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We develop honest and locally adaptive confidence bands for probabil-
ity densities. They provide substantially improved confidence statements in
case of inhomogeneous smoothness, and are easily implemented and visual-
ized. The article contributes conceptual work on locally adaptive inference
as a straightforward modification of the global setting imposes severe obsta-
cles for statistical purposes. Among others, we introduce a statistical notion
of local Hölder regularity and prove a correspondingly strong version of lo-
cal adaptivity. We substantially relax the straightforward localization of
the self-similarity condition in order not to rule out prototypical densities.
The set of densities permanently excluded from the consideration is shown
to be pathological in a mathematically rigorous sense. On a technical level,
the crucial component for the verification of honesty is the identification
of an asymptotically least favorable stationary case by means of Slepian’s
comparison inequality.

1. Introduction. Let X1, . . . , Xn be independent real-valued random vari-
ables which are identically distributed according to some unknown probability mea-
sure Pp with Lebesgue density p. Assume that p belongs to a nonparametric function
class P. For any interval [a, b] and any significance level ↵ 2 (0, 1), a confidence
band for p, described by a family of random intervals Cn,↵(t), t 2 [a, b], is said to
be (asymptotically) honest with respect to P if the coverage inequality

lim inf
n!1

inf
p2P

P⌦n
p

⇣
p(t) 2 Cn,↵(t) for all t 2 [a, b]

⌘
� 1� ↵(1.1)

is satisfied. Adaptive confidence sets maintain specific coverage probabilities over
a large union of models while shrinking at the fastest possible nonparametric rate
simultaneously over all submodels. If P is some class of densities within a union of
Hölder balls H(�, L) with fixed radius L > 0, the confidence band is called globally
adaptive over [�2[�⇤,�⇤](P \H(�, L)) within a range [�⇤,�⇤] ⇢ (0,1), cf. Cai and
Low (2004), if for every � 2 [�⇤,�⇤] and for every " > 0 there exists some constant
c > 0, such that

lim sup
n!1

sup
p2P:

p2H(�,L)

P⌦n
p

 
sup

t2(a,b)
|Cn,↵(t)| � c · rn(�)

!
< ".(1.2)
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Here, |Cn,↵(t)| denotes the length of Cn,↵(t), and rn(�) the minimax-optimal speed
of convergence

inf
T̂n estimator

sup
p2H(�,L)\P

E⌦n
p


sup
t2R

���T̂n(t)� p(t)
���
�

for estimation under supremum norm loss over H(�, L) \ P, possibly inflated by
additional logarithmic factors. Note that a logarithmic payment for adaptation is
neither avoidable for pointwise confidence intervals nor for pointwise estimation, see
Lepski (1990). Under the so-called self-similarity condition on P, Giné and Nickl
(2010) succeeded to construct confidence bands satisfying both (1.1) and (1.2).
Here, the minimax-optimal speed of convergence over H(�, L) \ P coincides with
the classical rate

✓
log n

n

◆ �
2�+1

.

They are of the form
h
p̂n(t)�

p
p̂n(t) · �̂n(↵), p̂n(t) +

p
p̂n(t) · �̂n(↵)

i
, t 2 [a, b],(1.3)

with an estimator p̂n of the density p, and a data-driven width parameter �̂n(↵)
depending on the significance level ↵. Although the confidence band’s width de-
pends on t via

p
p̂n(t), the stochastic order of the width is independent of t as the

densities under consideration are assumed to be uniformly bounded away from zero
and infinity. However, even one small wiggly part of the density inhibits stronger
performance of the procedure in smooth segments. Ideally, a confidence band is au-
tomatically thinner in regions where the unknown density is smooth and wider in
less smooth parts. Although a plethora of articles dealing with the central problem
of local adaptation in the estimation framework has been published over the last
decades, the substantially harder problem of locally adaptive confidence bands has
not been addressed in the literature. We call a confidence band locally adaptive if
for every " > 0 there exists some constant c > 0, such that the confidence band
satisfies the stronger performance guarantee

sup
U⇢[a,b]

U open interval

lim sup
n!1

sup
p2P

p|U�
2HU�

(�,L)

P⌦n
p

✓
sup
t2U

|Cn,↵(t)| � c · rn(�)
◆

< ",(1.4)

for any � > 0, ideally for any � in the range of adaptation. Here, U� denotes the
open �-enlargement of U , p|U�

the restriction of p on U�, and HU�(�, L) the Hölder
ball with radius L of functions from U� to R which are Hölder continuous to the
exponent �. The new contribution of this article is the construction and theoretical
investigation of such locally adaptive confidence bands, that is, honest confidence
bands with locally adaptive rather than globally adaptive width, which incorporate
potentially inhomogeneous regularity of the target function. Typically, rn(�0)/rn(�)
decays to zero whenever �0 > �, implying that (1.4) guarantees significantly tighter



LOCALLY ADAPTIVE CONFIDENCE BANDS 3

confidence bands in case of inhomogeneous smoothness as compared to (1.2). In this
case, any confidence band with (possibly) random but t-independent width cannot
satisfy (1.4), whenever P contains functions with inhomogeneous smoothness.

Our new confidence band appealingly relies on a discretized evaluation of a modi-
fied Lepski-type kernel density estimator, including an additional supremum in the
empirical bias term in the bandwidth selection criterion. A suitable discretization
of the interval [a, b] and a locally constant approximation of both the density es-
timator and the (random) bandwidth allow to piece the segmentwise confidence
statements together to obtain a continuum of confidence statements over [a, b]. Due
to the discretization, the band is computable and feasible from a practical point
of view without losing optimality between the mesh points. The t-dependence of
|Cn,↵(t)|, t 2 [a, b], reflected in the t-dependence of the density estimator’s band-
width, makes the asymptotic calibration of the confidence band to the level ↵ highly
non-trivial. Whereas the analysis of the related globally adaptive procedure of Giné
and Nickl (2010) reduces to the limiting distribution of the supremum of a station-
ary Gaussian process, our locally adaptive approach leads to a highly non-stationary
situation. A crucial component is therefore the identification of a stationary process
as a least favorable case by means of Slepian’s comparison inequality, subsequent
to a Gaussian reduction using recent techniques of Chernozhukov, Chetverikov and
Kato (2014a).

In view of a series of negative results starting with Low (1997), the class of den-
sities has to be restricted for the purpose of honest and adaptive inference. Giné
and Nickl (2010) succeeded to construct honest and globally adaptive confidence
bands under the so-called self-similarity condition, see Picard and Tribouley (2000).
A corresponding condition does not exist for the purpose of local adaptation, and
a straightforward localization of the global self-similarity condition imposes severe
obstacles for statistical purposes as it rules out prototypical densities. Consequently,
we develop a suitable condition under which honest and locally adaptive confidence
bands provably exist while representative densities remain included. The set of
permanently excluded densities is shown to be pathological in a mathematically
rigorous sense.

The main contributions of this article are the following.

(i) We firstly develop honest confidence bands which are locally adaptive in the
sense of (1.4). Additionally, an even stronger notion of local adaptivity is in-
troduced and proved to be satisfied. These explicitly constructed confidence
bands provide substantially improved confidence statements in case of inho-
mogeneous smoothness.

(ii) Our confidence bands are computable and computationally feasible. The per-
formance is demonstrated in a simulation study.

(iii) The design of a suitably restricted class of densities tailored to local adap-
tation is a challenging task. On the one hand, the self-similarity condition,
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suited for global adaptation, is too weak for the purpose of honesty and local
adaptivity. On the other hand, an adequate local condition is supposed not
to rule out too many densities. We design a new restricted class of densities P
for which both honesty and local adaptivity are achievable. We prove that the
class is massive and therefore suitable for statistical purposes in two senses.
First, the pointwise minimax rate of convergence remains unchanged when
passing from the class H(�, L) to P\H(�, L). Second, the set of permanently
excluded densities is shown to be pathological in a mathematically rigorous
sense.

(iv) On a technical level, the calibration of the confidence band leads to the
distributional approximation by the supremum of a highly non-stationary
Gaussian process depending on the unknown density p. Therefore, the crucial
ingredient is the identification of a least favorable stationary case by means
of Slepian’s comparison inequality, which does not depend on p anymore.

Our results are exemplarily formulated in the density estimation framework but can
be mimicked in other nonparametric models. To keep the representation concise we
restrict the theory to locally adaptive kernel density estimators. The ideas can be
transferred to wavelet estimators to a large extent as has been done for globally
adaptive confidence bands in Giné and Nickl (2010).
The article is organized as follows. Basic notations are introduced in Section 2.
Section 3 presents the main contributions, that is a substantially relaxed localized
self-similarity condition in Subsection 3.1, the construction and in particular the
asymptotic calibration of the confidence band in Subsection 3.2 as well as its strong
local adaptivity properties in Subsection 3.3. Important supplementary results are
postponed to Section 4, whereas Section 5 presents some of the proofs of the main
results. The supplemental article [Patschkowski and Rohde (2017)] contains the
remaining proofs, technical tools for the main proofs, as well as an extended simu-
lation study.

2. Preliminaries and notation. Let X1, . . . , Xn, n � 4, be independent
random variables identically distributed according to some unknown probability
measure Pp on R with continuous Lebesgue density p. Subsequently, we consider
kernel density estimators

p̂n(·, h) =
1

n

nX

i=1

Kh (Xi � ·)

with bandwidth h > 0 and rescaled kernel Kh(·) = h�1K(·/h). If not stated other-
wise, K is measurable and symmetric with support contained in [�1, 1], integrating
to one, and of bounded variation. Furthermore, a kernel K is said to be of order
l 2 N if

Z
xjK(x) dx = 0 for 1  j  l and

Z
xl+1K(x) dx 6= 0.
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For some measure Q, we denote by k · kLp(Q) the Lp-norm with respect to Q. Is Q
the Lebesgue measure, we just write k ·kp. For any interval U ⇢ R and any bounded
function f : U ! R, we denote by

kfkU = sup
x2U

|f(x)|

the supremum norm of f over U . If U = R, we simply write k · ksup for k · kR. If
well-defined,

(f1 ⇤ f2)(·) =
Z

f1(u)f2(·� u) du

denotes the convolution of two functions f1, f2 : R ! R. With

b�c = max{n 2 N [ {0} : n < �},

the Hölder class HU (�) to the parameter � > 0 on the open interval U ⇢ R is
defined as the set of functions f : U ! R admitting derivatives up to the order b�c
and having finite Hölder norm

kfk�,U =

b�cX

k=0

��f (k)
��
U
+ sup

x,y 2U
x 6=y

|f (b�c)(x)� f (b�c)(y)|
|x� y|��b�c

< 1.

The corresponding Hölder ball with radius L > 0 is denoted by

HU (�, L) = {f 2 HU (�) : kfk�,U  L} .

With the definition of k · k�,U , the Hölder balls are nested, that is HU (�2, L) ⇢
HU (�1, L) for 0 < �1  �2 < 1 and |U | < 1. Finally, HU (1, L) =

T
�>0 HU (�, L)

and HU (1) =
T

�>0 HU (�). Subsequently, for any real function f(�), the expres-
sion f(1) is to be read as lim�!1 f(�), provided that this limit exists. Additionally,
the class of probability densities p, such that p|U is contained in the Hölder class
HU (�, L) is denoted by PU (�, L). The indication of U is omitted when U = R.

3. Main results. In this section we pursue the new approach of locally
adaptive confidence bands and present the main contribution of this article.
For the new challenge of locally adaptive confidence bands, a condition of admis-
sibility necessarily has to be introduced. Although this condition is tailored to the
construction of the confidence band, this is the logical first step because the calibra-
tion of the band to the level ↵ explicitly involves the class of admissible functions.
In Subsection 3.1, we define and motivate the class of admissible densities Pn

(containing densities with smaller and smaller Lipschitz constants for growing n).
While not claiming the admissibility condition to be weakest possible, we prove in
view of statistical purposes that Pn is massive in two senses. First, the pointwise
minimax-rates do not change when passing from P(�, L) to P(�, L)\Pn within the
aspired range of adaptation, and second, the set of permanently excluded densities
is shown to be pathological in a sense of Baire categories. Proving these results,
we have gained new insight into analytical properties of the Weierstraß function,



6

which are of independent interest while providing deeper understanding of the ad-
missibility condition. They are deferred to the Supplemental article [Patschkowski
and Rohde (2017)].
In Subsection 3.2, we develop the new confidence band (Cn,↵(t))t2[a,b]. For simplic-
ity, [a, b] = [0, 1] from now on. Here, we are facing two challenges. First, the con-
struction has to be computable and visualizable, and to perform well in practice. As
local adaptation is generically carried out separately at every point t 2 [0, 1], a suit-
able procedure is far from being straightforward. Secondly, the construction has to
be calibrated to a prespecified significance level, uniformly over the class of admis-
sible densities. The calibration turns out to be complex because the distributional
approximation of the statistic involves the supremum over a highly non-stationary
Gaussian process even depending on the unknown density. The innovative point for
the calibration is the identification of a least favorable stationary case, which does
not depend on the unknown density anymore.
Finally, in Subsection 3.3, we analyze the performance of our confidence band. Be-
sides verifying property (1.4), we introduce an even stronger notion of local adap-
tivity, which is statistically even more informative. We prove that the confidence
band also possesses this strong local adaptivity property.

3.1. Admissible functions. If P equals the set of all densities contained in

[

0<��⇤

H(�, L),

honest and globally adaptive confidence bands provably do not exist although adap-
tive estimation is possible, see the pioneering contribution of Low (1997). Numerous
attempts have been made to tackle this adaptation problem in alternative formu-
lations. Whereas Genovese and Wasserman (2008) relax the coverage property and
do not require the confidence band to cover the function itself but a simpler sur-
rogate function capturing the original function’s significant features, most of the
approaches are based on a restriction of the parameter space. Under qualitative
shape constraints, Hengartner and Stark (1995), Dümbgen (1998, 2003), and Davies,
Kovac and Meise (2009) achieve adaptive inference. Within the models of nonpara-
metric regression and Gaussian white noise, Picard and Tribouley (2000) investigate
on pointwise adaptive confidence intervals under a self-similarity condition on the
parameter space, see also Kueh (2012) for thresholded needlet estimators. Under a
similar condition, Giné and Nickl (2010) even develop asymptotically honest confi-
dence bands for probability densities whose width is adaptive to the global Hölder
exponent. Bull (2012) works under a slightly weakened version of the self-similarity
condition. Kerkyacharian, Nickl and Picard (2012) develop corresponding results
in the context of needlet density estimators on compact homogeneous manifolds.
Under the same type of self-similarity condition, adaptive confidence bands are
developed under a considerably generalized Smirnov-Bickel-Rosenblatt assumption
based on Gaussian multiplier bootstrap, see Chernozhukov, Chetverikov and Kato
(2014b). Ho↵mann and Nickl (2011) introduce a nonparametric distinguishability
condition, under which adaptive confidence bands exist for finitely many models
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under consideration. Their condition is shown to be necessary and su�cient.
Similar important conclusions concerning adaptivity in terms of confidence state-
ments are obtained under Hilbert space geometry with corresponding L2-loss, see
Juditsky and Lambert-Lacroix (2003), Baraud (2004), Genovese and Wasserman
(2005), Cai and Low (2006), Robins and van der Vaart (2006), Bull and Nickl
(2013), and Nickl and Szabó (2016). Concerning Lp-loss, we also draw attention to
Carpentier (2013).

Our subsequently introduced notion of admissibility aligns to the (global) self-
similarity condition. Recall that f1 ⇤ f2 denotes the convolution of two functions
f1 and f2, and Kh(·) = h�1K(·/h) is the rescaled kernel corresponding to the
bandwidth h > 0.

Condition 3.1 (Global self-similarity condition, Picard and Tribouley (2000),
Giné and Nickl (2010)). Suppose p 2 H(�, L⇤) for some � 2 [�⇤,�⇤] with �⇤ = l+1
and l the order of the kernel K, and assume that there exist a positive real constant
b1 and a positive integer j0 such that for every integer j � j0,

b1
2j�

 kK2�j ⇤ p� pksup.

Giné and Nickl (2010) construct globally adaptive confidence bands over the set

[

�⇤��⇤

(
p 2 P(�, L) : p � � on [�", 1 + "],

c

2j�
 kK2�j ⇤ p� pksup for all j � j0

)(3.1)

for some constant c > 0 and 0 < " < 1. They work on the scale of Hölder-Zygmund
rather than Hölder classes. For this reason they include the corresponding bias
upper bound condition which is not automatically satisfied for � = �⇤ in that case.

