
Population genetics

Tutorial

Peter Pfaffelhuber and Pleuni Pennings

November 30, 2007

University of Munich
Biocenter

Großhaderner Straße 2
D-82152 Planegg-Martinsried





3

Copyright (c) 2007 Peter Pfaffelhuber and Pleuni Pennings. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled ”GNU Free Documentation License”.





Preface

This manuscript is written for the course population genetics computer lab given at the
LMU Biozentrum, Martinsried, in the summer 2007. The course consists of nine sections
which contain lectures and computerlabs.

The course is meant for you if you a biologist by training, but is certainly also useful
if you are bio-informatician, mathematician or statistician with an interest in population
genetics. We expect you to have a basic understanding of genetics, statistics and modelling,
although we have introductions to these subjects in the course.

You get insights into population genetics from a theoretical but also from an applied
side. This results in developing theory on the one side and applying it to data and simu-
lations on the other. After following the course you should have a good understanding of
the main methods in molecular population genetics that are used to analyse data. If you
want to extend you insights, you might wish to look at books like Durrett (2002), Gillespie
(2004), Halliburton (2004), Hartl and Clark (2007), Hedrick (2005) or Nei (1987).

We are grateful to Tina Hambuch, Anna Thanukos and Montgomery Slatkin, who
developed former versions of this course from which we profited a lot. Agnes Rettelbach
helped us to fit the exercises to the needs of the students and Ulrike Feldmann was a great
help with the R-package labpopgen which comes with this course. Toby Johnson kindly
provided material that originally appeared in (Johnson, 2005) which can now be found in
Chapters 1 and 9.

Peter Pfaffelhuber and Pleuni Pennings
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Chapter 1

Polymorphism in DNA

DNA is now understood to be the material on which inheritance acts. Since the 1980s it
is possible to obtain DNA sequences in an automated way. One round of sequencing - if
properly executed and if the sequencer works well - now gives approximately 500-700 bases
of a DNA stretch. Automated sequencers can read from 48 to 96 such fragments in one
run. The whole procedure takes about one to three hours. As can be guessed from these
numbers there is a flood of data generated by many labs all over the world. The main aim
of this course is to give some hints how it is possible to make some sense out of these data,
especially, if the sequences come from individuals of the same species.

1.1 The life cycle of DNA

The processing of DNA in a cell of an individual runs through different stages. Since a
double strand of DNA only contains the instructions how it can be processed, it must be
read and then the instructions have to be carried out. The first step is called transcription
and results in one strand of RNA per gene. The begin and end of the transcription
determine a gene1. In this first step intragenic regions are cut out. The second step is called
translation and results in proteins which the cell can use and process. For transcription
exactly one DNA base is transcribed into one base of RNA but for translation three bases
of RNA encode an amino acid. The combinations of the three base pairs are called codons
and the translation table of which codon gives which amino acid is the genetic code. There
is a certain redundancy in this mechanisms because there are 43 = 64 different codons,
whereas only 20 different amino acids are encoded. That is because certain amino acids
are represented by more than one set of three RNA bases. The third basepair of the codon
is often redundant, which means that the amino acid is already determined by the first
two RNA bases.

In both of these steps not the whole source, but only part of the information is used.
In the transcription phase only the genes are taken from the whole DNA and used to
produce pre-mRNA. Then introns are excised and the exons spliced together. The result

1The name gene is certainly not uniquely used with this meaning.
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10 CHAPTER 1. POLYMORPHISM IN DNA

is mRNA, which only has the transcribed exon sequences. The resulting messenger or
mRNA transcript is then translated into a polypeptide or protein on the basis of the
genetic code.

As DNA is the material of genetic inheritance it must somehow be transferred from an-
cestor to descendant. Roughly speaking we can distinguish two reproduction mechanisms:
sexual and asexual reproduction. Asexually reproducing individuals only have one parent.
This means that the parent passes on its whole genetic material to the offspring. The main
example for asexual reproduction is binary fission which occurs often in prokaryotes. An-
other instance of asexual reproduction is budding which is the process by which offspring is
grown directly from the parent or the use of somatic cell nuclear transfer for reproductive
cloning.

Different from asexual is sexual reproduction. Here all individuals have two parents.
Each progeny receives a full genomic copy from each parent. That means that every indi-
vidual has two copies of each chromosome which both carry the instructions the individual
would need to build its proteins. So there is an excess of information stored in the in-
dividual. When an individual passes on its genetic material to its offspring it only gives
one set of chromosomes (which is a mixture of material coming from its mother and its
father). The child now has two sets of chromosomes again, one from its mother and one
from its father. The reduction from a diploid set of chromosomes to a haploid one is done
during meiosis, the process when gametes are produced which have half of the number
of chromosomes found in the organism’s diploid cells. When the DNA from two different
gametes is combined, a diploid zygote is produced that can develop into a new individual.

