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Discontinuous Affine Processes

Introduction Jumps of Stochastic Processes

(
Ω,F , (Ft)0≤t≤T , IP

)
a filtered probability space with an

adapted process X . The jumps of the process X can be
exhausted by

• predictable, i.e. the limit of a sequence of stopping times
(announcing times)

• accessible, i.e. ∃ (τn)n∈N stopping times:

IP (”jump time” = τn for some n) = 1

• totally inaccessible, for all predictable times τ

IP (”jump time” = τ) = 0
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Discontinuous Affine Processes

Introduction A Glance at Financial Time Series

Figure: Daily closing price of the Deutsche Bank stock starting january 1st 2015
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Figure: EUR GBP exchange rate starting from march 1st 2016
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Discontinuous Affine Processes

Introduction A Glance at Financial Time Series

Figure: EUR GBP exchange rate starting from march 1st 2016

I still believe in (predictable) jumps
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Discontinuous Affine Processes

Affine Semimartingales Definition

Let (Ω,F ,F,P) a filtered probability space, and F := (Ft)t≥0

satisfying the usual conditions.

Definition

A d−dimenisonal semimartingale X on D (e.g.Rm
≥ × Rn) is

called an affine semimartingale if there exist C and Cd -valued
(deterministic) functions φs(t, u) and ψs(t, u), respectively, such
that

E
[
e〈u,Xt〉|Fs

]
= exp (φs (t, u) + 〈ψs (t, u) ,Xs〉)

hold for all u ∈ U ,0 ≤ s ≤ t and x ∈ D. If φs (t, u) = φt−s (u)
and ψs (t, u) = ψt−s (u) for all u ∈ iRd ,0 ≤ s ≤ t the process X
is called time homogeneous

U :=
{
u ∈ Cd : 〈<u, x〉 ≤ 0 for all x ∈ D

}
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Discontinuous Affine Processes

Affine Semimartingales Some Technical Assumpions

Let X be an affine Semimartinglae satisfying the following

Assumption (Full support)

Let X satisfy conv(supp(Xt) = D for all t > 0

Assumption (Quasi-Regularity)

Let φ, ψ satisfy

1. φ and ψ are of finite variation in s and both cádlág in s and
t.

2. For all 0 < s ≤ t the functions

u 7→ φs− (t, u) and ψt− (t, u)

are continuous on U
• in contrast to [Filipovic (2005)] and [Duffie et al.(2003)] we

don’t require stochastic continuity
• let J = {s ∈ R≥0|IP (∆Xs 6= 0) > 0}
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Discontinuous Affine Processes

Affine Semimartingales Characterisation

Theorem 1

There exist parameters A, (γi , βi , αi , µi )i∈{0,··· ,d},A : R≥ → R≥,

increasing and cádlág, γi : R≥ × U → U , βi : R≥ → Rd ,
αi : R≥ → Sd+

(
Rd
)

and Borel measures (µi (t, ·))i on D \ {0}
s.t.

∫
D\{0} (1 + |x |)µi (t, dx) ≤ ∞ for all t ∈ R≥

1. The Semimartingale characteristics (B,C , ν) of X are of
affine form :

Bt =

∫ t

0
β0 (s) +

〈
β̄ (s) ,Xs−

〉
dAs

Ct =

∫ t

0
α0 (s) + 〈ᾱ (s) ,Xs−〉dAs

νc (ds,dx) = (µ0 (s, dx) + 〈Xs−, µ̄ (s, dx)〉)dAs∫
D
e〈u,ξ〉νd (ω, {t} , dξ) = exp (γ0 (t, u) + 〈γ̄,Xt−〉)

2. The continuous parts of φ and ψ satisfy Riccati equations

3. The Jumps of φ and ψ are determined by γ

∆φs (t, u) = −γ0 (s, ψs (t, u))

∆ψs (t, u) = −γ̄ (s, ψs (t, u)) , s ∈ J

we call the equations in (2) together with those in (3)
generalized measure Riccati equations
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1
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Discontinuous Affine Processes

Affine Semimartingales The process A

For X with semimartingale triplet (B,C , ν) we define a complex
valued random measure on [0, t] by (with ψs− := ψs− (t, u)),

G (ds, ω, t, u) := 〈ψs−, dBs (ω)〉+
1

2
〈ψs−, dCs (ω)ψs−〉

+

∫
D
e〈ψs−,ξ〉 − 1− 〈ψs−, h (ξ)〉 νc (ω, dt, dξ)

with an application of Itôs formula:
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Discontinuous Affine Processes
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D
e〈ψs−,ξ〉 − 1− 〈ψs−, h (ξ)〉 νc (ω, dt, dξ)

with an application of Itôs formula:

1 X x0

s− (ω)
...

...
1 X xd

s− (ω)


︸ ︷︷ ︸

Θs−(ω)

·


dφcs−(t, u)

dψc,1
s− (t, u)

...

dψc,d
s− (t, u)


︸ ︷︷ ︸

dΨc
s−(t,u)

= −

G0(ds;ω, t, u)
...