Remark 1. As mentioned in Giné and Nickl (2010), if K(·) = 1
2 {· 2 [�1, 1]}

is the rectangular kernel, all twice di↵erentiable densities p that are supported in a
fixed compact interval satisfy the lower bound constraint

kK2�j ⇤ p� pksup � c · 2�2j + o(2�2j)(3.2)

with a constant c > 0. The reason is that due to the constraint of being a probability
density, kp00ksup is bounded away from zero uniformly over this class, in partic-
ular p00 cannot vanish everywhere. That is, Condition 3.1 does not appear to be
restrictive.

From Condition 3.1, we can straightforwardly deduce a su�cient condition on the
class of densities under consideration for the new problem of honest and locally
adaptive confidence bands as follows:
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Condition 3.2 (Local self-similarity condition). There exist a positive real
constant b1 and a positive integer j0 such that for any nondegenerate interval
(v, w) ⇢ [0, 1], there exists some � 2 [�⇤,�⇤] with �⇤ = l + 1 and l the order
of the kernel K, such that

p|(v,w) 2 H(v,w)(�, L
⇤)(3.3)

and

b1
2j�

 kK2�j ⇤ p� pk(v+2�j ,w�2�j)(3.4)

are satisfied for all j � j0 _ log2(1/(w � v)).

However, a condition like (3.4) rules out examples which seem to be typical to
statisticians:

(i) In contrast to the observation in Remark 1, for any density p, kp00kU may
vanish for subintervals U within the support of p. As a consequence, the lower
bound condition (3.4) is violated on such subintervals U for every � 2 (0,�⇤].
[Recall that the kernel K is symmetric, see Section 2, and hence of order l � 1.]

Example 3.3. Assume that the kernel K is of order l � 1, and recall �⇤ = l+1.
Then (3.4) excludes for instance the triangular density

p(t) = max{1� |t� 1/2|, 0}, t 2 R,(3.5)

because the second derivative exists and vanishes when restricted to any open inter-
val U ⇢ [0, 1/2) [ (1/2, 1].

For the same reason, densities with a constant piece are excluded. In general, if p
restricted to U is a polynomial of order at most l, (3.4) is violated as the left-hand
side is not equal to zero. At the same time, the kernel density estimator is bias-free
in these regions, for which reason it cannot be necessary to exclude these examples
from consideration.

(ii) For p 2 P(�⇤, L) and any fixed h > 0, the map

t 7! kK2�j ⇤ p� pk(t�h+2�j ,t+h�2�j)

is continuous for any natural number j with 2�j < h. At the same time, the map

t 7! sup
n
�  �⇤ : p|(t�h,t+h) 2 H(t�h,t+h)(�, L)

o
(3.6)

may be discontinuous, in which case the local self-similarity condition is violated.

Example 3.3. (continued) We consider again the triangular density in (3.5).
Then,

sup
n
�  �⇤ : p|(t�h,t+h) 2 H(t�h,t+h)(�, 1)

o
=

8
<

:
1 if t 2

⇣
1
2 � h, 1

2 + h
⌘

�⇤ if t 2 [0, 1] \
⇣

1
2 � h, 1

2 + h
⌘
.



LOCALLY ADAPTIVE CONFIDENCE BANDS 9

In view of the deficiencies described in (i) and (ii), it is insu�cient just to replace
the global self-similarity condition by the local self-similarity condition for the pur-
pose of locally adaptive confidence bands.

Instead, we introduce Condition 3.5. Before, to unify notation, we define the �⇤-
capped Hölder norm.

Definition 3.4 (�⇤-capped Hölder norm). For � > 0, for some bounded open
interval U ⇢ R, and p : U ! R with p 2 HU (�), define the �⇤-capped Hölder norm

kpk�,�⇤,U =

b�^�⇤
cX

k=0

��p(k)
��
U
+ sup

x,y 2U
x 6=y

��p(b�^�⇤
c)(x)� p(b�^�⇤

c)(y)
��

|x� y|��b�^�⇤c
,

whenever the expression is finite.

Note that if ��b�^�⇤c > 1, then kpk�,�⇤,U can only be finite if p(b�
⇤
c)

|U is constant,
in which case

p(�
⇤)

|U ⌘ 0.

If for some open interval U ⇢ [0, 1] the derivative p(�
⇤)

|U exists and equals zero

restricted to U , then kpk�,�⇤,U is finite uniformly over all � > 0. If it exists and is
not identical to the zero function on U , then kpk�,�⇤,U is finite if and only if �  �⇤

as a consequence of the mean value theorem. That is,

sup
�
� 2 (0,1] : p|U 2 H�⇤,U (�, L

⇤)
 
2 (0,�⇤] [ {1}.

Correspondingly, define the �⇤-capped Hölder ball and �⇤-capped Hölder class by

H�⇤,U (�, L) = {p 2 HU (�) : kpk�,�⇤,U  L}(3.7)

and

H�⇤,U (�) = {p 2 HU (�) : kpk�,�⇤,U < 1} ,(3.8)

respectively. As verified in Lemma A.11 in the supplemental article [Patschkowski
and Rohde (2017)], kpk�1,�⇤,U  kpk�2,�⇤,U for 0 < �1  �2 < 1 and |U |  1.
Finally denote H�⇤,U (1, L) =

T
�>0 H�⇤,U (�, L) and H�⇤,U (1) =

T
�>0 H�⇤,U (�).

Recall the definition kfkU = supt2U |f(t)| for any subset U ⇢ R and bounded
f : U ! R.

Admissibility Condition 3.5. For sample size n 2 N, some 0 < " < 1,
0 < �⇤ < 1, and L⇤ > 0, a density p is said to be admissible if p 2 P(�",1+")(�⇤, L⇤)
and the following holds true: for any t 2 [0, 1] and for any h 2 G1 with

G1 = {2�j : j 2 N, j � jmin = d2 _ log2(2/")e},(3.9)
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there exists some � 2 [�⇤,�⇤][ {1} such that the following conditions are satisfied
for u = h or u = 2h:

p|(t�u,t+u) 2 H�⇤,(t�u,t+u)(�, L
⇤)(3.10)

and

kKg ⇤ p� pk(t�(u�g),t+(u�g)) �
g�

log n
(3.11)

for all g 2 G1 with g  u/8.

The set of admissible densities is denoted by Padm
n = Padm

n (K,�⇤, L⇤, ").

The new problem of locally adaptive confidence bands requires a new type of restric-
tion for the class of densities under consideration. On the one hand, our formulated
local self-similarity condition 3.2 is su�cient, but limits the statistical usability
dramatically on the other hand. Contrarily, the weaker Condition 3.5 incorporates
the following three crucial aspects.

(i) Passing from the Hölder norm to the �⇤-capped Hölder norm enlarges the
set of densities under consideration. First of all, densities which restricted
to [0, 1] are described by a polynomial of order at most l are now included.
Here, the order l is a natural limit because a kernel of order l is bias-free for
polynomials up to the order l, that is, for any 0 < h < 1/2,

E⌦n
p p̂n(t, h) = p(t), t 2 [h, 1� h].

(ii) We relax the requirement of (3.3) and (3.4) to hold for every interval (v, w)
by requiring (3.10) and (3.11) to be satisfied for u = h or u = 2h. It turns
out to be essential for incorporating densities with abrupt changes in the
smoothness behavior.

(iii) The collection of admissible densities is increasing with the number of ob-
servations, that is Padm

n ⇢ Padm
n+1 , n 2 N. The logarithmic denominator

even weakens the assumption for growing sample size, permitting smaller
and smaller Lipschitz constants. Note that a generic lower bound as (3.2) in
Remark 1 is locally not natural.

The benefit of (i)-(iii) is demonstrated in the following example.

Example 3.3. (continued) If K is the rectangular kernel and L⇤ is su�-
ciently large, the triangular density p(t) = max{1� |t� 1/2|, 0}, t 2 R, is (eventu-
ally – for su�ciently large n) admissible. It is globally not smoother than Lipschitz,
and the bias lower bound condition (3.11) is (eventually) satisfied for � = 1 and
pairs (t, h) with |t� 1/2| < (7/8)h. Although the bias lower bound condition to the
exponent �⇤ = 2 is not satisfied for any (t, h) with t 2 [0, 1]\(1/2�h, 1/2+h), these
tuples (t, h) fulfill (3.10) and (3.11) for � = 1, which is not excluded anymore by
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Condition 3.5. Finally, if the conditions (3.10) and (3.11) are not simultaneously
satisfied for some pair (t, h) with

7

8
h <

����t�
1

2

���� < h,

then they are fulfilled for the pair (t, 2h) and � = 1, because |t� 1/2| < (7/8)2h.

We now denote by

Pn = Pn(K,�⇤, L
⇤, ",M) =

⇢
p 2 Padm

n (K,�⇤, L
⇤, ") : inf

x2[�",1+"]
p(x) � M

�

the set of admissible densities being bounded below by M > 0 on [�", 1 + "]. We
restrict our considerations to combinations of parameters for which the class Pn is
non-empty.

The remaining results of this subsection are about the massiveness of the function
classes Pn. They are stated for the particular case of the rectangular kernel. Other
kernels may be treated with the same idea; verification of (3.11) however appears
to require a case-by-case analysis for di↵erent kernels. The following proposition
demonstrates that the pointwise minimax rate of convergence remains unchanged
when passing from the class H(�, L⇤) to Pn \H(�, L⇤).

Proposition 3.6 (Lower pointwise risk bound). For the rectangular kernel KR

there exists some constant M > 0, such that for any t 2 [0, 1], for any � 2 [�⇤, 1],
for any 0 < " < 1, and for any k � k0(�⇤) there exists some x > 0 and some
L(�) > 0 with

inf
Tn

sup
p2Pk:

p|(�",1+")2H(�",1+")(�,L)

P⌦n
p

⇣
n

�
2�+1 |Tn(t)� p(t)| � x

⌘
> 0

for all L � L(�) and for all n � n0, for the class Pk = Pk(KR,�⇤, L⇤, ",M),
where the infimum is running over all estimators Tn based on X1, . . . , Xn.

Note that the classical construction for the sequence of hypotheses in order to
prove minimax lower bounds consists of a smooth density distorted by small �-
smooth perturbations, properly scaled with the sample size n. However, not all of
its members satisfy both (3.10) and (3.11). Thus, the constructed hypotheses in
our proof are substantially more complex, for which reason we restrict attention to
�  1.

Although Condition 3.5 is getting weaker for growing sample size, some densities
are permanently excluded from consideration. The following proposition states that
the exceptional set of permanently excluded densities is pathological.
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Proposition 3.7. For the rectangular kernel KR(·) = 1
2 {· 2 [�1, 1]} and

n 2 N, let

Qadm
n (KR,�⇤, L

⇤, ") =
n
f 2 H(�",1+")(�⇤, L

⇤) : f satisfies (3.10) and (3.11)
o

and

R =
[

n2N

Qadm
n (KR,�⇤, L

⇤, ").

Then, for any t 2 [0, 1], for any h 2 G1 and for any � 2 [�⇤, 1), the set

H(t�h,t+h)(�, L
⇤) \ R|(t�h,t+h)

is nowhere dense in H(t�h,t+h)(�, L
⇤) with respect to k · k�,(t�h,t+h).

The whole scale of parameters � 2 [�⇤, 1] in Proposition 3.7 can be covered by
passing over from Hölder classes to Hölder-Zygmund classes in the definition of Pn,
see Remark A.5 in the supplemental article [Patschkowski and Rohde (2017)]. The
local adaptivity theory can be likewise developed on the scale of Hölder-Zygmund
rather than Hölder classes – here, we restrict attention to Hölder classes because
they are commonly considered in the theory of kernel density estimation.

3.2. Construction of the confidence band. The new confidence band is based
on a kernel density estimator with variable bandwidth incorporating a localized but
not the fully pointwise Lepski (1990) bandwidth selection procedure. A suitable
discretization and a locally constant approximation allow to piece the pointwise
constructions together in order to obtain a continuum of confidence statements.
The complex construction makes the asymptotic calibration of the confidence band
to the level ↵ non-trivial. Whereas the analysis of the related globally adaptive
procedure of Giné and Nickl (2010) reduces to the limiting distribution of the
supremum of a stationary Gaussian process, our locally adaptive approach leads
to a highly non-stationary situation, which even depends on the unknown density.
An essential component is therefore the identification of a stationary process as a
least favorable case by means of Slepian’s comparison inequality, this stationary
approximation not involving the unknown density p anymore.

We now describe the procedure. First, the sample is split into two subsamples. For
simplicity, we divide the sample into two parts of equal size ñ = bn/2c, leaving
possibly out the last observation. Let

�1 = {X1, . . . , Xñ}, �2 = {Xñ+1, . . . , X2ñ}

be the distinct subsamples and denote by p̂(1)n (·, h) and p̂(2)n (·, h) the kernel density
estimators with bandwidth h based on �1 and �2, respectively. E�1

p and E�2
p denote

the expectations with respect to the product measures

P�1
p = joint distribution of X1, . . . , Xñ,
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P�2
p = joint distribution of Xñ+1, . . . , X2ñ.

Next, the interval [0, 1] is discretized into equally spaced grid points, which serve
as evaluation points for the locally adaptive estimator. We discretize by a mesh of
width

�n =

&
2jmin

✓
log ñ

ñ

◆�1

(log ñ)
2
�⇤

'�1

with 1 � 1/(2�⇤) and set

Hn = {k�n : k 2 Z}.(3.12)

Fix now constants

c1 >
2

�⇤ log 2
and 2 > c1 log 2 + 7.(3.13)

With jmin specified in (3.9), consider the set of bandwidth exponents

Jn =

⇢
j 2 N : jmin  j  jmax =

�
log2

✓
ñ

(log ñ)2

◆⌫�
,

and the corresponding dyadic grid of bandwidths

Gn =
n
2�j : j 2 Jn

o
.(3.14)

The bound jmax is standard and particularly guarantees pointwise consistency of
the kernel density estimator with every bandwidth within Gn. The constraint on
2 in (3.13) can be relaxed by an inflation of the confidence band’s width by log-
arithmic factors, as discussed in the simulation study in the supplemental article
[Patschkowski and Rohde (2017)]. To keep the formulation of the following results
as concise as possible, we refrain from this issue at this point. We define the set of
admissible bandwidths for t 2 [0, 1] as

An(t) =
n
j 2 Jn : max

s2(t� 7
8 ·2

�j ,t+ 7
8 ·2

�j)\Hn

���p̂(2)n (s,m)� p̂(2)n (s,m0)
���  c2

r
log ñ

ñ2�m

for all m,m0 2 Jn with m > m0 > j + 2
o
,

(3.15)

with constant c2 = c2(A, ⌫,�⇤, L⇤,K, ") specified in the proof of Proposition 4.1.
Furthermore, let

ĵn(t) = minAn(t), t 2 [0, 1],(3.16)

and ĥn(t) = 2�ĵn(t). Note that a slight di↵erence to the classical Lepski procedure
is the additional maximum in (3.15), which reflects the idea of adapting localized
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but not completely pointwise for fixed sample size n. The bandwidth (3.16) is
determined for all mesh points k�n, k 2 Tn = {1, . . . , ��1

n } in [0, 1], and set piecewise
constant in between. Accordingly, with

ĥloc
n,1(k) = 2�ĵn((k�1)�n)�un , ĥloc

n,2(k) = 2�ĵn(k�n)�un ,

where un = c1 log log ñ is some sequence implementing the undersmoothing, the
estimators are defined as

ĥloc
n (t) = ĥloc

n,k = min
n
ĥloc
n,1(k), ĥ

loc
n,2(k)

o
and

p̂locn (t, h) = p̂(1)n (k�n, h)
(3.17)

for t 2 Ik = [(k�1)�n, k�n), k 2 Tn\{��1
n }, I��1

n
= [1��n, 1]. The following theorem

lays the foundation for the construction of honest and locally adaptive confidence
bands.

Theorem 3.8 (Least favorable case). For the estimators defined in (3.17) and
normalizing sequences

an = c3(�2 log �n)
1/2, bn =

3

c3

⇢
(�2 log �n)

1/2 � log(� log �n) + log 4⇡

2(�2 log �n)1/2

�
,

with c3 =
p
2/TV (K), it holds

lim inf
n!1

inf
p2Pn

P⌦n
p

 
an

 
sup

t2[0,1]

q
ñĥloc

n (t)
���p̂locn (t, ĥloc

n (t))� p(t)
���� bn

!
 x

!