Both with asexual and sexual reproduction mutations can accumulate in a genome.
These are ’typos’ made when the DNA is copied. We distinguish between point mutations
and indels. A point mutation is a site in the genome where the exact base A, C, G, or
T, is exchanged by another one. Indels (which stands as an abbreviation for insertions
and deletions) are mutations where some DNA bases are erroneously deleted from the
genome or some other are inserted. Often we don’t know whether a difference between two
sequences is caused by an insertion or a deletion. The word indel is an easy way to say
one of the two must have happened.

As we want to analyse DNA data it is important to think about what data will look
like. The dataset that we will look at in this section will be taken from two lines of the
model organism Drosophila melanogaster. We will be using DNASP to analyse the data. A
Drosophila line is in fact a population of identical individuals. By inbreeding a population
will become more and more the same. This is very practical for sequencing experiments,
because it means that you can keep the DNA you want to study though you kill individuals
that carry this DNA.

Exercise 1.1. Open DNASP and the file 055twolines.nex. You will find two sequences.
When you open the file a summary of your data is displayed. Do you see where in the
genome your data comes from? You can get an easy overview of your data in clicking
Overview->Intraspecific Data. How many variable nucleotides (usually called point
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mutations or single nucleotide polymorphisms) are there in the two sequences? Are there
also insertions and deletions? 2

Alignments

The data you looked at were already nicely prepared to be loaded into DNASP. Usually they
first have to be aligned. This task is not trivial. Assume two homologous sequences

A T G C A T G C A T G C

A T C C G C T T G C

They are not identical so we have to think which mutational mechanisms can account
for their differences. Because the second sequence has two bases fewer than the first one, we
are sure that at least two insertions or deletions must have taken place. An alignment of the
two sequences is an arrangement of the two sequences such that homologous bases are in
the same column. Since we only have our data from extant individuals we can never be sure
about which bases are homologous. Therefore there exist many possible alignments. We
could for example try to align the sequences by introducing many insertions and deletions
and no point mutations, such as

A T - G C A T G C A - T G C

A T C - C - - G C - T T G C

This alignment contains six indels but no point mutations. Another possible alignment
would be

A T G C A T G C A T G C

A T C C - - G C T T G C

where we have used two point mutations and two indels. Which alignment you prefer
depends on how likely you think point mutations are with respect to indels in the history
of the two lines. Usually, the way to decide what is the best alignment is by first deciding
upon a scoring system for indels and point mutations. The scoring may be different for
different lengths of indels and different point mutations. Events that happen often have a
low score, events that are rare have a high score. Now it is possible to calculate a score
for every possible alignment, because every alignment is a statement about the events
that happened in the history of the sample. The alignment with the fewest score will be
considered the best.

Exercise 1.2. Align the two sequences using only indels. Repeat using only point mu-
tations. Now find the alignment with the least number of mutations, given that point
mutations and indels each equally likely.

A A T A G C A A A G C A C A C A

T A A A C A T A A C A C A C T A
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2

Solution: Using only indels
- A A T A G C A - A A G C A C A C - A

T A A - A - C A T A A - C A C A C T A
or using also point mutations
- A A T A G C A A A G C A C A C - A

T A A - A C A T A A - C A C A C T A

1.2 Various kinds of data

Patterns of diversity can be studied for various kinds of data. You may compare DNA se-
quences of several species or you may study the diversity within a single species. Analyses
concerned with reconstruction of phylogenetic trees fall into the former category. Popula-
tion genetics deals mostly with variation within a species. Since these two fields overlap
we will see (already in this section) that - in population genetics - we will also make
comparisons among species.

So the first thing you may want to know about a data set is whether it comes from one
or more than one species. But there are many more questions you can (should) ask when
looking at any dataset containing DNA sequences. These are for example:

1. Are the data from one population or more than one?

2. Are the data from a sexually or asexually reproducing organism?

3. Are the sequences from coding or non-coding DNA?

4. Are the sequences already aligned?

5. Are there gaps (indels) or are they left out?

6. Do we see all sites or only the variable ones?

7. Do we see all sequences or only the different ones?

8. Are the data from one or more loci?

When we do not restrict ourselves to DNA polymorphism data, there are even more
options. One frequently used form of polymorphism data are microsatellites. A microsatel-
lite is a short stretch of DNA that is repeated several times. It could for example be
ATATATATATAT. A common mutation in a microsatellite is a change in the number of re-
peats of the short DNA stretch which is a special form of an indel. That is the reason why
they are also VNTRs (which stands for ’variable number of tandem repeats’). They are
usually found in non-coding DNA. The advantage of using them is that you do no need to
sequence a whole stretch of DNA but only use electrophoresis to infer number of repeats.
The disadvantage is that they do not contain as much information as SNP data.
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Exercise 1.3. Can you answer the above questions for the dataset you looked at in Exercise
1.1? 2

The most important mechanisms that shape DNA sequence variation are: mutation,
selection, recombination and genetic drift. We will start with mutation, as it is maybe
the simplest and the one that is most obvious when one starts to look at data. The other
mechanisms will be explained later. Their effects in isolation and combination will be made
clear during the course.

