} = A_{s} (\omega^{*})$

$$d\Psi_{s}^{c} (t, u) \ll dA_{s}$$

> Invert $\Theta_{s-}(\omega)$ (possible for $(s, \omega) \in [\tau - \varepsilon, \tau] \times E$, $\mathbb{P}(E) > 0$): $d\Psi_{s}^{c}(t, u) = \Theta_{s-}(\omega)^{-1} \cdot \mathcal{G}(ds; \omega, t, u)$

We can disintegrate the characteristic triplet of X:

$$B_{t}^{c} = \int_{0}^{t} b_{s} dA_{s}$$

$$C_{t} = \int_{0}^{t} c_{s} dA_{s}$$

$$\nu^{c} (\omega, dt, dx) = K_{\omega,t} dA_{t} (\omega)$$
Take $\omega^{*} \in E$ set $A_{s} = A_{s} (\omega^{*})$

$$d\Psi_{s}^{c} (t, u) \ll dA_{s}$$

define

$$\beta(s) := \Theta_{s-}(\omega^*)^{-1} \cdot b_s(\omega^*)$$
$$\alpha(s) := \Theta_{s-}(\omega^*)^{-1} \cdot c_s(\omega^*)$$
$$\mu(s, dx) := \Theta_{s-}(\omega^*)^{-1} \cdot K_s(\omega^*, dx).$$

Discontinuous Affine Processes Affine Semimartingales –Existence and Uniqeness

On the canonical state space $D := \mathbb{R}^m_> \times \mathbb{R}^n$:

Theorem 2

Let A be non-decreasing and cádlág and let $(\alpha, \beta, \nu, \gamma)$ be some strongly admissible parameters w.r.t. A. Then there exists a unique quasi-regular affine semimartingale X (starting at $X_0 \in D$) with

$$\mathbb{E}\left[\mathrm{e}^{\langle u, X_t \rangle} | \mathcal{F}_s\right] = \exp\left(\phi_s\left(t, u\right) + \langle \psi_s\left(t, u\right), X_s \rangle\right)$$

Where ϕ and ψ satisfy the generalized measure Riccati equations

Discontinuous Affine Processes Affine Semimartingales – Existence and Unigeness

On the canonical state space $D := \mathbb{R}^m_> \times \mathbb{R}^n$:

Theorem 2

Let A be non-decreasing and cádlág and let $(\alpha, \beta, \nu, \gamma)$ be some strongly admissible parameters w.r.t. A. Then there exists a unique quasi-regular affine semimartingale X (starting at $X_0 \in D$) with

$$\mathbb{E}\left[\mathrm{e}^{\langle u, X_t \rangle} | \mathcal{F}_s\right] = \exp\left(\phi_s\left(t, u\right) + \langle \psi_s\left(t, u\right), X_s \rangle\right)$$

Where ϕ and ψ satisfy the generalized measure Riccati equations

$$\frac{\mathrm{d}\phi_{s}^{c}(t,u)}{\mathrm{d}A_{s}^{c}} = -R_{0}\left(s,\psi_{s-}\left(t,u\right)\right), \quad \phi_{t}\left(t,u\right) = 0$$

$$\frac{\mathrm{d}\psi_{s}^{c}\left(t,u\right)}{\mathrm{d}A_{s}^{c}} = -\bar{R}\left(s,\psi_{s-}\left(t,u\right)\right), \quad \psi_{t}\left(t,u\right) = u$$

$$\Delta\phi_{s}\left(t,u\right) = -\gamma_{0}\left(s,\psi_{s}\left(t,u\right)\right)$$

$$\frac{\Delta\psi_{s}\left(t,u\right)}{\mathrm{d}a_{s}^{c}} = -\bar{\gamma}\left(s,\psi_{s}\left(t,u\right)\right), \quad s \in J.$$
Here, 08 00 0017

R. Wardenga, 08.09.

Piscontinuous Affine Processes Affine Semimartingales –Admissibility

Definition (From Duffie et al. (2003))

The parameters (α, β, μ) are called *admissible*, if

- $\alpha_0 \in \text{Sem}^d$ with $\alpha_{0;\mathcal{II}} = 0$,
- $\alpha_i \in \text{Sem}^d$ with $\alpha_{i;\mathcal{I} \setminus i,\mathcal{I} \setminus i} = 0$,
- $\beta_0 \in D$,
- $\bar{\beta}_{\mathcal{I}\mathcal{J}} = 0$ and $\beta_{i;\mathcal{I}\setminus i} \in \mathbb{R}^{d-1}_{\geq 0}$ for all $i \in \mathcal{I}$,
- $\mu_i = 0$ for all $t \ge 0$ for $i \in \mathcal{J}$
- for $i \in \mathcal{I} \cup \{0\}$, μ_i is a Borel measure on $D \setminus \{0\}$ satisfying $\mathcal{M}_i(D \setminus \{0\}) < \infty$ with