� 2P
⇣p

L⇤G  x
⌘
� 1

for some standard Gumbel distributed random variable G.

The proof of Theorem 3.8 is based on several completely non-asymptotic approxima-
tion techniques. The asymptotic Komlós-Major-Tusnády-approximation technique,
used in Giné and Nickl (2010), has been evaded using non-asymptotic Gaussian
approximation results recently developed in Chernozhukov, Chetverikov and Kato
(2014a). The essential component of the proof of Theorem 3.8 is the application
of Slepian’s comparison inequality to reduce considerations from a non-stationary
Gaussian process to the least favorable case of a maximum of ��1

n independent and
identical standard normal random variables.
With q1�↵/2 denoting the (1� ↵/2)-quantile of the standard Gumbel distribution,
we define the confidence band as the family of piecewise constant random intervals
Cloc

n,↵ = (Cloc
n,↵(t))t2[0,1] with

Cloc
n,↵(t) =

2

4p̂locn (t, ĥloc
n (t))� qn(↵)q

ñĥloc
n (t)

, p̂locn (t, ĥloc
n (t)) +

qn(↵)q
ñĥloc

n (t)

3

5(3.18)
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and

qn(↵) =

p
L⇤ · q1�↵/2

an
+ bn.(3.19)

For fixed ↵ > 0, qn(↵) = O(
p
log n) as n goes to infinity.

Corollary 3.9 (Honesty). The confidence band as defined in (3.18) satisfies

lim inf
n!1

inf
p2Pn

P⌦n
p

⇣
p(t) 2 Cloc

n,↵(t) for every t 2 [0, 1]
⌘

� 1� ↵.

3.3. Local Hölder regularity and local adaptivity. We demonstrate that the
new confidence band is locally adaptive in the sense of (1.4). Recall that by Propo-
sition 3.6 the pointwise minimax-rate of convergence over Pn|U�

\ H�⇤,U�(�, L
⇤)

remains n��/(2�+1), and that |Cloc
n,↵(t)| denotes the length of the interval Cloc

n,↵(t).

Theorem 3.10 (Local adaptivity). For every open interval U ⇢ [0, 1], and for
any � > 0,

lim sup
n!1

sup
p2Pn:

p|U�
2HU�

(�,L⇤)

P⌦n
p

 
sup
t2U

���Cloc
n,↵(t)

��� �
✓
log n

n

◆ �
2�+1

(log n)�
!

= 0

for every � 2 [�⇤,�⇤] and � = �(c1), where U� is the open �-enlargement of U .

If p 2 H(�, L) and p|U 2 HU (�0, L) for some �0 > � and some open interval
U ⇢ [0, 1], then the maximal width over U of our new confidence band is of the
stochastic order

OPp

0

@
✓
log n

n

◆ �0
2�0+1

(log n)�

1

A ,

whereas globally but not locally adaptive confidence bands guarantee a width of
stochastic order OPp(n

��/(2�+1)) (up to logarithmic factors) only.
In the remaining part of this section, we develop an even stronger notion of local
adaptivity, which is of particular interest for the statistician. Here, the asymptotic
statement is not formulated for an arbitrary but fixed interval U only. Indeed,
the more observations are available, the more localized and smaller are regions
the statistician would like to learn about. Precisely, the goal would be to adapt
even to some pointwise or local Hölder regularity, two well established notions from
analysis.

Definition 3.11 (Pointwise Hölder exponent, Seuret and Lévy Véhel (2002)).
Let p : R ! R be a function, � > 0, � /2 N, and t 2 R. Then p 2 C�(t) if and only if
there exists a real R > 0, a polynomial P with degree less than b�c, and a constant
c such that

|p(x)� P (x� t)|  c|x� t|�
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for all x 2 (t�R, t+R). The pointwise Hölder exponent is denoted by

�p(t) = sup{� : p 2 C�(t)}.

Definition 3.12 (Local Hölder exponent, Seuret and Lévy Véhel (2002)).
Let p : ⌦ ! R be a function and ⌦ ⇢ R an open set. One classically says that
p 2 C�

l (⌦), where 0 < � < 1, if there exists a constant c such that

|p(x)� p(y)|  c|x� y|�

for all x, y 2 ⌦. If m < � < m + 1 for some m 2 N, then p 2 C�
l (⌦) means that

there exists a constant c such that

|@mp(x)� @mp(y)|  c|x� y|��m

for all x, y 2 ⌦. Set now

�p(⌦) = sup{� : p 2 C�
l (⌦)}.

Finally, the local Hölder exponent in t is defined as

�loc
p (t) = sup{�p(Oi) : i 2 I},

where (Oi)i2I is a decreasing family of open sets with \i2IOi = {t}. [By Lemma 2.1
in Seuret and Lévy Véhel (2002), this notion is well defined, that is, it does not
depend on the particular choice of the decreasing sequence of open sets.]

The next proposition shows that attaining the minimax rates of convergence cor-
responding to the pointwise or local Hölder exponent (possibly inflated by some
logarithmic factor) uniformly over Pn is an unachievable goal.

Proposition 3.13. For the rectangular kernel KR there exists some constant
M > 0, such that for any t 2 [0, 1], for any � 2 [�⇤, 1], for any 0 < " < 1, and
for any k � k0(�⇤), there exists some x > 0 and constants L = L(�) > 0 and
c4 = c4(�) > 0 with

inf
Tn

sup
p2Sk(�)

P⌦n
p

⇣
n

�
2�+1 |Tn(t)� p(t)| � x

⌘
> 0 for all k � k0(�⇤)

for all n � n0, with

Sk(�) = Sk(L,�,�⇤,M,KR, ")

=
n
p 2 Pk(KR,�⇤, L, ",M) : 9 r � c4 n

�
1

2�+1

such that p|(t�r,t+r) 2 H(t�r,t+r)(1, L)
o
\H(�",1+")(�, L),

where the infimum is running over all estimators Tn based on X1, . . . , Xn.
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Therefore, we introduce an n-dependent statistical notion of local regularity for any
point t. Roughly speaking, we intend it to be the maximal � such that the density
attains this Hölder exponent within (t�h�,n, t+h�,n), where h�,n is of the optimal
adaptive bandwidth order (log n/n)1/(2�+1). We realize this idea with k · k�,�⇤,U as
introduced in Definition 3.4 and used in Condition 3.5.

Definition 3.14 (n-dependent local Hölder exponent). With the classical op-
timal bandwidth within the class H(�)

h�,n = 2�jmin ·
✓
log ñ

ñ

◆ 1
2�+1

,

define the class H�⇤,n,t(�, L) as the set of functions p : (t�h�,n, t+h�,n) ! R, such
that p admits derivatives up to the order b� ^�⇤c and kpk�,�⇤,(t�h�,n,t+h�,n)  L,
and H�⇤,n,t(�) the class of functions p : (t � h�,n, t + h�,n) ! R for which the
norm kpk�,�⇤,(t�h�,n,t+h�,n) is well-defined and finite. The n-dependent local Hölder
exponent for the function p at point t is defined as

�n,p(t) = sup
n
� > 0 : p|(t�h�,n,t+h�,n) 2 H�⇤,n,t(�, L

⇤)
o
.(3.20)

If the supremum is running over the empty set, we set �n,p(t) = 0.

Finally, the next theorem shows that the confidence band adapts to the n-dependent
local Hölder exponent.

Theorem 3.15 (Strong local adaptivity). There exists some � = �(c1), such
that

lim sup
n!1

sup
p2Pn

P⌦n
p

0

@ sup
t2[0,1]

|Cloc
n,↵(t)| ·

✓
log n

n

◆�
�n,p(t)

2�n,p(t)+1

� (log n)�

1

A = 0.

Note that the case �n,p(t) = 1 is not excluded in the formulation of Theorem 3.15.
That is, if p|U can be represented as a polynomial of degree strictly less than �⇤,

the confidence band attains even adaptively the parametric width n�1/2, up to
logarithmic factors. In particular, the band can be tighter than n��⇤/(2�⇤+1). In
general, as long as �  " and (t� h�⇤,n, t+ h�⇤,n) ⇢ U�,

�n,p(t) � �p(U�) for all t 2 U.

Example 3.3. (continued) Figure 1 and Figure 2 illustrate the strong local
adaptivity property of our confidence band for the particular example of the tri-
angular density in (3.5) for n = 100. As already discussed in Subsection 3.1, the
triangular density satisfies both the global self-similarity condition 3.1 as well as
our admissibility condition 3.5. The quantity

n
�

�n,p(t)

2�n,p(t)+1 , t 2 [0, 1],(3.21)
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is (up to logarithmic factors) the stochastic order of the width

2 qn(↵)q
ñĥloc

n (t)
, t 2 [0, 1],

achieved by our new locally adaptive confidence band, which is defined in (3.18) and
(3.19), whereas n�1/3 is the stochastic order of the width of the globally adaptive
confidence band (1.3). Figure 1 contrasts our stochastic width order (3.21) (solid
line) with n�1/3 (dashed line). It shows the substantial benefit of the locally adaptive
confidence band outside of a shrinking neighborhood around the maximal point.
Our confidence band attains (up to logarithmic factors) the width corresponding
to the minimax-optimal rate under Lipschitz smoothness around t = 1/2, and the
parametric width n�1/2 (up to logarithmic factors) outside of the interval (1/2 �
2�jmin , 1/2 + 2�jmin).

0,5 1

0,1

0,2

Fig 1.

In Figure 2, we plot the bands
✓

p(t)� n
�

�n,p(t)

2�n,p(t)+1 , p(t) + n
�

�n,p(t)

2�n,p(t)+1

�◆

t2[0,1]

(solid lines)

and ⇣h
p(t)� n�

1
3 , p(t) + n�

1
3

i ⌘

t2[0,1]
(dashed lines).

Fig 2.

These illustrations are underlined by an extensive simulation study in the sup-
plemental article [Patschkowski and Rohde (2017)]. Besides, an algorithm for the
computation of the new locally adaptive confidence band is provided.
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4. Supplementary notation and results. The following auxiliary re-
sults are crucial ingredients for the proofs of Theorem 3.8 and Theorem 3.15.
Recalling the quantity h�,n in Definition 3.14, Proposition 4.1 shows that 2�ĵn(·)

lies in a band around

h̄n(·) = h�n,p(·),n(4.1)

uniformly over all admissible densities p 2 Pn. Proposition 4.1 furthermore reflects
the necessity to undersmooth, which has been already discovered by Bickel and
Rosenblatt (1973), leading to a bandwidth deflated by some logarithmic factor. Set
now

j̄n(·) =
�
log2

✓
1

h̄n(·)

◆⌫
+ 1,

such that the bandwidth 2�j̄n(·) is an approximation of h̄n(·) by the next smaller
bandwidth on the grid Gn with

1

2
h̄n(·)  2�j̄n(·)  h̄n(·).

Proposition 4.1. The bandwidth ĵn(·) defined in (3.16) satisfies

lim
n!1

sup
p2Pn

n
1� P�2

p

⇣
ĵn(k�n) 2

h
kn(k�n), j̄n(k�n) + 1

i
for all k 2 Tn

⌘o
= 0

where kn(·) = j̄n(·)�mn, and mn = 1
2c1 log log ñ.

Lemma 4.2. Let s, t 2 [0, 1] be two points with s < t, and let z 2 (s, t). If

|s� t|  1

8
h�⇤,n(4.2)

then

1

3
h̄n(z)  min

�
h̄n(s), h̄n(t)

 
 3 h̄n(z).

Lemma 4.3. Recall the definitions of Hn and Gn in (3.12) and (3.14), re-
spectively. There exist positive and finite constants c5 = c5(A, ⌫,K) and c6 =
c6(A, ⌫, L⇤,K), and some ⌘0 = ⌘0(A, ⌫, L⇤,K) > 0, such that

sup
p2Pn

P�i
p

 
sup
s2Hn

max
h2Gn

s
ñh

log ñ

���p̂(i)n (s, h)� E�i
p p̂(i)n (s, h)

��� > ⌘

!
 c5 ñ

�c6⌘, i = 1, 2

for su�ciently large n � n0(A, ⌫, L⇤,K) and for all ⌘ � ⌘0.

The next lemma extends the classical upper bound on the bias for the �⇤-capped
Hölder ball H�⇤,U (�, L) as defined in (3.7).
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Lemma 4.4. Let t 2 R and g, h > 0. Any density p : R ! R with

p|(t�(g+h),t+(g+h)) 2 H�⇤,(t�(g+h),t+(g+h))(�, L)

for some 0 < �  1 and some L > 0 satisfies

sup
s2(t�g,t+g)

|(Kh ⇤ p)(s)� p(s)|  b2h
�(4.3)

for some positive and finite constant b2 = b2(L,K).

Lemma 4.5. For symmetric kernels K and � = 1, the bias bound (4.3) contin-
ues to hold if the Lipschitz balls are replaced by the corresponding Zygmund balls.

5. Proofs. Due to space constraints, we restrict to the proofs of Proposi-
tion 3.7, Proposition 3.13, and Theorem 3.15. The remaining proofs of Section 3 as
well as all proofs of Section 4 are deferred to the supplemental article [Patschkowski
and Rohde (2017)].

Proof of Proposition 3.7. Define

R̃ =
[

n2N

R̃n

with

R̃n =

(
p 2 H(�",1+")(�⇤) : 8 t 2 [0, 1] 8h 2 G1 9� 2 [�⇤,�

⇤] with

p|(t�h,t+h) 2 H(t�h,t+h)(�)and k(KR,g ⇤ p)� pk(t�(h�g),t+(h�g)) �
g�

log n

for all g 2 G1 with g  h/8

)

and KR,g(·) = g�1KR(·/g). Furthermore, let

En(�) =

(
p 2 H(�",1+")(�) : k(KR,g ⇤ p)� pk(t�(h�g),t+(h�g)) �

2

log n
g� for all t 2 [0, 1],

for all h 2 G1, and for all g 2 G1 with g  h/8

)
.

Note that Lemma A.4 shows that En(�) is non-empty as soon as

2

log n
 1� 4

⇡
.



LOCALLY ADAPTIVE CONFIDENCE BANDS 21

Note additionally that En(�) ⇢ R̃n for any � 2 [�⇤,�⇤], and
[

n2N

En(�) ⇢ R̃.

With

An(�) =

⇢
f̃ 2 H(�1,2)(�) : kf̃ � fk�,(�",1+") <

kKRk�1
1

log n
for some f 2 En(�)

�
,

we get for any f̃ 2 An(�) and a corresponding f 2 En(�) with

kf̌k�,(�",1+") < kKRk�1
1

1

log n

and f̌ = f̃ � f , the lower bound
���(KR,g ⇤ f̃)� f̃

���
(t�(h�g),t+(h�g))

�
���(KR,g ⇤ f)� f

���
(t�(h�g),t+(h�g))

�
���f̌ � (KR,g ⇤ f̌)

���
(t�(h�g),t+(h�g))

=
2

log n
g� � sup

s2(t�(h�g),t+(h�g))

����
Z

KR(x)
�
f̌(s+ gx)� f̌(s)

 
dx

����

� 2

log n
g� � g� ·

Z
|KR(x)| sup

s2(t�(h�g),t+(h�g))
sup

s02(s�g,s+g)
s0 6=s

��f̌(s0)� f̌(s)
��

|s� s0|� dx

� 2

log n
g� � g� · kKRk1 · kf̌k�,(�",1+")

� 1

log n
g�

for all g, h 2 G1 with g  h/8 and for all t 2 [0, 1], and therefore

A =
[

n2N

An(�) ⇢ R̃.

Clearly, An(�) is open in H(�",1+")(�). Hence, the same holds true for A. Next, we
verify that A is dense in H(�",1+")(�). Let p 2 H(�",1+")(�) and let � > 0. We now
show that there exists some function p̃� 2 A with kp � p̃�k�,(�",1+")  �. For the
construction of the function p̃�, set the grid points

tj,1(k) = (4j + 1)2�k, tj,2(k) = (4j + 3)2�k

for j 2 {�2k�2,�2k�2 + 1, . . . , 2k�1 � 1} and k � 2. The function p̃� shall be
defined as the limit of a recursively constructed sequence. The idea is to recursively
add appropriately rescaled sine waves at those locations where the bias condition
is violated. Let p1,� = p, and denote

Jk =

⇢
j 2 {�2k�2, . . . , 2k�1 � 1} : max

i=1,2

���(KR,2�k ⇤ pk�1,�)(tj,i(k))� pk�1,�(tj,i(k))
���
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<
1

2
c9 �

✓
1� 2

⇡

◆
2�k�

�

for k � 2, where

c9 = c9(�) =

✓
3⇡

2
· 1

1� 2��1
+

7

1� 2��

◆�1

.