1.3 Divergence and estimating mutation rate

Our little dataset 055twolines.nex that we consider next consists of two sequences. The
two sequences come from two populations of Drosophila melanogaster, one from Europe
and the other one from Africa. They must have a most recent common ancestor (MRCA)
sometime in the past. Looking at the data one sees that the sequences are not identical.
As the common ancestor only had one DNA sequence this sequence must have changed
somehow in the history between the MRCA and the individuals today.

An important idea for the interpretation of mutations is the idea of the molecular clock.
It says that when a piece of genetic material passes from one generation to the next there
is a constant probability - which we denote by µ - that a mutation occurs. The important
word here is constant. Non-constant mutation rates would mean that there are times when
more mutations will accumulate and times with fewer ones. We are sure that mutation
rates are not constant, but for now we will assume they are.

We have to be specific when we speak about the probability of mutation µ. It can
either be the probability that a mutation occurs at a certain site (which would be the per
site mutation rate) or on the scale of an entire locus (which would then be the locus wide
mutation probability), and we can also consider the genome wide mutation rate. In the
following it doesn’t matter what unit of the genome we consider.

As mutations occur with probability µ per generation the probability that tracing back
an ancestral line for t generations the probability that no mutation occurred is

P[no mutation for t generations] = (1− µ)t.

There is an approximation as long as µ is small compared to t.

Maths 1.1. As long as x is small,

1 + x ≈ ex, 1− x ≈ e−x.

This can be seen by looking at the graph of the function e. shown in Figure 1.1

By this approximation the probability that there is no mutation for t generations is

P[no mutation for t generations] ≈ e−µt.
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Figure 1.1: Curves of 1 + x and ex are close together near x = 0.

The approximation can be used as long as µ is small, which is typically the case as long
as we consider only a site or a small stretch of DNA. Using this approach, we see that the
time until the next mutation on that specific ancestral lineage is random. As probabilities
and random variables will be used over and over again in the course let us give the basic
ideas about probabilities.

Maths 1.2. A random variable (usually denoted by a capital letter) is an object which
can take certain values with certain probabilities. The values can be either discrete or
continuous. The probabilities are determined by its distribution. The probability that a
random variable X takes a value x is denoted

P[X = x], P[X ∈ dx]

for discrete and continuous random variables respectively. The (cumulative) distribution
function of X is given by

FX(x) := P[X ≤ x]

for each of the two cases. This function is increasing and eventually reaches 1. It uniquely
determines the distribution of X.

In most cases a random variable has an expectation and a variance. They are given by

E[X] =
∑
x

xP[X = x],

Var[X] = E[(X − E[X])2] =
∑
x

(x− E[X])2P[X = x]
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for discrete random variables and

E[X] =

∫
xP[X ∈ dx],

Var[X] = E[(X − E[X])2] =

∫
(x− E[X])2P[X ∈ dx]

for continuous ones.

In the above case we are dealing with the random variable

T := time to the next mutation.

For its distribution we calculated already

P[T ≥ t] ≈ e−µt.

These probabilities belong to the exponential distribution.

Maths 1.3. Let X be exponentially distributed with parameter λ. This means that

P[X ∈ dx] = λe−λxdx, P[X ≥ x] = e−λx

and

E[X] = λ

∫ ∞
0

xe−λxdx = −λ d

dλ

∫ ∞
0

e−λxdx = λ
1

λ2
=

1

λ

E[X2] = λ

∫ ∞
0

x2e−λxdx = −λ d2

dλ2

∫ ∞
0

e−λxdx = λ
2

λ3
=

2

λ2

Var[X] = E[X2]− E[X]2 =
1

λ2
.

Usually, the parameter λ is referred to as the rate of the exponenital distribution.

So T is approximately exponentially distributed with parameter µ. The expectation
and variance of this waiting time are thus

E[T ] =
1

µ
, Var[T ] =

1

µ2
.