$$\mathcal{M}_{i}\left(d\xi
ight):=\left(\left\langle h_{\mathcal{I}\setminus i}\left(\xi
ight),1
ight
angle +\left\Vert h_{\mathcal{J}\setminus i}\left(\xi
ight)
ight\Vert^{2}
ight)\mu_{i}\left(d\xi
ight)$$

and the continuous truncation function $h\colon \mathbb{R}^d o [-1,1]^d$

$$h_k\left(\xi
ight) = egin{cases} 0, \xi_k = 0 \ \left(1 \wedge |\xi|
ight) rac{\xi_k}{|\xi_k|}, ext{otherwise} \end{cases}$$

Piscontinuous Affine Processes Affine Semimartingales –Admissibility

Let A be non-decreasing and cádlág.

Definition

 (α, β, μ) are called strong admissibility w.r.t. A, if $(\alpha(t), \beta(t), \mu(t, \cdot))$ are admissible for A-a.e. t and additionally

- $(\alpha(t), \beta(t), \mathcal{M}(t, D \setminus \{0\}))_{t \ge 0}$ are locally integrable with respect to A,
- $\bar{\gamma}$ is of Lévy-Khintchine form for

 $t \in J = \{t \in \mathbb{R}_{\geq} | \Delta A \neq 0\}$, i.e. for $i = 1, \cdots, d$

$$\begin{array}{ll} \gamma_{i}\left(t,u\right) &=& \left\langle\beta_{i}\left(t\right),u\right\rangle+\frac{1}{2}\left\langle u,\alpha_{i}\left(t\right)\cdot u\right\rangle\\ &+\int_{D}\left(\mathrm{e}^{\left\langle x,u\right\rangle}-1-\left\langle u,h(x)\right\rangle\right)\mu_{i}\left(t,\mathrm{d}x\right)\end{array}$$

γ₀ (t, ·), t ∈ J is a log-characteristic function of a random variable supported on D (and locally summable in t locally uniformly on U)

- D. Duffie, D. Filipović, and W. Schachermayer. Affine processes and applications in finance. *Ann. Appl. Probab.*, 13:984–1053, 2003.
- D. Filipović.

Time-inhomogeneous affine processes. *Stochastic Process. Appl.*, 115:639–659, 2005.

D. Filipović.

Term-Structure Models: A Graduate Course. Springer, 2009.

M. Keller-Ressel.

Affine Processes: Theory and Applications to Finance. PhD thesis, TU Vienna, 2008.

T. Schmidt.

Dynamic Defaultable Term Structure Modelling beyond the Intensity Paradigm.

Mathematical Finance, 2016.

 $\begin{array}{c} \begin{array}{c} \mbox{Piscontinuous Affine Processes} \\ - \mbox{Addition} - \mbox{Example 1} \end{array}$

Let X be a stochastically continuous affine semimartingale on $D = \mathbb{R}^m_{\geq 0} \times \mathbb{R}^n$ with characteristics ϕ and ψ , e.g. Brownian motion, and let $\{t_1, \ldots, t_N\}$ some time points, $a^i \in \mathbb{R}^d$ and $b^i \in \mathbb{R}^d$ s.t. $a^i + b^i \cdot x \in D$ for all $x \in D$, $i = 1, \ldots, N$.

$$\tilde{X}_t = X_t + \sum_{i=1}^N \mathbb{1}_{\{t \ge t_i\}} \left(a^i + b^i \cdot X_{t_i} \right)$$

is an affine semimartingale with characteristics $\tilde{\phi}$ and $\tilde{\psi}$ given via the recursion, for $s \leq t_{k-l} \leq \cdots \leq t_k \leq t$ and $u \in i\mathbb{R}^d$

$$\begin{split} \phi^{0}\left(u\right) &= \phi_{t_{k},t}\left(u\right), \qquad \phi^{i+1} = \phi^{i}\left(u\right) + \phi_{t_{k-i-1},t_{k-i}}\left(\psi^{i}\left(u\right) + u \cdot b^{k-i}\right) + \left\langle u, a^{k-i} \right\rangle \\ \psi^{0}\left(u\right) &= \psi_{t_{k},t}\left(u\right), \qquad \psi^{i+1} = \psi_{t_{k-i-1},t_{k-i}}\left(\psi^{i}\left(u\right) + u \cdot b^{k-i}\right) \\ \text{then } \tilde{\psi}\left(s,t,u\right) &= \psi_{s,t_{k-i}}\left(\psi^{i}\left(u\right) + u \cdot b^{k-i}\right) \text{ and similar for} \\ \tilde{\phi}\left(s,t,u\right). \end{split}$$