For any k � 2 set

pk,�(x) = pk�1,�(x) + c9 �
X

j2Jk

Sk,�,j(x)

with functions

Sk,�,j(x) = 2�k� sin
�
2k�1⇡x

� �
|(4j + 2)2�k � x|  2�k+1

 

exemplified in Figure 3. That is,

pk,�(x) = p(x) + c9 �
kX

l=2

X

j2Jl

Sl,�,j(x),

and we define p̃� as the limit

p̃�(x) = p(x) + c9 �
1X

l=2

X

j2Jl

Sl,�,j(x)

= pk,�(x) + c9 �
1X

l=k+1

X

j2Jl

Sl,�,j(x).

The function p̃� is well-defined as the series on the right-hand side converges: for
fixed l 2 N, the indicator functions

�
|(4j + 2)2�k � x|  2�k+1

 
, j 2 {�2l�2,�2l�2 + 1, . . . , 2l�1 � 1}

have disjoint supports, such that
����
X

j2Jl

Sl,�,j

����
(�",1+")

 2�l� .

Hence,

1X

l=2

����
X

j2Jl

Sl,�,j

����
(�",1+")


1X

l=0

2�l� < 1,

that is the series
P

1

l=2

P
j2Jl

Sl,�,j is normally convergent. In particular, the limit
function is continuous.
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Fig 3. Functions Sk,�,0 for k = 2, . . . , 5 and � = 0.5

It remains to verify that p̃� 2
S

n2N En(�) ⇢ A and also kp� p̃�k�,(�",1+")  �. As
concerns the inequality kp� p̃�k�,(�",1+")  �, it remains to show that

������

1X

l=2

X

j2Jl

Sl,�,j

������
�,(�",1+")

 1

c9
.

For s, t 2 (�", 1 + ") with |s� t|  1, we obtain
������

1X

l=2

X

j2Jl

Sl,�,j(s)�
1X

l=2

X

j2Jl

Sl,�,j(t)

������


1X

l=2

2�l�

���� sin(2
l�1⇡s)

X

j2Jl

{|(4j + 2)2�l � s|  2�l+1}(5.1)

� sin(2l�1⇡t)
X

j2Jl

{|(4j + 2)2�l � t|  2�l+1}
����.

Choose now k0 2 N maximal, such that both

(4j + 2)2�k0
� 2�k0+1  s  (4j + 2)2�k0

+ 2�k0+1

and

(4j + 2)2�k0
� 2�k0+1  t  (4j + 2)2�k0

+ 2�k0+1

for some j 2 {�2k
0
�2, . . . , 2k

0
�1 � 1}. For 2  l  k0, we have

���� sin(2
l�1⇡s)

X

j2Jl

{|(4j + 2)2�l � s|  2�l+1}

� sin(2l�1⇡t)
X

j2Jl

{|(4j + 2)2�l � t|  2�l+1}
����
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���� sin(2

l�1⇡s)� sin(2l�1⇡t)

����

 min
�
2l�1⇡|s� t|, 2

 (5.2)

by the mean value theorem. For l � k0 + 1,
���� sin(2

l�1⇡s)
X

j2Jl

{|(4j + 2)2�l � s|  2�l+1}

� sin(2l�1⇡t)
X

j2Jl

{|(4j + 2)2�l � t|  2�l+1}
����

 max

(���� sin(2
l�1⇡s)

����,
���� sin(2

l�1⇡t)

����

)
.

Furthermore, due to the choice of k0, there exists some z 2 [s, t] with

sin(2l�1⇡z) = 0

for all l � k0 + 1. Thus, for any l � k0 + 1, by the mean value theorem,
���� sin(2

l�1⇡s)

���� =
���� sin(2

l�1⇡s)� sin(2l�1⇡z)

����

 min
�
2l�1⇡|s� z|, 1

 

 min
�
2l�1⇡|s� t|, 1

 
.

Analogously, we obtain
���� sin(2

l�1⇡t)

����  min
�
2l�1⇡|s� t|, 1

 
.

Consequently, together with inequality (5.1) and (5.2),
������

1X

l=2

X

j2Jl

Sl,�,j(s)�
1X

l=2

X

j2Jl

Sl,�,j(t)

������


1X

l=2

2�l� min
�
2l�1⇡|s� t|, 2

 
.

Choose now k 2 N [ {0}, such that 2�(k+1) < |s� t|  2�k. If k  1,

1X

l=2

2�l� min
�
2l�1⇡|s� t|, 2

 
 2

2�2�

1� 2��
 2

1� 2��
|s� t|� .

If k � 2, we decompose

1X

l=2

2�l� min
�
2l�1⇡|s� t|, 2

 
 ⇡

2
|s� t|

kX

l=0

2l(1��) + 2
1X

l=k+1

2�l�
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=
⇡

2
|s� t| 2

k(1��) � 2��1

1� 2��1
+ 2 · 2

�(k+1)�

1� 2��

 |s� t|� ·
✓
⇡

2
· 1

1� 2��1
+

2

1� 2��

◆
.

Since furthermore
������

1X

l=2

X

j2Jl

Sl,�,j

������
sup

 1

1� 2��
,

we have
������

1X

l=2

X

j2Jl

Sl,�,j

������
�,(�",1+")

 3

✓
⇡

2
· 1

1� 2��1
+

2

1� 2��

◆
+

1

1� 2��
=

1

c9

and finally kp� p̃"k�,(�",1+")  �. In particular p̃� 2 H(�",1+")(�).

We now show that the function p̃� is contained in
S

n2N En(�) ⇢ A. For any
bandwidths g, h 2 G1 with g  h/8, it holds that h � g � 4g. Thus, for any
g = 2�k with k � 2 and for any t 2 (�", 1 + "), there exists some j = j(t, h, g) 2
{�2k�2, . . . , 2k�1 � 1} such that both tj,1(k) and tj,2(k) are contained in (t� (h�
g), t+ (h� g)), which implies

sup
s2(t�(h�g),t+(h�g))

|(KR,g ⇤ p̃�)(s)� p̃�(s)|

� max
i=1,2

|(KR,g ⇤ p̃�)(tj,i(k))� p̃�(tj,i(k))| .
(5.3)

By linearity of the convolution and the theorem of dominated convergence,

(KR,g ⇤ p̃�)(tj,i(k))� p̃�(tj,i(k))

= (KR,g ⇤ pk,�)(tj,i(k))� pk,�(tj,i(k))

+ c9 �
1X

l=k+1

X

j2Jl

⇣
(KR,g ⇤ Sl,�,j)(tj,i(k))� Sl,�,j(tj,i(k))

⌘
.(5.4)

We analyze the convolution KR,g ⇤ Sl,�,j for l � k + 1. Here,

sin
�
2l�1⇡ tj,1(k)

�
= sin

�
2l�k�1⇡ (4j + 1)

�
= 0

and

sin
�
2l�1⇡ tj,2(k)

�
= sin

�
2l�k�1⇡ (4j + 3)

�
= 0.

Hence,
X

j2Jl

Sl,�,j(tj,i(k)) = 0, i = 1, 2
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for any l � k + 1. Furthermore,

(KR,g ⇤ Sl,�,j)(tj,i(k)) =
1

2g

Z g

�g
Sl,�,j(tj,i(k)� x) dx

=
1

2g

Z tj,i(k)+g

tj,i(k)�g
Sl,�,j(x) dx, i = 1, 2.

Due to the identities

(4j + 2)2�k � 2�k+1 = tj,1(k)� g

(4j + 2)2�k + 2�k+1 = tj,2(k) + g,

we have either
⇥
(4j + 2)2�l � 2�l+1, (4j + 2)2�l + 2�l+1

⇤
⇢ [tj,1(k)� g, tj,2(k) + g]

or
⇥
(4j + 2)2�l � 2�l+1, (4j + 2)2�l + 2�l+1

⇤
\ [tj,1(k)� g, tj,2(k) + g] = ;

for any l � k + 1. Therefore, for i = 1, 2,
X

j2Jl

(KR,g ⇤ Sl,�,j)(tj,i(k))

=
X

j2Jl

1

2g

Z tj,i(k)+g

tj,i(k)�g
2�l� sin

�
2l�1⇡x

� �
|(4j + 2)2�l � x|  2�l+1

 
dx

= 0

such that equation (5.4) then simplifies to

(KR,g ⇤ p̃�)(tj,i(k))� p̃�(tj,i(k)) = (KR,g ⇤ pk,�)(tj,i(k))� pk,�(tj,i(k)), i = 1, 2.

Together with (5.3), we obtain

sup
s2(t�(h�g),t+(h�g))

|(KR,g ⇤ p̃�)(s)� p̃�(s)| � max
i=1,2

|(KR,g ⇤ pk,�)(tj,i(k))� pk,�(tj,i(k))|

for some j 2 {�2k�2,�2k�2 + 1, . . . , 2k�2 � 1}. If j /2 Jk, then

max
i=1,2

|(KR,g ⇤ pk,�)(tj,i(k))� pk,�(tj,i(k))|

= max
i=1,2

|(KR,g ⇤ pk�1,�)(tj,i(k))� pk�1,�(tj,i(k))|

� 1

2
c9 �

✓
1� 2

⇡

◆
g� .

If j 2 Jk, then

max
i=1,2

|(KR,g ⇤ pk,�)(tj,i(k))� pk,�(tj,i(k))|
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� c9 �max
i=1,2

|(KR,g ⇤ Sk,�,j)(tj,i(k))� Sk,�,j(tj,i(k))|

� max
i=1,2

|(KR,g ⇤ pk�1,�)(tj,i(k))� pk�1,�(tj,i(k))|

� c9 �max
i=1,2

|(KR,g ⇤ Sk,�,j)(tj,i(k))� Sk,�,j(tj,i(k))|�
1

2
c9 �

✓
1� 2

⇡

◆
g� .

Similar as above we obtain

(KR,g ⇤ Sk,�,j)(tj,1(k))� Sk,�,j(tj,1(k))

=
1

2g

Z tj,1(k)+g

tj,1(k)�g
2�k� sin

�
2k�1⇡x

�
dx� 2�k�

=
1

2g
2�k�

Z 2�k+1

0
sin

�
2k�1⇡x

�
dx� 2�k�

= g�
✓
2

⇡
� 1

◆

as well as

(KR,g ⇤ Sk,�,j)(tj,2(k))� Sk,�,j(tj,2(k)) = g�
✓
1� 2

⇡

◆
,

such that

max
i=1,2

|(KR,g ⇤ pk,�)(tj,i(k))� pk,�(tj,i(k))| �
1

2
c9 �

✓
1� 2

⇡

◆
g� .

Combining the two cases finally gives

sup
s2(t�(h�g),t+(h�g))

|(KR,g ⇤ p̃�)(s)� p̃�(s)| �
1

2
c9 �

✓
1� 2

⇡

◆
g� .

In particular, p̃� 2 En(�) for su�ciently large n � n0(�, �), and thus p̃� 2 A.

Since A is open and dense in the class H(�",1+")(�) and A ⇢ R̃, the complement

H(�",1+")(�) \ R̃ is nowhere dense in H(�",1+")(�). Thus, because of

H(�",1+")(�)|(t�h,t+h) = H(t�h,t+h)(�),

and the fact that for any x 2 H(�",1+")(�) and any z0 2 H(t�h,t+h)(�) with

kx|(t�h,t+h) � z0k�,(t�h,t+h) < �

there exists an extension z 2 H(�",1+")(�) of z
0 with

kx� zk�,(�",1+") < �,

the set H(t�h,t+h)(�) \ R̃|(t�h,t+h) is nowhere dense in H(t�h,t+h)(�).

Proof of Proposition 3.13. The proof is based on a reduction of the supre-
mum over the class to a maximum over two distinct hypotheses.
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Part 1. For � 2 [�⇤, 1), the construction of the hypotheses is based on the Weier-
straß function as defined in (A.3) in the supplemental article. As in the proof of
Proposition 3.6, see the supplemental article [Patschkowski and Rohde (2017)], con-
sider the function p0 : R ! R with

p0(x) =

8
>>><

>>>:

0, if |x� t| � 10
3

1
4 + 3

16 (x� t+ 2), if � 10
3 < x� t < �2

1
6 + 1�2��

12 W�(x� t), if |x� t|  2
1
4 � 3

16 (x� t� 2), if 2 < x� t < 10
3

and the functions p1,n, p2,n : R ! R with

p1,n(x) = p0(x) + qt+ 9
4 ,n

(x; g�,n)� qt,n(x; g�,n), x 2 R

p2,n(x) = p0(x) + qt+ 9
4 ,n

(x; c18 · g�,n)� qt,n(x; c18 · g�,n), x 2 R

for g�,n = 1
4n

�1/(2�+1) and c18 = c18(�) = (2LW (�))�1/� , where

qa,n(x; g) =

(
0, if |x� a| > g
1�2��

12

⇣
W�(x� a)�W�(g)

⌘
, if |x� a|  g

for a 2 R and g > 0.

Fig 4. Functions p1,n and p2,n for t = 0.5, � = 0.5 and n = 50

Following the lines of the proof of Proposition 3.6, both p1,n and p2,n are contained
in the class Pk(L,�⇤,M,KR, ") for su�ciently large k � k0(�⇤). Moreover, both
p1,n and p2,n are constant on (t� c18 · g�,n, t+ c18 · g�,n), so that

p1,n|(t�c18·g�,n,t+c18·g�,n), p2,n|(t�c18·g�,n,t+c18·g�,n) 2 H(t�c18·g�,n,t+c18·g�,n)(1, L)

for some constant L = L(�). Using Lemma A.4 and

|p0(t)� p1,n(t) �
1� 2��⇤

12
g��,n,

see the supplemental article [Patschkowski and Rohde (2017)], the absolute distance
of the two hypotheses in t is at least

|p1,n(t)� p2,n(t)| = |qt,n(t; g�,n)� qt,n(t; c18 · g�,n)|
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=
1� 2��

12
|W�(g�,n)�W�(c18 · g�,n)|

� 1� 2��⇤

12

⇣
|W�(g�,n)�W�(0)|� |W�(c18 · g�,n)�W�(0)|

⌘

� 1� 2��⇤

12

⇣
g��,n � LW (�) (c18 · g�,n)�

⌘

� 2c19 g
�
�,n

where

c19 = c19(�⇤) =
1� 2��⇤

48
.

Since furthermore
Z
(p2,n(x)� p1,n(x)) dx = 0,

and log(1 + x)  x for x > �1, the Kullback-Leibler divergence between the asso-
ciated product probability measures P⌦n

1,n and P⌦n
2,n is bounded from above by

K(P⌦n
2,n,P

⌦n
1,n)  n

Z
(p2,n(x)� p1,n(x))2

p1,n(x)
dx

 12n

Z
(p2,n(x)� p1,n(x))

2 dx

= 24n

Z
(q0,n(x; g�,n)� q0,n(x, c18 · g�,n))2 dx

= 24n

✓
1� 2��

12

◆2
 
2

Z g�,n

c18·g�,n

⇣
W�(x)�W�(g�,n)

⌘2
dx

+

Z c18·g�,n

�c18·g�,n

⇣
W�(c18 · g�,n)�W�(g�,n)

⌘2
dx

!

 24nLW (�)2
✓
1� 2��

12

◆2
 
2

Z g�,n

c18·g�,n

(g�,n � x)2� dx

+ 2(1� c18)
2c18g

2�+1
�,n

!

= c20

with

c20 = c20(�) = 48LW (�)24�(2�+1)

✓
1� 2��

12

◆2
 
(1� c18)2�+1

2� + 1
+ (1� c18)

2c18

!
,

where we used Lemma A.4 in the last inequality. Theorem 2.2 in Tsybakov (2009)
then yields

inf
Tn

sup
p2Sk(�)

P⌦n
p

⇣
n

�
2�+1 |Tn(t)� p(t)| � c19

⌘
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� max

(
1

4
exp(�c20),

1�
p

c20/2

2

)
> 0.