Consider the setting in Figure 1.2. Assume we know the time since the two populations
split was t generations ago. Since the common ancestor of the two lines can only be
found before that time, we know that the two individuals must be separated by at least
2t generations. Now, lets assume they are separated by exactly 2t generations. The
time of divergence between African and European Drosophila populations is not so long,
approximately 10 KY, which we assume to be 100.000 generations. From this time we can
estimate the mutation rate µ assuming a molecular clock. (Just to compare: the time of
divergence from humans to chimpanzees is about 5 MY)

Parameter estimation is a general mathematical concept and works in any quantitative
setting.
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Figure 1.2: Mutations on ancestral lines in a sample of size 2, one from Europe and one from
Africa

Maths 1.4. Given any model with a model parameter • a random variable •̂ is called an
estimator of •. It is called an unbiased estimator if

E[•̂] = •

where E[.] is the expectation with respect to the given model.

Here • = µ, so we want to obtain an estimator for µ. Obviously we must base this
estimator on D the number of polymorphic sites of the divergence between the two popu-
lations. Let us first think the other way round. Tracing back our two lines for time t (and
assume we know µ), K mutations have occurred along the branches of the two descendant
populations which has length 2t. It is possible, however that two mutations hit the same
site in the chromosome. If this is the case today we can only see the last mutant. Assuming
that divergence is small enough such that to a good approximation each site is hit at most
once by a mutation, we set K = D. As mutations occur at constant rate µ along the
branches

E[D] = E[K] = 2µt. (1.1)

This already gives a first unbiased estimator for µ, which is

µ̂ =
Dt

2t
.

However, if mutations hit sites that were already hit by a mutation, this messes these
thoughts up. The longer the time since divergence or the higher the mutation rate the
higher the chance of these double hits. So, if divergence is too big, the assumption of no
double hits might be misleading. The so-called Jukes-Cantor corrections account for this
effect.
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OW Monkey (B) NW Monkey (C)
Human (A) 485 (0.072) 1201 (0.179)
OW Monkey(B) 1288 (0.192)

Figure 1.3: Number of pairwise differences (and fraction) for l = 6724bp of aligned η-globin
pseudogene sequence. The OW (Old World) monkey is the rhesus macaque and the
NW (New World) monkey is the white fronted capuchin.

........................................................................................................................................................................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
....

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.......

A B C

O

tOBtOA

tOC

Figure 1.4: Tree topology for relative rates test

Exercise 1.4. Look at your data. Assume the European and African lines of Drosophila
melanogaster have separated 10,000 year (10KY) ago. What is your estimate for the
mutation rate µ? Given that for the two populations the time of their split is not exactly
the time the two individuals have a common ancestor, is your estimate for µ an over- or
and underestimate (upper or lower bound)? 2

Divergence between species

All of the above analysis also works for divergence between species. Divergence data are
often summarised by the number of substitutions between each pair of species, such as
those shown in Figure 1.3. The species tree for the three species is given in Figure 1.4.

A relative rates test is used to test whether there is a constant mutation rate in the
different lineages in the tree. It is a test of the molecular clock. The lineages studied would
be those leading to sequences A and B, and we use a third sequence C as an outgroup to
A and B (Figure 1.4). If the molecular clock operates there must be as much divergence
between A and C as between B and C.

If the divergence is small then multiple hits can be ignored, and ancestral sequences
can be reconstructed using parsimony,2. i.e. by minimising the number of mutations on

2The principle of parsimony (also called Ockham’s Razor) states that one should prefer the least complex
explanation for an observation. In systematics, maximum parsimony is a cladistic ”optimality criterion”
based on the principle of parsimony. Under maximum parsimony, the preferred phylogenetic tree (or
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the lines to the MRCA. If the observed number of differences between three sequences A,
B and C are kAB, kAC and kBC , then the reconstructed number of substitutions since O,
the common ancestor of A and B, can be computed as

kOA =
kAB + kAC − kBC

2

kOB =
kAB + kBC − kAC

2

kOC =
kAC + kBC − kAB

2
.

The reconstructed numbers of substitutions kOA and kOB can now be analysed. As-
sume the rates on the branches OA and OB occur at the same rate. Then, given kAB
every mutation occurs on the branch OA with probability 1

2
. This leads us to binomial

distributions.

Maths 1.5. If a random variable X is binomially distributed with parameters p and n this
means that

P[X = k] =

(
n

k

)
pk(1− p)n−k

where k is between 0 and n. This is the probability when you do a random experiment
which has two possible results n times you get one result (which has for one instance of the
experiment a probability of p) exactly k times.

Note that because there must be some outcome of the experiment,

n∑
k=0

(
n

k

)
pk(1− p)n−k = 1.