Gd(ds;ω, t, u)


︸ ︷︷ ︸

G(ds;ω,t,u)
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Discontinuous Affine Processes

Affine Semimartingales The process A

Invert Θs−(ω) (possible for (s, ω) ∈ [τ − ε, τ ]× E , IP (E ) > 0):

dΨc
s (t, u) = Θs−(ω)−1 · G (ds;ω, t, u)

We can disintegrate the characteristic triplet of X :

Bc
t =

∫ t

0
bsdAs

Ct =

∫ t

0
csdAs

νc (ω, dt, dx) = Kω,tdAt (ω)

Take ω∗ ∈ E set As = As (ω∗)

dΨc
s (t, u)� dAs

define

β(s) := Θs−(ω∗)−1 · bs(ω∗)

α(s) := Θs−(ω∗)−1 · cs(ω∗)

µ (s, dx) := Θs−(ω∗)−1 · Ks(ω∗, dx).
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Discontinuous Affine Processes

Affine Semimartingales Existence and Uniqeness

On the canonical state space D := Rm
≥ × Rn:

Theorem 2

Let A be non-decreasing and cádlág and let (α, β, ν, γ) be some
strongly admissible parameters w.r.t. A. Then there exists a
unique quasi-regular affine semimartingale X (starting at
X0 ∈ D) with

E
[
e〈u,Xt〉|Fs

]
= exp (φs (t, u) + 〈ψs (t, u) ,Xs〉)

Where φ and ψ satisfy the generalized measure Riccati equations

dφcs (t, u)

dAc
s

= −R0 (s, ψs− (t, u)) , φt (t, u) = 0

dψc
s (t, u)

dAc
s

= −R̄ (s, ψs− (t, u)) , ψt (t, u) = u

∆φs (t, u) = −γ0 (s, ψs (t, u))

∆ψs (t, u) = −γ̄ (s, ψs (t, u)) , s ∈ J.
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Discontinuous Affine Processes

Affine Semimartingales Admissibility

Definition (From Duffie et al. (2003))

The parameters (α, β, µ) are called admissible, if

• α0 ∈ Semd with α0;II = 0,

• αi ∈ Semd with αi ;I\i ,I\i = 0,

• β0 ∈ D,

• β̄IJ = 0 and βi ;I\i ∈ Rd−1
≥0 for all i ∈ I,

• µi = 0 for all t ≥ 0 for i ∈ J
• for i ∈ I ∪ {0}, µi is a Borel measure on D \ {0} satisfying
Mi (D \ {0}) <∞ with

Mi (dξ) :=
(〈

hI\i (ξ) , 1
〉

+
∥∥hJ\i (ξ)

∥∥2
)
µi (dξ)

and the continuous truncation function h : Rd → [−1, 1]d

hk (ξ) =

{
0, ξk = 0

(1 ∧ |ξ|) ξk
|ξk | , otherwise
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Discontinuous Affine Processes

Affine Semimartingales Admissibility

Let A be non-decreasing and cádlág.

Definition

(α, β, µ) are called strong admissibility w.r.t. A, if
(α(t), β(t), µ(t, ·)) are admissible for A-a.e. t and additionally

• (α(t), β(t),M (t,D \ {0}))t≥0 are locally integrable with
respect to A,

• γ̄ is of Lévy-Khintchine form for
t ∈ J = {t ∈ R≥|∆A 6= 0}, i.e. for i = 1, · · · , d

γi (t, u) = 〈βi (t) , u〉+
1

2
〈u, αi (t) · u〉

+

∫
D

(
e〈x ,u〉 − 1− 〈u, h(x)〉

)
µi (t, dx)

• γ0 (t, ·), t ∈ J is a log-characteristic function of a random
variable supported on D (and locally summable in t locally
uniformly on U)
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Discontinuous Affine Processes

Addition Example 1

Let X be a stochastically continuous affine semimartingale on
D = Rm

≥0 × Rn with characteristics φ and ψ, e.g. Brownian

motion, and let {t1, . . . , tN} some time points, ai ∈ Rd and
bi ∈ Rd s.t. ai + bi · x ∈ D for all x ∈ D, i = 1, . . . ,N.

X̃t = Xt +
N∑
i=1

1{t≥ti}
(
ai + bi · Xti

)
is an affine semimartingale with characteristics φ̃ and ψ̃ given
via the recursion, for s ≤ tk−l ≤ · · · ≤ tk ≤ t and u ∈ iRd

φ0 (u) = φtk ,t (u) , φi+1 = φi (u) + φtk−i−1,tk−i

(
ψi (u) + u · bk−i

)
+
〈
u, ak−i

〉
ψ0 (u) = ψtk ,t (u) , ψi+1 = ψtk−i−1,tk−i

(
ψi (u) + u · bk−i

)
then ψ̃ (s, t, u) = ψs,tk−l

(
ψl (u) + u · bk−l

)
and similar for

φ̃ (s, t, u).
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