Part 2. For � = 1, consider the function p0 : R ! R with

p0(x) =

(
0, if |x� t| > 4
1
4 � 1

16 |x� t|, if |x� t|  4

and the functions p1,n, p2,n : R ! R with

p1,n(x) = p0(x) + qt+ 9
4 ,n

(x; g1,n)� qt,n(x; g1,n)

p2,n(x) = p0(x) + qt+ 9
4 ,n

(x; g1,n/2)� qt,n(x; g1,n/2)

for g1,n = 1
4n

�1/3, where

qa,n(x; g) =

(
0, if |x� a| > g
1
16 (g � |x� a|), if |x� a|  g

for a 2 R and g > 0. Following the lines of the proof of Proposition 3.6, both p1,n
and p2,n are contained in the class Pk for su�ciently large k � k0(�⇤). Moreover,
both p1,n and p2,n are constant on (t� g1,n/2, t+ g1,n/2), so that

p1,n|(t�g1,n/2,t+g1,n/2), p2,n|(t�g1,n/2,t+g1,n/2) 2 H(t�g1,n/2,t+g1,n/2)(1, 1/4).

The absolute distance of p1,n and p2,n in t is given by

|p1,n(t)� p2,n(t)| =
1

32
g1,n,

whereas the Kullback-Leibler divergence between the associated product probability
measures P⌦n

1,n and P⌦n
2,n is upper bounded by

K
�
P⌦n
2,n,P

⌦n
1,n

�
 n

Z
(p2,n(x)� p1,n(x))2

p1,n(x)
dx

 16n

Z
(p2,n(x)� p1,n(x))

2 dx

= 32n

Z
(q0,n(x; g1,n)� q0,n(x, g1,n/2))

2 dx

= 32n

 
2

Z g1,n

g1,n/2

✓
1

16
(g1,n � x)

◆2

dx+

Z g1,n/2

�g1,n/2

⇣g1,n
32

⌘2
dx

!

=
2

3 · 322 +
1

32
.

Together with Theorem 2.2 in Tsybakov (2009) the result follows.
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Proof of Theorem 3.15. Recall the notation of Subsection 3.2, in particular
the definitions of ĥloc

n (t) in (3.17), of qn(↵) in (3.19), of �n,p(t) in (3.20), and of h̄n(t)
in (4.1). Furthermore, set �̃ = �̃(c1) =

1
2 (c1 log 2� 1). To show that the confidence

band is adaptive, note that according to Proposition 4.1 and Lemma 4.2 for any
� > 0 there exists some n0(�), such that

sup
p2Pn

P�2
p

0

@ sup
t2[0,1]

|Cloc
n,↵(t)| ·

✓
log ñ

ñ

◆ ��n,p(t)

2�n,p(t)+1

�
p
6 · 21�

jmin
2 qn(↵)(log ñ)

�̃

1

A

= sup
p2Pn

P�2
p

 
sup

t2[0,1]

h̄n(t)

ĥloc
n (t)

· 2�un � 6

!

= sup
p2Pn

P�2
p

0

@max
k2Tn

sup
t2Ik

h̄n(t)

min
n
2�ĵn((k�1)�n), 2�ĵn(k�n)

o � 6

1

A

 sup
p2Pn

P�2
p

0

@max
k2Tn

min
�
h̄n((k � 1)�n), h̄n(k�n)

 

min
n
2�ĵn((k�1)�n), 2�ĵn(k�n)

o � 2

1

A

 sup
p2Pn

P�2
p

0

@9 k 2 Tn :
min

n
2�j̄n((k�1)�n), 2�j̄n(k�n)

o

min
n
2�ĵn((k�1)�n), 2�ĵn(k�n)

o � 1

1

A

= sup
p2Pn

8
<

:1� P�2
p

0

@8 k 2 Tn :
min

n
2�j̄n((k�1)�n), 2�j̄n(k�n)

o

min
n
2�ĵn((k�1)�n), 2�ĵn(k�n)

o < 1

1

A

9
=

;

 sup
p2Pn

n
1� P�2

p

⇣
ĵn(k�n) < j̄n(k�n) for all k 2 Tn

⌘o

 �

for all n � n0(�).

SUPPLEMENTARY MATERIAL

Supplement A: Supplement to ”Locally adaptive confidence bands”

(doi: COMPLETED BY THE TYPESETTER; .pdf). Supplement A is organized
as follows. Section A.1 develops connections between the Weierstraß function and
the Admissibility condition 3.5. Further notations and auxiliary results from em-
pirical process theory are provided in Section A.2, whereas Section A.3 provides
a simulation study together with an algorithm for the calculation of the locally
adaptive confidence band. Section A.4 presents the remaining proofs of the results
of Section 3. We proceed with the proofs of the results of Section 4 in Section A.5.
Auxiliary results are stated and proved in Section A.6.
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SUPPLEMENT TO

”LOCALLY ADAPTIVE CONFIDENCE BANDS”

By Tim Patschkowski and Angelika Rohde

Ruhr-Universität Bochum and Albert-Ludwigs-Universität Freiburg

Supplement A is organized as follows. Section A.1 develops connections between
the Weierstraß function and the Admissibility condition 3.5. Further notations and
auxiliary results from empirical process theory are provided in Section A.2, whereas
Section A.3 provides a simulation study together with an algorithm for the calcu-
lation of the locally adaptive confidence band. Section A.4 presents the remaining
proofs of the results of Section 3. We proceed with the proofs of the results of Sec-
tion 4 in Section A.5. Auxiliary results are stated and proved in Section A.6.

A.1. The Weierstraß function and connections to the Admissibility Con-

dition 3.5. The lower bound condition (3.11) can be satisfied only for

�̃ = �̃p(U) = sup
�
� 2 (0,1] : p|U 2 HU (�)

 
.

However, the conditions (3.10) and (3.11) are not necessarily simultaneously satis-
fied for �̃.

(i) There exist functions p : U ! R, U ⇢ R some interval, which are not Hölder
continuous to their exponent �̃. The Weierstraß function W1 : U ! R with

W1(·) =
1X

n=0

2�n cos (2n⇡ ·)

is such an example. Indeed, Hardy (1916) proves that

W1(x+ h)�W1(x) = O

✓
|h| log

✓
1

|h|

◆◆
,

which implies the Hölder continuity to any parameter � < 1, hence �̃ � 1.
Moreover, he shows in the same reference that W1 is nowhere di↵erentiable,
meaning that it cannot be Lipschitz continuous, that is �̃ = 1 but W1 /2
HU (�̃).

(ii) It can also happen that p|U 2 HU (�̃) but

lim sup
�!0

sup
|x�y|�

x,y2U

|p(b�̃c)(x)� p(b�̃c)(y)|

|x� y|�̃�b�̃c
= 0,(A.1)

1

http://www.imstat.org/aos/


2

meaning that (3.11) is violated. In the analysis literature, the subset of func-
tions in HU (�̃) satisfying (A.1) is called little Lipschitz (or little Hölder)
space. As a complement of an open and dense set, it forms a nowhere dense
subset of HU (�̃).

Definition A.1. We set

�p(U) = sup
�
� 2 (0,1] : p|U 2 H�⇤,U (�, L

⇤)
 
.(A.2)

Remark A.2. If for some open interval U ⇢ [0, 1] the derivative p(�
⇤)

|U
exists

and

p(�
⇤)

|U
⌘ 0,

then kpk�,�⇤,U is finite uniformly over all � > 0. If

p(�
⇤)

|U
6⌘ 0,

then kpk�,�⇤,U is finite if and only if �  �⇤
as a consequence of the mean value

theorem. That is, �p(U) 2 (0,�⇤] [ {1}.

Lemma A.3. Any admissible density p 2P
adm
n

(K,�⇤, L⇤, ") can satisfy (3.10)

and (3.11) for � = �p((t� u, t+ u)) only.

Proof of Lemma A.3. Let p 2 P
adm
n

(K,�⇤, L⇤, ") be an admissible density.
That is, for any t 2 [0, 1] and for any h 2 G1 there exists some � 2 [�⇤,�⇤][ {1},
such that for u = h or u = 2h both

p|(t�u,t+u) 2 H�⇤,(t�u,t+u)(�, L
⇤)

and

sup
s2(t�(u�g),t+(u�g))

|(Kg ⇤ p)(s)� p(s)| �
g�

log n
for all g 2 G1 with g  u/8

hold. By definition of �p((t�u, t+u)) in Definition A.1, we obtain �p((t�u, t+u)) �
�. We now prove by contradiction that also �p((t � u, t + u))  �. If � = 1, the
proof is finished. Assume now that � < 1 and that �p((t � u, t + u)) > �. Then,
by Lemma A.11, there exists some � < �0 < �p((t � u, t + u)) with p|(t�u,t+u) 2

H�⇤,(t�u,t+u)(�
0, L⇤). By Lemma 4.4, there exists some constant b2 = b2(L⇤,K)

with

b2g
�
0
� sup

s2(t�(u�g),t+(u�g))
|(Kg ⇤ p)(s)� p(s)| �

g�

log n

for all g 2 G1 with g  u/8, which is a contradiction.
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Among more involved approximation steps, the proof of Proposition 3.7 reveals the
existence of functions with the same regularity in the sense of the Admissibility
Condition 3.5 on every interval for � 2 (0, 1). This property is closely related
to but does not coincide with the concept of mono-Hölder continuity from the
analysis literature, see for instance Barral et al. (2013). Hardy (1916) shows that
the Weierstraß function is mono-Hölder continuous for � 2 (0, 1). For any � 2 (0, 1],
the next lemma shows that Weierstraß’ construction

W�(·) =
1X

n=0

2�n� cos(2n⇡ ·)(A.3)

satisfies the bias condition (3.11) for the rectangular kernel to the exponent � on
any subinterval (t� h, t+ h), t 2 [0, 1], h 2 G1.

Lemma A.4. For all � 2 (0, 1), the Weierstraß function W� as defined in (A.3)
satisfies W�|U 2 HU (�, LW ) with some Lipschitz constant LW = LW (�) for every

open interval U . For the rectangular kernel KR and � 2 (0, 1], the Weierstraß

function fulfills the bias lower bound condition

sup
s2B(t,h�g)

|(KR,g ⇤W�)(s)�W�(s)| >

✓
4

⇡
� 1

◆
g�

for any t 2 R and for any g, h 2 G1 with g  h/2.

Proof of Lemma A.4. As it has been proven in Hardy (1916) the Weierstraß
function W� is �-Hölder continuous everywhere. For the sake of completeness, we
state the proof here. Because the Weierstraß function is 2-periodic, it su�ces to
consider points s, t 2 R with |s� t|  1. Note first that

|W�(s)�W�(t)|  2
1X

n=0

2�n�

����sin
✓
1

2
2n⇡(s+ t)

◆���� ·
����sin

✓
1

2
2n⇡(s� t)

◆����

 2
1X

n=0

2�n�

����sin
✓
1

2
2n⇡(s� t)

◆���� .

Choose k 2 N[{0} such that 2�(k+1) < |s� t|  2�k. For all summands with index
n  k, use the inequality | sin(x)|  |x| and for all summands with index n > k use
| sin(x)|  1, such that

|W�(s)�W�(t)|  2
kX

n=0

2�n�

����
1

2
2n⇡(s� t)

����+ 2
1X

n=k+1

2�n�

= ⇡ |s� t|
kX

n=0

2n(1��) + 2
1X

n=k+1

2�n� .

Note that,

kX

n=0

2n(1��) =
2(k+1)(1��)

� 1

21�� � 1
=

2k(1��) � 2��1

1� 2��1


2k(1��)

1� 2��1
,
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and, as 2�� < 1,

1X

n=k+1

2�n� =
2�(k+1)�

1� 2��
.

Consequently, we have

|W�(s)�W�(t)|  ⇡ |s� t|
2k(1��)

1� 2��1
+ 2

2�(k+1)�

1� 2��

 |s� t|�
✓

⇡

1� 2��1
+

2

1� 2��

◆
.

Furthermore

kW�ksup 

1X

n=0

2�n� =
1

1� 2��
,

so that for any interval U ⇢ R,

kW�k�,U 
⇡

1� 2��1
+

3

1� 2��
.

We now turn to the proof of bias lower bound condition. For any 0 < �  1, for any
h 2 G1, for any g = 2�k

2 G1 with g  h/2, and for any t 2 R, there exists some
s0 2 [t� (h�g), t+(h�g)] with cos

�
2k⇡s0

�
= 1, since the function x 7! cos(2k⇡x)

is 21�k-periodic. Note that in this case also

cos (2n⇡s0) = 1 for all n � k.(A.4)

The following supremum is now lower bounded by

sup
s2B(t,h�g)

����
Z

KR,g(x� s)W�(x) dx�W�(s)

����

�

����
Z 1

�1
KR(x)W�(s0 + gx) dx�W�(s0)

���� .

As furthermore

sup
x2R

��KR(x)2
�n� cos (2n⇡(s0 + gx))

��  kKRksup · 2�n�

and

1X

n=0

kKRksup · 2�n� =
kKRksup

1� 2��
<1,

the dominated convergence theorem implies

����
Z 1

�1
KR(x)W�(s0 + gx) dx�W�(s0)

���� =

�����

1X

n=0

2�n�In(s0, g)

�����
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with

In(s0, g) =

Z 1

�1
KR(x) cos (2

n⇡(s0 + gx)) dx� cos (2n⇡s0) .

Recalling (A.4), it holds for any index n � k

In(s0, g) =
1

2
·
sin(2n⇡(s0 + g))� sin(2n⇡(s0 � g))

2n⇡g
� 1

=
sin(2n⇡g)

2n⇡g
� 1

= �1.(A.5)

Furthermore, for any index 0  n  k � 1 holds

In(s0, g) =
1

2
·
sin(2n⇡(s0 + g))� sin(2n⇡(s0 � g))

2n⇡g
� cos (2n⇡s0)

= cos(2n⇡s0)

✓
sin(2n⇡g)

2n⇡g
� 1

◆
.(A.6)

Using this representation, the inequality sin(x)  x for x � 0, and Lemma A.10,
we obtain

2�n�In(s0, g)  2�n�

✓
1�

sin(2n⇡g)

2n⇡g

◆

 2�n�
·
(2n⇡g)2

6

 2�n�+2(n�k)+1.

Since k � n� 1 � 0 and �  1, this is in turn bounded by

2�n�In(s0, g)  2�(2k�n�2)�
· 22(n�k)+1+2(k�n�1)�

 2�(2k�n�2)�
· 22(n�k)+1+2(k�n�1)

 2�(2k�n�2)� .(A.7)

Taking together (A.5) and (A.7), we arrive at

k�3X

n=0

2�n�In(s0, g) +
2k�2X

n=k+1

2�n�In(s0, g) 
k�3X

n=0

2�(2k�n�2)�
�

2k�2X

n=k+1

2�n� = 0.

Since by (A.5) also

1X

n=2k�1

2�n�In(s0, g) = �
1X

n=2k�1

2�n� < 0,



6

it remains to investigate

kX

n=k�2

2�n�In(s0, g).

For this purpose, we distinguish between the three cases

(i) cos(2k�1⇡s0) = cos(2k�2⇡s0) = 1

(ii) cos(2k�1⇡s0) = �1, cos(2k�2⇡s0) = 0

(iii) cos(2k�1⇡s0) = 1, cos(2k�2⇡s0) = �1

and subsequently use the representation in (A.6). In case (i), obviously

kX

n=k�2

2�n�In(s0, g)  �2
�k� < 0.

using sin(x)  x for x � 0 again. In case (ii), we obtain for �  1

kX

n=k�2

2�n�In(s0, g) = 2�k�2�
✓
1�

sin(⇡/2)

⇡/2

◆
� 2�k�

 2�k�

✓
1�

4

⇡

◆
< 0.

Finally, in case (iii), for �  1,

kX

n=k�2

2�n�In(s0, g)

= 2�(k�1)�

✓
sin(⇡/2)

⇡/2
� 1

◆
� 2�(k�2)�

✓
sin(⇡/4)

⇡/4
� 1

◆
� 2�k�

= 2�(k�1)�

✓✓
2

⇡
� 1

◆
+ 2�

✓
1�

sin(⇡/4)

⇡/4

◆◆
� 2�k�

< 2�(k�1)�

✓
2

⇡
+ 1� 8

sin(⇡/4)

⇡

◆
� 2�k�

< �2�k�

< 0.