Our success probability is 1
2

and the number of experiments we do is kAB because we
have to place all mutations randomly on OA and OB. In our example

kAB = 485, kOA =
485 + 1201− 1288

2
= 199, kOB =

485 + 1288− 1201

2
= 286.

We assume a constant rate of mutation and then test if the observed data is consistent
with this model. The relative rates test asks for the probability that under the assumption
of a constant rate observed data can be as or more different than the data we observed,
i.e.

P[KOA ≥ 286] + P[KOA ≤ 199] = 2P[KOA ≥ 286] = 9.1 · 10−5,

so this probability is very small. This value is called the p-value in statistics. As it is very
low we have to give up the assumption that there was a molecular clock with a constant
rate in both branches.

alignment) is the tree (or alignment) that requires the least number of evolutionary changes.
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Exercise 1.5. 1. On your computer you find the program R which we will use frequently
during the course. 3 R knows about the binomial distribution. Type ?dbinom to find
out about it. Can you repeat the calculation that led to the p-value of 9.1 ·10−5 using
R (or any other program if you prefer)?

2. Can you think of explanations why there was no clock with a constant rate in the
above example? If you want you can use the Internet to find explanations.

2

Exercise 1.6. Assume the homologous sequences of three species are

species 1: ATG CGT ATA GCA TCG ATG CTT ATG GC

species 2: ACG CCA CTG GCA ACC ATG CTA AAG GG

species 3: ATG CGA CTA GCG TCC ATG CTA ATG GC

Which species do you assume to be most closely related? Count the number of differ-
ences in the sequences. Perform a relative rates test to see whether the assumption of rate
constancy is justified. 2

Solution: A-B: 10. A-C: 5. B-C: 7. So A and C are probably closest related. From their
common ancestor 0 we calculate the differences 0-A = (5+10-7)/2=4, O-C=(5+7-10)/2=1.
The probability of 1 success in 5 trials is 0.188. So the p-value is 0.376.

3A little introduction to R and all procedures you need during the course can be found in Appendix A.
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Chapter 2

The Wright-Fisher model and the
neutral theory

Although evolutionary biology is mostly devoted to natural selection, we are first dealing
with a different case. Motoo Kimura1 developed the neutral theory in the 50s and 60s.
(See e.g. (Kimura, 1983).) It was found that the models without selection already explain
much of the observed patterns of polymorphism within species and divergence between
species. Models without selection are much easier than models with selection, because
without selection we don’t have to worry about different fitnesses for different genotypes.

1Motoo Kimura, 1924-1994; his first works were several important, highly mathematical papers on
random genetic drift that impressed the few population geneticists who were able to understand them
(most notably, Wright). In one paper, he extended Fisher’s theory of natural selection to take into
account factors such as dominance, epistasis and fluctuations in the natural environment. He set out
to develop ways to use the new data pouring in from molecular biology to solve problems of population
genetics. Using data on the variation among hemoglobins and cytochromes-c in a wide range of species, he
calculated the evolutionary rates of these proteins. After extrapolating these rates to the entire genome, he
concluded that there simply could not be strong enough selection pressures to drive such rapid evolution.
He therefore decided that most evolution at the molecular level was the result of random processes like
mutation and drift. Kimura spent the rest of his life advancing this idea, which came to be known as the
”neutral theory of molecular evolution.” (adapted from http://hrst.mit.edu/groups/evolution)

21



22 CHAPTER 2. THE WRIGHT-FISHER MODEL AND THE NEUTRAL THEORY

2.1 The Wright-Fisher model

The Wright-Fisher model (named after Sewall Wright2 and Ronald A. Fisher3 ) is the sim-
plest population genetic model that we have. In this section you learn how this model is
usually drawn, and what the basic assumptions of this model are and you will learn some
characteristics of the model. In the Wright-Fisher model we want to model a population
of constant size. For simplicity we model N diploid organisms as if they are 2N haploid
individuals, in this way we don’t have to worry about mating, we just assume every indi-
vidual has only one parent. This simplification of the model is fine as long as we are only
concerned with one locus and as long as mating is random. Random mating is usually
referred to as panmixia.

As an example, imagine a small population of 5 diploid or 10 haploid individuals. Each
of the haploids is represented by a circle. Ten circles represent the first generation (see
Figure 2.1).

In a Wright-Fisher model, to get the next generation you follow the following simple
rules:

1. Population size is constant so there will be 10 individuals again.

2. Each individual from the new generation picks a parent at random from the individ-
uals in the old generation, and parent and child are linked by a line.