That is,

sup
s2B(t,h�g)

����
Z

KR,g(x� s)W�(x) dx�W�(s)

����

�

����
Z 1

�1
KR(x)W�(s0 + gx) dx�W�(s0)

����

= �
1X

n=0

2�n�In(s0, g)
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� �

kX

n=k�2

2�n�In(s0, g)

>

✓
4

⇡
� 1

◆
g� .

Remark A.5. The whole scale of parameters � 2 [�⇤, 1] in Proposition 3.7

can be covered by passing over from Hölder classes to Hölder-Zygmund classes in

the definition of Pn. Although the Weierstraß function W1 in (A.3) is not Lip-

schitz, a classical result, see Heurteaux (2005) or Mauldin and Williams (1986)

and references therein, states that W1 is indeed contained in the Zygmund class ⇤1.

That is, it satisfies

|W1(x+ h)�W1(x� h)� 2W1(x)|  C|h|

for some C > 0 and for all x 2 R and for all h > 0. Due to the symmetry of the

rectangular kernel KR, it therefore fulfills the bias upper bound

kKR,g ⇤W1 �W1ksup  C 0g� for all g 2 (0, 1].

A.2. Further notations and auxiliary results from empirical process the-

ory. To keep the technical representation clearly arranged, we first introduce some
further abbreviations. Moreover, for the reader’s convenience, we repeat definitions
and auxiliary results from the theory of empirical processes, which are introduced
within Section 5 (Proof section) of the main article only.

• The open interval (t� r, t+ r) around some point t 2 R with r > 0 is referred
to as B(t, r).

• For k 2 N we denote the k-th order Taylor polynomial of the function f :
R! R at point y 2 R by P f

y,k
if well defined.

• For any metric space (M,d) and subset K ⇢ M , we define the covering
number N(K, d, ") as the minimum number of closed balls with radius at
most " (with respect to d) needed to cover K. If the metric d is induced by
a norm k · k, we write also N(K, k · k, ") for N(K, d, ").

As has been shown by Nolan and Pollard (1987) (Section 4 and Lemma 22), the
class

K =

⇢
K

✓
·� t

h

◆
: t 2 R, h > 0

�

with constant envelope kKksup satisfies

N
�
K, k · kLp(Q), "kKksup

�


✓
A

"

◆⌫
, 0 < "  1, p = 1, 2(A.8)

for all probability measures Q and for some finite and positive constants A and ⌫.
Furthermore, for the subsequent proofs we recall the following notion of the theory
of empirical processes.
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Definition A.6 (Giné and Guillou (1999)). A class of measurable functions H

on a measure space (S,S ) is a V apnik-Červonenkis class (VC class) of functions

with respect to the envelope H if there exists a measurable function H which is

everywhere finite with sup
h2H |h|  H and finite numbers A and v, such that

sup
Q

N
⇣
H , k · kL2(Q), "kHkL2(Q)

⌘


✓
A

"

◆v

for all 0 < " < 1, where the supremum is running over all probability measures Q
on (S,S ) for which kHkL2(Q) <1.

Nolan and Pollard (1987) call a class Euclidean with respect to the envelope H and
with characteristics A and ⌫ if the same holds true with L1(Q) instead of L2(Q).
The following auxiliary lemma is a direct consequence of the results in the same
reference.

Lemma A.7. If a class of measurable functions H is Euclidean with respect to

a constant envelope H and with characteristics A and ⌫, then the class

H̃ = {h� EPh : h 2H }

is a VC class with envelope 2H and characteristics A0 = (4
p
A)_ (2A) and ⌫0 = 3⌫

for any probability measure P.

Proof. For any probability measure P and for any functions h̃1 = h1 � EPh1,
h̃2 = h2 � EPh2 2 H̃ with h1, h2 2H , we have

kh̃1 � h̃2kL2(Q)  kh1 � h2kL2(Q) + kh1 � h2kL1(P).

For any 0 < "  1, we obtain as a direct consequence of Lemma 14 in Nolan and
Pollard (1987)

N
⇣
H̃ , L2(Q), 2"kHkL2(Q)

⌘

 N

✓
H , L2(Q),

"kHkL2(Q)

2

◆
·N

✓
H , L1(P),

"kHkL1(P)

2

◆
.

(A.9)

Nolan and Pollard (1987), page 789, furthermore state that the Euclidean class H

is also a VC class with respect to the envelope H and with

N

✓
H , L2(Q),

"kHkL2(Q)

2

◆


 
4
p
A

"

!2⌫

,

whereas

N

✓
H , L1(P),

"kHkL1(P)

2

◆


✓
2A

"

◆⌫
.
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Inequality (A.9) thus implies

N
⇣
H̃ , L2(Q), 2"kHkL2(Q)

⌘


 
4
p
A _ 2A

"

!3⌫

.

A.3. Simulation study and algorithm. We first present an algorithm for the
computation of our new locally adaptive confidence band according to the procedure
described in Section 3.2 of the main article. Concerning the choice of the constants
c1, c2, and 2, note that the restrictive constraints on them are caused mainly by
strong formulations and concise proofs of the asymptotic performance results.
First of all, the constraint on 2 in (3.13) in the main article, which results in
non-empty Jn only for very large sample sizes, can be substantially relaxed to
2 > c1 log 2 (without violating the confidence band’s validity in the sense of (1.1))
by including an additional logarithmic factor in the confidence band’s width. Indeed,
this logarithmic factor decreases the sequence (Bn) as given in (5.12), such that a
larger choice of ⌘ is possible while guaranteeing convergence to zero of the sequence
("2,n) in (5.14). Additionally, the bound in (5.13) is then getting tighter. Moreover,
violating the lower bound constraint on c2 in (A.30) does not a↵ect the confidence
band’s validity in the sense of (1.1) neither. Note that an upper bound is not
required due to the undersmoothing. In fact, this constraint results only from the
tight theoretical asymptotic adaptivity guarantee.
Concerning the choice of the constants in the procedure, we need to prespecify a
lower bound �⇤ on the range of adaptation as well as the upper bound L⇤ on the
Lipschitz constant.
The larger c1, the stronger the e↵ect of undersmoothing in the procedure. Hence,
to favour large bandwidths, we choose c1 as small as possible under the constraint
(3.13). In our simulation studies, �⇤ = 1 and c1 = 2

log 2 + 0.1.

input: i.i.d. observations x = (x1, . . . , xn) 2 [�5, 5]n, ↵ 2 (0, 1), �⇤, and L⇤

#Sample split

ñ bn/2c
x(1)  (x1, . . . , xñ)
x(2)  (xñ+1, . . . , xn)

#Initialization of parameters

c1  2/(�⇤ log 2) + 0.1
c2  0.15
c3  

p
2/TV(K)

1  1/(2�⇤)
2  1
b 1.2
jmin  0
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jmax  

j
log2

⇣
ñ

(log ñ)2

⌘k

� 

⇠
bjmin

⇣
log ñ

ñ

⌘�1

(log ñ)
2
�⇤

⇡�1

H  (�b4/�c · �, (�b4/�c+ 1) · �, . . . , (b4/�c � 1) · �, b4/�c · �)

J  (jmin, jmin + 1, . . . , jmax)

ĵ  (jmax � 2, . . . , jmax � 2)

#Admissible bandwidths

for i 1 to length(H) do

for j  jmax � 3 to jmin do

if max
k2Z:

|k��H[i]| 7
8 b

�j

�����
P

x2x(2)

⇣
Kb�m(x� k�)�K

b�m0 (x� k�)
⌘�����  c2

q
ñ log ñ

b�m

for all m > m0
� j + 3 then

ĵ[i] j

end

end

end

#Calculation of the estimators

for i 1 to length(H)� 1 do

ĥ[i] min
n
b�ĵ[i], b�ĵ[i+1]

o
· b�c1 log log ñ

p̂[i] 
P

x2x(1)

K
ĥ[i](x�H[i+ 1])

end

a c3
p
�2 log �

b 3
c3

⇣
p
�2 log � � log(� log �)+log 4⇡

2
p
�2 log �

⌘

q↵  
p
L⇤ · qGumbel(1� ↵/2)/a+ b

output: Two piecewise constant functions with jumppoints H and values
p̂± q↵p

ñĥ

(upper and lower border of the confidence band)

We conduct our simulation study for two di↵erent densities with spatially inho-
mogeneous smoothness, supported within the interval [�5.5, 5.5]. The first density
(left side in Figure 1)

p1(x) =

✓
1

5
�

1

25
|x|

◆
· {|x|  5}
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is the triangular density. The second density (left side in Figure 2)

p2(x) =
1

11
{|x|  5.5}+ 0.05

20X

k=0

2�k cos(10 · 2k⇡(x� 4.5)), x 2 R

corresponds to the uniform density perturbed with an approximation of the Weier-
straß function in the negative domain. Figure 1 and Figure 2 plot the order of the
confidence bands’ widths

⇣
ñĥloc

n
(t)
⌘�1/2

as functions of the location t 2 [�4, 4] and the sample size n (blue, red, and pur-
ple) for both examples p1 and p2, respectively, where the width in every point is
averaged for 20 simulation runs and K has been chosen to be the Epanechnikov
kernel with TV (K) = 3/2 and kKk22 = 3/5. It is important to note that both
examples have been simulated with exactly the same parameters. The simulation
study demonstrates that the confidence bands’ widths decreases in regions of higher
smoothness, such as outside a neighborhood of the origin for p1.

Fig 1. Simulated width order

⇣
ñĥloc

n (t)
⌘�1/2

for the density p1

Figure 2 demonstrates a similar e↵ect for the density p2. The confidence band’s
width again decreases in regions of higher smoothness, here in the positive domain.
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Fig 2. Simulated width order

⇣
ñĥloc

n (t)
⌘�1/2

for the density p2

With the same choice of parameters as in the simulation before, we simulate the
coverage probability of our locally adaptive (1� ↵)-confidence band with ↵ = 0.05
and ↵ = 0.075 for both the densities p1 and p2. To demonstrate the band’s perfor-
mance also for moderate sample sizes, we evaluate it for n = 250. The construction
of the confidence band in (3.18) is based on the asymptotic calibration according to
Theorem 3.8. This theorem’s proof (Step 4) involves extreme value theory to derive
the asymptotic distribution of

max
k2Tn

Yn,min(k),

where Yn,min is the stationary Gaussian process defined in (5.19). Note that this
process does not involve any dependence on the unknown density p anymore. Ex-
treme value theory gives smooth theoretical results, but since convergence rates
against extreme value distributions are typically very slow, extreme value theory
should be avoided. Instead, for practical implementations with moderate sample
sizes, the (1 � ↵/2)-quantile qYn,min,1�↵/2 of maxk2Tn Yn,min(k) can be estimated
empirically by simulation. Consequently, the sequence (an) can be omitted for the
asymptotic statement and the sequence (bn) is just required to converge to infinity.
Furthermore, qn(↵) as defined in (3.19) involves the constant L⇤ as a upper bound
on the density p, uniformly over the the interval under consideration and uniformly
over all densities within Pn. If a smaller bound pmax is known beforehand, the
width of the confidence band can be reduced. The resulting confidence band is of
the form

C̃loc

n,↵
(t) =

2

4p̂loc
n

(t, ĥloc

n
(t))�

q̃n(↵)q
ñĥloc

n
(t)

, p̂loc
n

(t, ĥloc

n
(t)) +

q̃n(↵)q
ñĥloc

n
(t)

3

5

with

q̃n(↵) =
p
min{L⇤, pmax} · qYn,min,1�↵/2 + bn.
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Furthermore, omitting the sequence (an) relaxes the constraints on c1 and 2.
Tracking the proof of Theorem 3.8, these constraints ensure that all the sequences
"k,n, k = 1, . . . , 4, converge to zero. Without employing extreme value theory, these
constraints relax to

c1 >
1

�⇤ log 2
, 2 > c1 log 2 + 4.

The following table shows the simulated coverage probability of our locally adaptive
confidence band for n = 250 and 450 simulated confidence bands, with the choice
of pmax = 0.2 and bn = 1

50 log log ñ. Using piecewise monotonicity of the triangular
density p1, coverage of a band for p1 can be exactly confirmed, whereas we check
coverage of the band for the density p2 on a very fine discrete grid of points with
resolution �n ⇡ 0.0084. Note that the confidence band should be conservative due
to the calibration via the least favorable case. This is confirmed in the table below.
It turns out that the band is more conservative for the density p2 than for p1.

Model Coverage for n = 250 and 450 confidence bands
↵ = 0.05 ↵ = 0.075

p1 96.44% 94.00%
p2 99.33% 98.22%

We cannot compare our simulation results to the globally adaptive case of Giné
and Nickl (2010) since neither a discussion on the choice of the constants nor an
algorithm are provided. Note that the bandwidth selector involves a uniform norm
of a di↵erence of two estimators and hence requires a discretization step, which is
not discussed there.

A.4. Remaining proofs of the results in Section 3.

Proof of Proposition 3.6. The proof is based on a reduction of the supre-
mum over the class to a maximum over two distinct hypotheses.

Part 1. For � 2 [�⇤, 1), the construction of the hypotheses is based on the Weier-
straß function as defined in (A.3) and is depicted in Figure 3. Consider the function
p0 : R! R with

p0(x) =

8
>>><

>>>:

0, if |x� t| � 10
3

1
4 + 3

16 (x� t+ 2), if � 10
3 < x� t < �2

1
6 + 1�2��

12 W�(x� t), if |x� t|  2
1
4 �

3
16 (x� t� 2), if 2 < x� t < 10

3

and the function p1,n : R! R with

p1,n(x) = p0(x) + q
t+ 9

4 ,n
(x)� qt,n(x), x 2 R,
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where

qa,n(x) =

(
0, if |x� a| > g�,n
1�2��

12

⇣
W�(x� a)�W�(g�,n)

⌘
, if |x� a|  g�,n

for g�,n = 1
4n

�1/(2�+1) and a 2 R. Note that p1,n|B(t,g�,n) is constant with value

p1,n(x) =
1

6
+

1� 2��

12
W�(g�,n) for all x 2 B(t, g�,n).

Fig 3. Functions p0 and p1,n for t = 0.5, � = 0.5 and n = 100

We now show that both p0 and p1,n are contained in the class Pk for su�ciently
large k � k0(�⇤) with

p0|(�",1+"), p1,n|(�",1+") 2 H(�",1+")(�, L
⇤).

(i) We first verify that p0 integrates to one. Then, it follows directly that also p1,n
integrates to one. We have

Z
p0(x) dx =

Z
t�2

t�
10
3

✓
1

4
+

3

16
(x� t+ 2)

◆
dx

+

Z
t+2

t�2

✓
1

6
+

1� 2��

12
W�(x� t)

◆
dx

+

Z
t+ 10

3

t+2

✓
1

4
�

3

16
(x� t� 2)

◆
dx

=
1

6
+

2

3
+

1� 2��

12

Z 2

�2
W�(x) dx+

1

6

= 1,

where the last equality is due to

Z 2

�2
W�(x) dx =

1X

k=0

2�k�

Z 2

�2
cos(2k⇡x) dx = 0.

(ii) Next, we check the non-negativity of p0 and p1,n to show that they are proba-
bility density functions. We prove non-negativity for p0, whereas non-negativity of
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p1,n is an easy implication. Since p0(�10/3) = 0 and p0 is linear on (t� 10/3, t� 2)
with positive derivative, p0 is non-negative on (t � 10/3, t � 2). Analogously, p0 is
non-negative on (t+ 2, t+ 10/3). Note furthermore that

|W�(x)| W�(0) =
1X

k=0

2�k� =
1

1� 2��
(A.10)

for all x 2 R. Thus, for any x 2 R with |x� t|  2, we have

p0(x) =
1

6
+

1� 2��

12
W�(x� t) �

1

6
�

1

12
=

1

12
> 0.

(iii) As p0 and also p1,n are bounded from below by M = 1/12 on B(t, 2), we
furthermore conclude that they are bounded from below by M on (�1, 2) ⇢ B(t, 2),
and therefore on any interval [�", 1 + "] with 0 < " < 1.

(iv) We now verify that p0|(�",1+"), p1,n|(�",1+") 2 H(�",1+")(�, L(�)) for some
positive constant L(�). Note again that for any 0 < " < 1 and any t 2 [0, 1], the
inclusion (�", 1 + ") ⇢ B(t, 2) holds. Thus,

sup
x,y2(�",1+")

x 6=y

|p0(x)� p0(y)|

|x� y|�
=

1� 2��

12
· sup
x,y2(�",1+")

x 6=y

|W�(x� t)�W�(y � t)|

|(x� t)� (y � t)|�
,

which is bounded by some constant c(�) according to Lemma A.4. Together with
(A.10) and with the triangle inequality, we obtain that

p0|(�",1+") 2 H(�",1+")(�, L)

for some Lipschitz constant L = L(�). The Hölder continuity of p1,n is now a
simple consequence. The function p1,n is constant on B(t, g�,n) and coincides with
p0 on (�", 1+")\B(t, g�,n). Hence, it remains to investigate combinations of points
x 2 (�", 1 + ") \ B(t, g�,n) and y 2 B(t, g�,n). Without loss of generality assume
that x  t� g�,n. Then,

|p1,n(x)� p1,n(y)|

|x� y|�
=

|p1,n(x)� p1,n(t� g�,n)|

|x� y|�


|p1,n(x)� p1,n(t� g�,n)|

|x� (t� g�,n)|�
 L,

which proves that also

p1,n|(�",1+") 2 H(�",1+")(�, L).

(v) Finally, we address the verification of the Admissibility Condition 3.5 for the
hypotheses p0 and p1,n. Again, for any t0 2 [0, 1] and any h 2 G1 the inclusion
B(t0, 2h) ⇢ B(t, 2) holds, such that in particular

p0|B(t0,h) 2 H�⇤,B(t0,h)(�, LW (�))
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for any t0 2 [0, 1] and for any h 2 G1 by Lemma A.4. Simultaneously, Lemma A.4
implies

sup
s2B(t0,h�g)

|(KR,g ⇤ p0)(s)� p0(s)| >
1� 2��⇤

12

✓
4

⇡
� 1

◆
g� �

g�

log k

for all g  h/2 and for su�ciently large k � k0(�⇤). That is, for any t0 2 [0, 1], both
(3.10) and (3.11) are satisfies for p0 with u = h for any h 2 G1.
Concerning p1,n we distinguish between several combinations of pairs (t0, h) with
t0 2 [0, 1] and h 2 G1.

(v.1) If B(t0, h)\B(t, g�,n) = ;, the function p1,n coincides with p0 on B(t0, h), for
which the Admissibility Condition 3.5 has been already verified.

(v.2) If B(t0, h) ⇢ B(t, g�,n), the function p1,n is constant on B(t0, h), such that
(3.10) and (3.11) trivially hold for u = h and � =1.

(v.3) If B(t0, h) \ B(t, g�,n) 6= ; and B(t0, h) 6⇢ B(t, g�,n), we have that t0 + h >
t+ g�,n or t0�h < t� g�,n. As p1,n|B(t,2) is symmetric around t we assume t0+h >
t+ g�,n without loss of generality. In this case,

(t0 + 2h� g)� (t+ g�,n) > 2

✓
h

2
� g

◆
,

such that

B

✓
t0 +

3

2
h,

h

2
� g

◆
⇢ B(t0, 2h� g) \B(t, g�,n).

Consequently, we obtain

sup
s2B(t0,2h�g)

|(KR,g ⇤ p1,n)(s)� p1,n(s)| � sup
s2B(t0+ 3

2h,
h
2 �g)

|(KR,g ⇤ p1,n)(s)� p1,n(s)| .

If 2h � 8g, we conclude that h/2 � 2g, so that Lemma A.4 finally proves the
Admissibility Condition 3.5 for u = 2h to the exponent � for su�ciently large
k � k0(�⇤).

Combining (i) � (v), we conclude that p0 and p1,n are contained in the class Pk

with p0|(�",1+"), p1,n|(�",1+") 2 H(�",1+")(�, L
⇤) for su�ciently large k � k0(�⇤).

The absolute distance of the two hypotheses in t is at least

|p0(t)� p1,n(t)| =
1� 2��

12
(W�(0)�W�(g�,n))

=
1� 2��

12

1X

k=0

2�k�
�
1� cos(2k⇡g�,n)

�

�
1� 2��⇤

12
2�k̃�

⇣
1� cos(2k̃⇡g�,n)

⌘

� 2c7 g
�

�,n
(A.11)
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where k̃ 2 N is chosen such that 2�(k̃+1) < g�,n  2�k̃ and

c7 = c7(�⇤) =
1� 2��⇤

24
.

It remains to bound the distance between the associated product probability mea-
sures P⌦n

0 and P⌦n

1,n. For this purpose, we analyze the Kullback-Leibler divergence
between these probability measures, which can be bounded from above by

K(P⌦n

1,n,P
⌦n

0 ) = nK(P1,n,P0)

= n

Z
p1,n(x) log

✓
p1,n(x)

p0(x)

◆
{p0(x) > 0} dx

= n

Z
p1,n(x) log

 
1 +

q
t+ 9

4 ,n
(x)� qt,n(x)

p0(x)

!
{p0(x) > 0} dx

 n

Z
q
t+ 9

4 ,n
(x)� qt,n(x) +

⇣
q
t+ 9

4 ,n
(x)� qt,n(x)

⌘2

p0(x)
{p0(x) > 0} dx

= n

Z
⇣
q
t+ 9

4 ,n
(x)� qt,n(x)

⌘2

p0(x)
{p0(x) > 0} dx

 12n

Z ⇣
q
t+ 9

4 ,n
(x)� qt,n(x)

⌘2
dx

= 24n

Z
q0,n(x)

2 dx

= 24n

✓
1� 2��

12

◆2 Z g�,n

�g�,n

(W�(x)�W�(g�,n))
2 dx

 24L(�)2n

✓
1� 2��

12

◆2 Z g�,n

�g�,n

(g�,n � x)2� dx

 c8ng
2�+1
�,n

 c8

using the inequality log(1 + x)  x, x > �1, Lemma A.4, and

p0(t+ 5/2) =
5

32
> M =

1

12
,

where

c8 = c8(�) = 48L(�)24�(2�+1)22�
✓
1� 2��

12

◆2

.

Using now Theorem 2.2 in Tsybakov (2009),

inf
Tn

sup
p2Pk:

p|(�",1+")2H(�",1+")(�,L
⇤)

P⌦n

p

⇣
n

�
2�+1 |Tn(t)� p(t)| � c7

⌘
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� max

(
1

4
exp(�c8),

1�
p

c8/2

2

)
> 0.

Part 2. For � = 1, consider the function p0 : R! R with

p0(x) =

(
0, if |x� t| > 4
1
4 �

1
16 |x� t|, if |x� t|  4

and the function p1,n : R! R with

p1,n(x) = p0(x) + q
t+ 9

4 ,n
(x)� qt,n(x), x 2 R,

where

qa,n(x) =

(
0, if |x� a| > g1,n
1
16 (g1,n � |x� a|), if |x� a|  g1,n

for g1,n = n�1/3 and a 2 R. The construction is depicted in Figure 4 below.

Fig 4. Functions p0 and p1,n for t = 0.5, � = 0.5 and n = 10

(i) � (iii) Easy calculations show that both p0 and p1,n are probability densities,
which are bounded from below by M = 1/8 on B(t, 2).

(iv) We now verify that p0|(�",1+"), p1,n|(�",1+") 2 H(�",1+")(1, L) for some Lip-
schitz constant L > 0. Note again that for any 0 < " < 1 and any t 2 [0, 1], the
inclusion (�", 1 + ") ⇢ B(t, 2) holds. Thus,

sup
x,y2(�",1+")

x 6=y

|p0(x)� p0(y)|

|x� y|
=

1

16
· sup
x,y2(�",1+")

x 6=y

||x� t|� |y � t||

|x� y|


1

16
.

Since p0 has maximal value 1/4, we obtain that

p0|(�",1+") 2 H(�",1+")

✓
1,

5

16

◆
.

For the same reasons as before, we also obtain

p1,n|(�",1+") 2 H(�",1+")

✓
1,

5

16

◆
.
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(v) Finally, we address the verification of the the Admissibility Condition 3.5 for
the hypotheses p0 and p1,n. Again, for any t0 2 [0, 1] and any h 2 G1 the inclusion
B(t0, 2h) ⇢ B(t, 2) holds, and we distinguish between several combinations of pairs
(t0, h) with t0 2 [0, 1] and h 2 G1. We start with p0.

(v.1) If t /2 B(t0, h), it holds that kpk�,B(t0,h)  5/16 for all � > 0, such that (3.10)
and (3.11) trivially hold for u = h and � =1.

(v.2) In case t 2 B(t0, h), the function p0|B(t0,2h) is not di↵erentiable and

kp0k1,B(t0,2h)  5/16.

Furthermore, t 2 B(t0, 2h� g) for any g 2 G1 with g < 2h/16 and thus

sup
s2B(t0,2h�g)

|(KR,g ⇤ p)(s)� p(s)| � |(KR,g ⇤ p)(t)� p(t)| =
1

32
g.

That is, (3.10) and (3.11) are satisfied for u = 2h and � = 1 for su�ciently large
n � n0.

The density p1,n can be treated in a similar way. It is constant on the interval
B(t, g�,n). If B(t0, h) does not intersect with {t� g�,n, t+ g�,n}, the Admissibility
Condition 3.5 is satisfied for u = h and � = 1. If the two sets intersect, t � g�,n
or t + g�,n is contained in B(t0, 2h � g) for any g 2 G1 with g < 2h/16, and we
proceed as before.

Again, combining (i) � (v), it follows that p0 and p1,n are contained in the class
Pk with p0|(�",1+"), p1,n|(�",1+") 2 H(�",1+")(1, L) for su�ciently large k � k0 and
some universal constant L > 0. The absolute distance of the two hypotheses in t
equals

|p0(t)� p1,n(t)| =
1

16
g1,n.

To bound the Kullback-Leibler divergence between the associated product proba-
bility measures P⌦n

0 and P⌦n

1,n, we derive as before

K(P⌦n

1,n,P
⌦n

0 )  n

Z
⇣
q
t+ 9

4 ,n
(x)� qt,n(x)

⌘2

p0(x)
{p0(x) > 0} dx

 16n

Z ⇣
q
t+ 9

4 ,n
(x)� qt,n(x)

⌘2
dx

= 32n

Z
q0,n(x)

2 dx

=
1

12
,

using p0(t+ 5/2) > 1/16. Using Theorem 2.2 in Tsybakov (2009) again,

inf
Tn

sup
p2Pk:

p|(�",1+")2H(�",1+")(1,L
⇤)

P⌦n

p

✓
n

1
3 |Tn(t)� p(t)| �

1

32

◆
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� max

(
1

4
exp(�1/12),

1�
p
1/24

2

)
> 0.

Proof of Theorem 3.8. The proof is structured as follows. First, we show
that the bias term is negligible. Then, we conduct several reduction steps to non-
stationary Gaussian processes. We pass over to the supremum over a stationary
Gaussian process by means of Slepian’s comparison inequality, and finally, we em-
ploy extreme value theory for its asymptotic distribution.

Step 1 (Negligibility of the bias). Due to the discretization of the interval [0, 1]
in the construction of the confidence band and due to the local variability of the
confidence band’s width, the negligibility of the bias is not immediate. For any
t 2 [0, 1], there exists some kt 2 Tn with t 2 Ikt . Hence,

q
ñĥloc

n
(t)
���E�1

p
p̂loc
n

(t, ĥloc

n
(t))� p(t)

���

=
q
ñĥloc

n,kt

���E�1
p
p̂(1)
n

(kt�n, ĥ
loc

n,kt
)� p(t)

���



q
ñĥloc

n,kt

���E�1
p
p̂(1)
n

(kt�n, ĥ
loc

n,kt
)� p(kt�n)

���+
q
ñĥloc
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for some constant c10 = b2 · 3(2�⇤+1)/2, on the event
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ñ

◆ 1
2

 2�jmin

✓
log ñ
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ñh̄n(t) · �

�⇤
n

 c11 · (log ñ)
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for some constant c11 = c11(�⇤, L⇤). Taking (A.12) and (A.13) together,
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According to the definition of c1 in (3.13), "1,n converges to zero. Observe further-
more that
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can be written as
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ñĥloc

n,k
max

⇢
p̂(1)
n

(k�n, ĥ
loc

n,k
)� inf

t2Ik

p(t), sup
t2Ik

p(t)� p̂(1)
n

(k�n, ĥ
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with the definitions in (3.17). That is, the supremum in (A.14) is measurable. Then,
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for n!1.

Step 2 (Reduction to the supremum over a non-stationary Gaussian process).

For Step 2, we recall the following notions and results from the theory of empirical
processes. For any metric space (M,d) and subset K ⇢ M , we define the covering
number N(K, d, ") as the minimum number of closed balls with radius at most "
(with respect to d) needed to cover K. If the metric d is induced by a norm k · k,
we write also N(K, k · k, ") for N(K, d, ").
In order to bound (A.15) from below note first that
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ñĥloc

n,k

p(k�n)

���p̂(1)n
(k�n, ĥ
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ñĥloc

n,k

���p̂(1)n
(k�n, ĥ
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ñĥloc

n,k

p(k�n)

⇣
p̂(1)
n

(k�n, ĥ
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In order to approximate the maxima in P1,p and P2,p by a supremum over a Gaus-
sian process, we verify the conditions in Corollary 2.2 developed recently in Cher-
nozhukov, Chetverikov and Kato (2014). For this purpose, consider the empirical
process
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Note that Chernozhukov, Chetverikov and Kato (2014) require the class of functions
to be centered. We subsequently show that the class Fp

n
is Euclidean, which implies

by Lemma A.7 that the corresponding centered class is VC. It therefore su�ces to
consider the uncentered class Fp

n
. Note furthermore that fn,k are random functions

but depend on the second sample �2 only. Conditionally on �2, any function fn,k 2
F

p

n
is measurable as K is continuous. Due to the choice of 2 and due to
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tends to zero logarithmically. We now show that Fp
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where the supremum is running over all probability measures Q, and it therefore
su�ces to show that F is Euclidean. To this aim, note that for any fu,h,t, fv,g,s 2 F
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Thus, using the estimate of the covering numbers in (A.8) and Lemma 14 in Nolan
and Pollard (1987), there exist constants A0 = A0(A,K) and ⌫0 = ⌫ + 1 with
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where the supremum is running over all probability measures Q. Hence, by Lemma
A.7, the Pp-centered class Fp,0
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and VC characteristics A00 = A00(A,K) and ⌫00 = ⌫00(⌫). Next, we verify the Bern-
stein condition
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ĥloc

n,k

Z 1

�1

⇢
K(x)� ĥloc
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n,k
x
⌘
dx

 �2
n
(kKksup + L⇤

kKk1) · max
k2Tn

⇣
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follows analogously. Furthermore, it holds that k2Fnksup = Bn. According to Corol-
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with Kn = c13⌫00(log ñ _ log(A00Bn/�n)), and GPp is a version of the Pp-Brownian
motion. That is, it is centered and has the covariance structure
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where W is a standard Brownian motion independent of �2. An easy calculation
furthermore shows that "2,n tends to zero for n ! 1 logarithmically due to the
choice of ⌘. Finally,
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ñ max
f2F

p
n

Gp

n
f � bn

◆
>

x1,n
p
L⇤

, an
p

ñ
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For this purpose, note first that
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ñ

Z
fn,k(x)

⇣p
p(x)�

p
p(k�n)

⌘
dW (x),

it remains to show that

lim
n!1

sup
p2Pn

PW

✓
an max

k2Tn

|Vn,p(k)| > "4,n

◆
= 0(A.23)

for some sequence ("4,n)n2N converging to zero. Note first that
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Denoting by k · k 2 the Orlicz norm corresponding to  2(x) = exp(x2) � 1, we
deduce for su�ciently large n � n0(c1,�⇤, L⇤,K,M)
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The latter expression converges to zero due to the choice of c1 in (3.13). Thus,
(A.23) is established. Following the same steps as before, we obtain
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Step 3 (Reduction to the supremum over a stationary Gaussian process).