3. Each offspring takes the genetic information of the parent.

2Sewall Wright, 1889-1988; Wright’s earliest studies included investigation of the effects of inbreeding
and crossbreeding among guinea pigs, animals that he later used in studying the effects of gene action on
coat and eye colour, among other inherited characters. Along with the British scientists J.B.S. Haldane
and R.A. Fisher, Wright was one of the scientists who developed a mathematical basis for evolutionary
theory, using statistical techniques toward this end. He also originated a theory that could guide the use
of inbreeding and crossbreeding in the improvement of livestock. Wright is perhaps best known for his
concept of genetic drift, sometimes called the Sewall Wright effect. (from Encyclopedia Britannica, 2004)

3Sir Ronald A. Fisher, 1890-1962, Fisher is well-known for both his work in statistics and genetics.
His breeding experiments led to theories about gene dominance and fitness, published in The Genetical
Theory of Natural Selection (1930). In 1933 Fisher became Galton Professor of Eugenics at University
College, London. From 1943 to 1957 he was Balfour Professor of Genetics at Cambridge. He investigated
the linkage of genes for different traits and developed methods of multivariate analysis to deal with such
questions.

An even more important achievement was Fisher’s invention of the analysis of variance, or ANOVA.
This statistical procedure enabled experimentalists to answer several questions at once. Fisher’s principal
idea was to arrange an experiment as a set of partitioned subexperiments that differ from each other in
one or more of the factors or treatments applied in them. By permitting differences in their outcome
to be attributed to the different factors or combinations of factors by means of statistical analysis, these
subexperiments constituted a notable advance over the prevailing procedure of varying only one factor at a
time in an experiment. It was later found that the problems of bias and multivariate analysis, that Fisher
had solved in his plant-breeding research, are encountered in many other scientific fields as well.

Fisher summed up his statistical work in his book Statistical Methods and Scientific Inference (1956).
He was knighted in 1952 and spent the last years of his life conducting research in Australia. (from
Encyclopedia Britannica, 2004)
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Figure 2.1: The 0th generation in a Wright-Fisher Model.
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Figure 2.2: The first generation in a Wright-Fisher Model.

The result for one generation is given in Figure 2.2. After a couple of generations it
will look like Figure 2.3(A). in (B) you see the untangled version. This picture shows the
same process, except that the individuals have been shuffled a bit to avoid the mess of
many lines crossing. The genealogical relationships are still the same, only the children of
one parent are now put next to each other and close to the parent.

All models we will be treating in this course are versions of the Wright-Fisher model.
We will describe later in this section how mutation can be built in, in Chapter 4 we will be
concerned with inbreeding and structured populations, in 5 we will allow for non-constant
population size, in Chapter 6 we will extend the model to include recombination and finally
in Chapter 7 we will be dealing with the necessary extensions for selection.

In this Chapter every individual has the same probability of being picked as a parent
in the Wright-Fisher model, independent of its genotype. Neutral evolution means that
mutations don’t influence fitness, in other words: the genotype of the individual doesn’t
determine whether it will have few or many offspring.

So each individual will have 2N chances to become ancestor of the next generations
and in each of these ”experiments” the chance that it is picked is 1

2N
. That means that

the number of offspring one individual has is binomially distributed with parameters 1
2N

and 2N (see Maths 1.5).

The simple rule that each individual chooses a parent at random leads to a Binomial
distribution of offspring numbers. Because n = 2N is large and p = 1

2N
is small, the

binomial distribution can be approximated by the Poisson distribution.

Maths 2.1. If a random variable X is binomially distributed with parameters n and p such
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Figure 2.3: The tangled and untangled version of the Wright-Fisher Model after some generations.
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that n is big and p is small, but np = λ has a reasonable size, then

P[X = k] =

(
n

k

)
pk(1− p)n−k =

n · · · (n− k + 1)

k!
pk
(
1− λ

n

)n
(1− p)k

≈ nk

k!
pke−λ = e−λ

λk

k!
.

These are the weights of a Poisson distribution and so the binomial distribution with pa-
rameters n and p can be approximated by a Poisson distribution with parameter np. .

Note that as some number of X must be realized

e−λ
∞∑
k=0

λk

k!
= 1.

To calculate the expectation and variance of X, we compute

E[X] = e−λ
∞∑
k=0

k
λk

k!
= e−λλ

∞∑
k=1

λk−1

(k − 1)!
= λ,

E[X(X − 1)] = e−λ
∞∑
k=0

k(k − 1)
λk

k!
= e−λλ2

∞∑
k=2

λk−2

(k − 2)!
= λ2,

Var[X] = E[X(X − 1)] + E[X]− (E[X])2 = λ.

For the Wright-Fisher model with a large constant population size we now have in
this approximation p = 1

2N
, n = 2N and so λ = pn = 1. So under this approximation the

number of offspring of one individual in the population is approximately Poisson distributed
with λ = 1.

Here comes a less formal explanation for the offspring distribution: Let’s first of all
assume that the population is large with 2N individuals, 2N being larger than 30, say
(otherwise offspring numbers will follow a binomial distribution and the above approxima-
tion to the Poisson does not work). Now all 2N individuals in generation t+ 1 will choose
a parent among the individuals in generation t. We concentrate on one of the possible
parents. The probability that a child chooses this parent is 1

2N
, and the probability that

the child chooses a different parent is therefore 1− 1
2N

. The probability that also the second
child will not choose this parent is (1− 1

2N
)2. And the probability that all 2N children will

not choose this parent is (1− 1
2N

)2N . And using the approximation from Maths 1.1 we can
rewrite this (because as long as x is small, no matter if it is negative or positive, 1+x ≈ ex)

to e
−2N
2N = e−1 (which is the first term of the Poisson distribution with parameter 1).

A parent has exactly one offspring when one child chooses it as its parent and all other
children do not choose it as the parent. Let us say that the first child chooses it as a
parent, this has again probability 1

2N
. And also all the other individuals do not choose the

parent, which then has probability 1
2N
· (1 − 1

2N
)2N−1. However, we should also take into

account the possibility that another child chooses the parent and all others don’t choose
it. Therefore the probability that a parent has one offspring is 2N times the probability
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that only the first child chooses it: 2N · ( 1
2N

) · (1− 1
2N

)2N−1. This can be approximated as
e−1 (the second term of the Poisson distribution).

The probability that a parent has 2 offspring which are child number 1 and child number
2 is ( 1

2N
)2 · (1− 1

2N
)2N−2 because for each of these children the probability of choosing the

parent is 1
2N

and all others should not choose this parent. In order to get the probability
that any two children belong to this parent we just have to multiply with the number of
ways we can choose 2 children out of 2N individuals which is

(
2N
2

)
. So the probability of a

parent having 2 offspring is
(

2N
2

)
( 1

2N
)2 · (1− 1

2N
)2N−2 ≈ 1

2
e−1 (the third term of the Poisson

distribution). You can continue like this and find every term of the Poisson distribution.
The Poisson distribution will come back when we describe the number of mutations on a
branch in a tree.

Exercise 2.1. Try out wf.model() from the R package labpopgen which comes with this
course. Look at the helpfile of wf.model by saying ?wf.model and type q to get out of the
help mode again. To use the function with the standard parameters, just type wf.model().

• Does the number of offspring really follow a Poisson distribution?

2

Exercise 2.2. The Wright-Fisher model as we introduced it here is a model for haploid
populations. Assume we also want to model diploids in the model. Can you draw a similar
figure as Figure 2.1 for the diploid model? How would the update rules 1.-3. have to be
changed for this model? 2

2.2 Genetic Drift

Genetic drift is the process of random changes in allele frequencies in populations. It can
make alleles fix in or disappear from a population. Drift is a stochastic process, which
means that even though we understand how it works, there is no way to predict what
will happen in a population with a specific allele. It is important to understand what this
means for evolutionary biology: even if we would know everything about a population, and
we would have a perfect understanding of the laws of biology, we cannot predict the state
of the population in the future. In this subsection, we introduce drift in different ways so
that you will get a feeling for its effects and the time scale at which these effects work. To
describe drift mathematically, we need the binomial distribution and Markov chains. We
will be dealing with both notions in this section.

Suppose you are looking at a small population of population size 2N = 10. Now, if in
generation 1 the frequency of A is 0.5, then what is the probability of having 0, 1 or 5 A’s
in the next generation?

In fact, this probability is given by the binomial sampling formula (in which 2N is
the population size and p the frequency of allele A and therefore the probability that an
individual picks a parent with genotype A). Let us calculate the expectation and the
variance of a binomial distribution.
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Maths 2.2. Recall the binomial distribution from Maths 1.5. For the expectation and the
variance of a binomial distribution with parameters n and p we calculate

k

(
n

k

)
=

k · n!

k!(n− k)!
= n

(n− 1)!

(k − 1)!(n− k)!
= n

(
n− 1

k − 1

)
,

k(k − 1)

(
n

k

)
=

n!

(k − 2)!(n− k)!
= n(n− 1)

(
n− 2

k − 2

)
.

Using this, the expectation is calculated to be

E[X] =
n∑
k=0

k

(
n

k

)
pk(1− p)n−k = np

n∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)(n−1)−(k−1)

= np
n∑
k=0

(
n− 1

k

)
pk(1− p)n−1−k = np

and for the variance

E[X2 −X] =
n∑
k=0

k(k − 1)

(
n

k

)
pk(1− p)n−k

= n(n− 1)p2

n∑
k=2

(
n− 2

k − 2

)
pk−2(1− p)(n−2)−(k−2) = n(n− 1)p2

and so

V[X] = E[X2]− E[X]2 = E[X2 −X] + E[X]− E[X]2 = n(n− 1)p2 + np− n2p2

= np− np2 = np(1− p).