We are now ready to identify the least favorable case. Since K is symmetric and of
bounded variation, it possesses a representation
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for all but at most countably many x 2 [�1, 1], where P is some symmetric proba-
bility measure on [�1, 1] and g is some measurable odd function with |g|  TV (K).
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n,k
)�W (k�n + zĥloc
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(A.24)
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Fubini’s theorem with one stochastic integration and the Cauchy-Schwarz inequality
yield for any k, l 2 Tn
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n,l
 x  l�n + ĥloc
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Lemma A.8 verifies that
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for z 2 [0, 1], so that
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for all k, l 2 Tn. Consider now the Gaussian process
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with
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Furthermore,
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for all k, l 2 Tn with k 6= l, so that

EW (Yn,p(k)� Yn,p(l))
2
 EW (Yn,min(k)� Yn,min(l))

2(A.26)

for all k, l 2 Tn. In order to apply Slepian’s comparison inequality we however
need coinciding second moments. For this aim, we analyze the modified Gaussian
processes

Ȳn,p(k) = Yn,p(k) + c16Z

Ȳn,min(k) = Yn,min(k) + c17Z

with

c16 = c16(K) =
TV (K)
p
2

, c17 = c17(K) = kKk2,

and for some standard normally distributed random variable Z independent of
(Yn,p(k))k2Tn and (Yn,min(k))k2Tn . Note that these processes have the same incre-
ments as the processes before. In particular
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for all k, l 2 Tn by inequality (A.26). With this specific choice of c16 and c17, they
furthermore have coinciding second moments
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Ȳn,p(k)� c16Z � bn

◆
 x4,n, �Z 

1

3c16
bn

◆

� inf
p2Pn

PW

✓
an

✓
max
k2Tn
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for n!1. Slepian’s inequality in the form of Corollary 3.12 in Ledoux and Tala-
grand (1991) yields
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Step 4 (Limiting distribution theory). Finally, we pass over to an iid sequence
and apply extreme value theory. Together with
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as n!1, we finally obtain
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Theorem 1.5.3 in Leadbetter, Lindgren and Rootzén (1983) yields now
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for any x 2 R. It remains to show, that Fn(xn)! F (x) for some sequence xn ! x as
n!1. Because F is continuous in x, there exists for any " > 0 some � = �(") > 0
such that |y � x|  � imlies |F (x)� F (y)|  "/2. In particular, for y = x± �,
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2
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2
.(A.28)

As xn ! x, there exists some N1 = N1("), such that |xn � x|  � for all n � N1.
Therefore, employing the monotonicity of Fn,
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for some standard Gumbel distributed random variable G.
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A.5. Proofs of the results in Section 4.

Proof of Proposition 4.1. We prove first that
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Note first that if ĵn(k�n) > j̄n(k�n)+1 for some k 2 Tn, then j̄n(k�n)+1 cannot be
an admissible exponent according to the construction of the bandwidth selection
scheme in (3.15), that is, j̄n(k�n) + 1 /2 An(k�n). By definition of An(k�n) there
exist exponents mn,k,m0
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We furthermore use the following decomposition into two stochastic terms and two
bias terms
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In order to bound the two bias terms, note first that for any m > m0
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According to the Admissibility Condition 3.5 and Lemma A.3,
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with the bandwidth h̄n(·) as defined in (4.1), and analogously
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where c21 = c21(�⇤, L⇤, ") = 2b2 · 2�jmin(2�⇤+1)/2. Thus, it holds
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Choose c2 = c2(A, ⌫,�⇤, L⇤,K, ") su�ciently large such that

c2 � c21 + 2⌘0,(A.30)

where ⌘0 is given in Lemma 4.3. Then, Lemma 4.3 and the logarithmic cardinality
of Jn yield (A.29). In addition, we show that
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For t 2 [0, 1], due to the sequential definition of the set of admissible bandwidths
An(t) in (3.15), if ĵn(t) < jmax, then both ĵn(t) and ĵn(t)+1 are contained in An(t).
Note furthermore, that kn(t) < jmax for any t 2 [0, 1]. Thus, if ĵn(k�n) < kn(k�n)
for some k 2 Tn, there exists some index j < kn(k�n) + 1 with j 2 An(k�n) and
satisfying (3.10) and (3.11) for u = 2�j and t = k�n. In particular,
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The triangle inequality yields
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As the Admissibility Condition 3.5 is satisfied for u = 2�j and t = k�n, together
with Lemma A.3 we both have
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and
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for all g 2 G1 with g  2�(j+3). In particular, (A.33) together with Lemma 4.4
gives the upper bias bound
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To show that the above lower bound even holds for the maximum over the set
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where
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Together with (A.33), this implies

�p(B(k�n, 2
�j))  �n,p(k�n)(A.37)

since otherwise p would be �-Hölder smooth with � > �n,p(k�n) on a ball B(k�n, r)
with radius r > h̄n(t), which would contradict the definition of �n,p(k�n) together
with Lemma A.11. This implies

|t� t̃|�⇤ 
2�(j+3)�p(B(k�n,2

�j))

(log ñ)2
.
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Together with inequalities (A.35) and (A.36),
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for su�ciently large n � n0(L⇤,K, c1). Altogether, we get for j < kn(k�n) + 1,
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ñ2�j̄n(k�n)

log ñ
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max

s2B(k�n, 78 ·2�j)\Hn

���E�2
p
p̂(2)
n

(s, j + 3)� p(s)
���

� max
s2B(k�n, 78 ·2�j)\Hn

���E�2
p
p̂(2)
n

(s, j̄n(k�n))� p(s)
���

!

�

s
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1

2
·
2�(j+3)�p(B(k�n,2

�j))

log ñ
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ñh̄n(k�n)

2 log ñ
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2�(j̄n(k�n)�1)�p(B(k�n,2

�j))

✓
2(mn�5)�⇤

2 log ñ
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We now show that for j 2 Jn with j < kn(k�n) + 1, we have that

�p(B(k�n, 2
�j))  �⇤.(A.38)

According to (A.37), it remains to show that �n,p(k�n)  �⇤. If �n,p(k�n) =1, then
j̄n(k�n) = jmin. Since furthermore j 2 Jn and therefore j � jmin, this immediately
contradicts j < kn(k�n) + 1. That is, j < kn(k�n) + 1 implies that �n,p(k�n) <1,
which in turn implies �n,p(k�n)  �⇤ according to Remark A.2. Due to (3.13) and
(A.38), the last expression is again lower bounded by

3c2
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�j))2jmin

2�p(B(k�n,2�j))+1

2

for su�ciently large n � n0(L⇤,K,�⇤,�⇤, c1, c2). Recalling (A.37), we obtain
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� 3c2
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Thus, by the above consideration and (A.32),
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X
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for su�ciently large n � n0(L⇤,K,�⇤,�⇤, c1, c2), with

Pj,1 = P�2
p

 
9k 2 Tn : j < kn(k�n) + 1 and

s
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Both Pj,1 and Pj,2 are bounded by

Pj,i  P�2
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s
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log ñ
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!
, i = 1, 2.

For su�ciently large c2 � ⌘0, Lemma 4.3 and the logarithmic cardinality of Jn

yield (A.31).

Proof of Lemma 4.2. We prove both inequalities separately.

Part (i). First, we show that the density p cannot be substantially unsmoother
at z 2 (s, t) than at the boundary points s and t. Precisely, we shall prove that
min{h̄n(s), h̄n(t)}  2h̄n(z). In case

�n,p(s) = �n,p(t) =1,

that is h̄n(s) = h̄n(t) = 2�jmin , we immediately obtain h̄n(z) �
1
22

�jmin since

B

✓
z,

1

2
2�jmin

◆
⇢ B(s, h̄n(s)) \B(t, h̄n(t)).

Hence, we subsequently assume that

min{�n,p(s),�n,p(t)} <1.
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Note furthermore that

min
�
h̄n(s), h̄n(t)

 
= hmin{�n,p(s),�n,p(t)},n.(A.39)

In a first step, we subsequently conclude that
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2
hmin{�n,p(s),�n,p(t)},n > t� h̄n(t).(A.41)

Note first that |s � t| < h�,n for all � � �⇤ by condition (4.2). Assume now that
(A.40) does not hold. Then, inequality (A.41) directly follows as

z �
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2
min{h̄n(s), h̄n(t)} = z +
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2
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� s+ h̄n(s)�min{h̄n(s), h̄n(t)}

� t� (t� s)

> t� h̄n(t).

Vice versa, if (A.41) does not hold, then a similar calculation as above shows that
(A.40) is true. Subsequently, we assume without loss of generality that (A.40) holds.
That is,

s� h̄n(s) < z �
1

2
hmin{�n,p(s),�n,p(t)},n

< z +
1

2
hmin{�n,p(s),�n,p(t)},n(A.42)

< s+ h̄n(s).

There exists some �̃ > 0 with

h
�̃,n

=
1

2
min{h̄n(t), h̄n(s)}.(A.43)

for su�ciently large n � n0(�⇤). Equation (A.43) implies that

�̃ < min{�n,p(s),�n,p(t)}  �n,p(s).(A.44)

Finally, we verify that

�n,p(z) � �̃.(A.45)

Using Lemma A.11 as well as (A.42), (A.43), and (A.44) we obtain

kpk
�̃,�⇤,B(z,h�̃,n)
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=

b�̃^�
⇤
cX

k=0

kp(k)k
B(z, 12 min{h̄n(t),h̄n(s)})

+ sup
x,y 2B(z, 12 min{h̄n(t),h̄n(s)})

x 6=y
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⇤
c)(x)� p(b�̃^�
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|x� y|�̃�b�̃^�⇤c

 L⇤.

Consequently, we conclude (A.45). With (A.39) and (A.43), this in turn implies

min
�
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= 2h

�̃,n
 2h�n,p(z),n = 2h̄n(z).

Part (ii). Now, we show that the density p cannot be substantially smoother
at z 2 (s, t) than at the boundary points s and t. Without loss of generality, let
�n,p(t)  �n,p(s). We prove the result by contradiction: assume that

min
�
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<

8

17
· h̄n(z).(A.46)

Since t� z  h�,n/8 for all � � �⇤ by condition (4.2), so that in particular t� z 
h̄n(t)/8, we obtain together with (A.46) that
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✓
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17

8
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= h̄n(t) > 0.(A.47)

Because furthermore 1
2 (z � t+ h̄n(z)) < 1, there exists some �0 = �0(n) > 0 with

h�0,n =
1

2

�
z � t+ h̄n(z)

�
.

This equation in particular implies that h�0,n < 1
2 h̄n(z) and thus �0 < �n,p(z).

Since furthermore t� z < h̄n(z) by condition (4.2) and therefore also

z � h̄n(z) < t� h�0,n < t+ h�0,n < z + h̄n(z),

we immediately obtain

kpk�0,�⇤,B(t,h�0,n)  L⇤,

so that

�n,p(t) � �
0.

This contradicts inequality (A.47).

Proof of Lemma 4.3. Without loss of generality, we prove the inequality for

the estimator p̂(1)n (·, h) based on �1. Note first, that
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���p̂(1)n
(s, h)� E�1

p
p̂(1)
n

(s, h)
��� = sup

f2En

�����

ñX
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with
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where the last inequality holds true because by definition of 2 � 2 in (3.13). In
particular �n  Un for su�ciently large n � n0(L⇤,K). Since (ñh log ñ)�1/2

 1
for all h 2 Gn and for all n � n0, the class En satisfies the VC property
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for some VC characteristics A00 = A00(A,K) and ⌫0 = ⌫+1, by the same arguments
as in (5.11). According to Proposition 2.2 in Giné and Guillou (2001), there exist
constants c22 = c22(A00, ⌫00) and c5 = c5(A00, ⌫00), such that
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uniformly over all p 2Pn, for all n � n0(A00,K, L⇤) with c23 = c23(A00, ⌫00, L⇤,K),
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Since the right hand side in (A.49) is bounded from above by some positive constant
⌘0 = ⌘0(A00, ⌫00, L⇤,K) for su�ciently large n � n0(A00, ⌫00, L⇤,K), inequality (A.48)
holds in particular for all n � n0(A00, ⌫,K, L⇤) and for all ⌘ � ⌘0. Finally, using the
inequality log(1 + x) � x

2 for 0  x  2 (Lemma A.9), we obtain for all ⌘ � ⌘0
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uniformly over all p 2 Pn, for all n � n0(A00, ⌫00,K, L⇤) and positive constants
c24 = c24(A00, ⌫00,K) and c25 = c25(A00, ⌫00, L⇤,K), which do not depend on n or
⌘.

Proof of Lemma 4.4. Let t 2 R, g, h > 0, and

p|B(t,g+h) 2 H�⇤,B(t,g+h)(�, L).

The three cases �  1, 1 < � < 1, and � = 1 are analyzed separately. In case
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In case 1 < � < 1, we use the Peano form for the remainder of the Taylor poly-
nomial approximation. Note that �⇤
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(A.50)

In case � =1, the density p satisfies p|B(t,g+h) 2 H�⇤,B(t,g+h)(�, L
⇤) for all � > 0.

That is, the upper bound (A.50) on the bias holds for any � > 0, implying that

sup
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|(Kh ⇤ p)(s)� p(s)| = 0.

This completes the proof.

Proof of Lemma 4.5. Note that by symmetry of K
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2
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The upper bound can thus be deduced exactly as in the proof of Lemma 4.4.

A.6. Auxiliary results.

Lemma A.8. For z 2 [0, 1], the second moments of W̃k,l(z), k, l 2 Tn as defined

in (5.18) are bounded by
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ĥloc

n,k
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ĥloc

n,l

EWW (k�n + zĥloc
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n,l
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ĥloc

n,l

EWW (l�n + zĥloc
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=
l�n � zĥloc
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Altogether,
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In case (ii), we remain with
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n,l

 4.

Otherwise, if k�n + zĥloc

n,k
> l�n + zĥloc

n,l
, we arrive at

EW W̃k,l(z)
2 = 4z +

2q
ĥloc

n,k
ĥloc

n,l

 
(k � l)�n � z

⇣
ĥloc

n,k
+ ĥloc

n,l

⌘!
 4

because k  l and z 2 [0, 1]. Summarizing,

EW W̃k,l(z)
2
 4.
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Lemma A.9. For any x 2 [0, 1], we have

ex � 1  2x.

Proof. Equality holds for x = 0, while e � 1  2. Hence, the result follows by
convexity of the exponential function.

Lemma A.10. For any x 2 R \ {0}, we have

1�
sin(x)

x


x2

6
.

Proof. Since both sides of the inequality are symmetric in zero, we restrict our
considerations to x > 0. For positive x, it is equivalent to

f(x) = sin(x)� x+
x3

6
� 0.

As f(0) = 0, it su�ces to show that

f 0(x) = cos(x)� 1 +
x2

2
� 0

for all x > 0. Since furthermore f 0(0) = 0 and

f 00(x) = � sin(x) + x � 0

for all x > 0, the inequality follows.

The next lemma shows that the monotonicity of the Hölder norms k·k�1,U  k·k�2,U

with 0 < �1  �2 stays valid for the modification k · k�,�⇤,U .

Lemma A.11. For 0 < �1  �2 <1 and p 2 H�⇤,U (�2),

kpk�1,�
⇤,U  kpk�2,�

⇤,U

for any open interval U ⇢ R with length less or equal than 1.

Proof. If �1  �2, but b�1 ^ �⇤
c = b�2 ^ �⇤

c, the statement follows directly
with

kpk�1,�
⇤,U =

b�2^�
⇤
cX

k=0

kp(k)kU + sup
x,y 2U

x 6=y

|p(b�2^�
⇤
c)(x)� p(b�2^�

⇤
c)(y)|

|x� y|�1�b�2^�
⇤c

 kpk�2,�
⇤,U .

If �1 < �2 and also b�1 ^ �⇤
c < b�2 ^ �⇤

c, we deduce that �1 < �⇤ and b�1c+ 1 
b�2 ^ �⇤

c. Then, the mean value theorem yields

kpk�1,�
⇤,U =

b�1cX

k=0

kp(k)kU + sup
x,y 2U

x 6=y

|p(b�1c)(x)� p(b�1c)(y)|

|x� y|�1�b�1c
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b�1cX

k=0

kp(k)kU + kp(b�1c+1)
kU sup

x,y 2U

x 6=y

|x� y|1�(�1�b�1c)



b�1c+1X

k=0

kp(k)kU



b�2^�
⇤
cX

k=0

kp(k)kU

 kpk�2,�
⇤,U .
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Giné, E. and Guillou, A. (2001). On consistency of kernel density estimators for ran-

domly censored data: rates holding uniformly over adaptive intervals. Ann. Inst. H.
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