When simulating allele frequencies in a Wright-Fisher population, you don’t really
have to pick a random parent for each individual one by one. You can just pick a random
number from the binomial distribution (with the appropriate 2N and p) and use this as the
frequency of the allele in the next generation (if there is more than two different alleles, we
use the multinomial distribution). The binomial distribution depends on the frequency of
the allele in the last generation which enters as p, and on the population size which enters
as 2N . See Figure 2.4 for two plots of the binomial distribution. As you can see from these
plots the probability of loosing the allele is much higher if p is smaller.

Basically all random processes we will encounter in the course are Markov chains which
is a good reason to introduce them here.

Maths 2.3. A (discrete-time) Markov chain is a process that evolves randomly in time. It
is seen as the collection of random variables (i.e. random numbers) X1, X2, X3, . . . where
Xk means the state of the Markov chain at time k. Here time is discrete and so k can only
take discrete values. The range of these variables, i.e., the set of their possible values, is
called the state space.
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Figure 2.4: The binomial distribution for different parameters. Both have n = 10, the left one
for p = 0.2 and the right one for p = 0.5.

The important property of Markov chains is the socalled Markov property which reads

P[Xn+1 = x|Xn = xn, . . . , X0 = x0] = P[Xn+1 = x|Xn = xn]. (2.1)

This means that the future, i.e. the state of the chain at time n+ 1, Xn+1 does not depend
on the past, i.e. X0, . . . , Xn−1 when we know the state of the present, Xn.

An example of a Markov chain is how many people are waiting in line at the post office.
The number of people that are waiting can change by two processes. People can come in
and join the queue, and when people are helped they leave the queue. If at a certain point
in time there are 10 people waiting, then one moment later this can still be 10 people, or it
could become 9 or 11. But this doesn’t depend on how many people there were before there
were 10. To calculate the probability that there will be 11 people in the next moment you
only need to know how many there are now, not how many there were a moment ago: the
history plays no role, and Markov chains are said to be memoryless processes.

In the Markov chains that we are going to use, the state space is usually a finite set.
That means there is a finite number of possibilities for the Xi’s. If we would look at
changing frequencies for example, these can only take values 0, 1

2N
, 2

2N
, 3

2N
, . . . , 1. If the

state space is finite and discrete, the transition probability distribution can be represented
as a matrix, called the transition matrix, with the (i, j)th element equal to

Aij = P[Xn+1 = j|Xn = i].

Writing A for the transition matrix, a stationary distribution is a vector π which has
as many entries as the size of the state space has, which satisfies the equation

πA = π.
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To see what this means consider a Markov chain on {1, . . . , n}. Given today the prob-
ability of being in state k is πk for k = 1, . . . , n the probability that in the next time step
we are in state k is

n∑
k′=1

P[Xn = k′] ·P[Xn+1 = k|Xn = k′] =
n∑

k′=1

πk′Ak′,k = (πA)k = πk.

That means that again after one generation the probability of being in k is the same which
is the reason for the name stationary distribution.

Exercise 2.3. Suppose you have a population of 4 (haploid) individuals and two alleles.
The frequency of the A allele is a random variable. What are the states that this random
variable could be in? Write out the transition matrix for the Markov Chain that describes
the behaviour of this frequency over time. Can every state be reached from every other
state? Can you see which state is a trap? Traps are usually called absorbing states. 2

Exercise 2.4. Use wf.model() from the R- package to simulate a Wright Fisher popula-
tion. You can change the number of individuals and the number of generations.

1. Pick one run, and use untangled=TRUE to get the untangled version. Now suppose
that in the first generation half of your population carried an A allele, and the other
half an a allele. How many A-alleles did you have in the 2nd, 3rd etc generation? It
is easy to follow the border between the two alleles in the population. If you draw
the border with a pencil you see that it is moving from left to right (and from right
to left).

2. Try out different population sizes in wf.model(). Do the changes in frequency get
smaller or bigger when you increase or decrease population size? Why is this the
case? And how does the size of the changes depend on the frequency?

3. Consider an allele has frequency 0.1 in a population of size 10. What is the probability
that the allele is lost in one generation? Assume the population size is 1000. What
is the probability of loss of the allele now?

2

The random changing of allele frequencies in a population from one generation to
another, is called genetic drift. Note that in the plots made by wf.model(), time is on
the vertical axis whereas in the plots made by wf.freq(), time is on the horizontal axis.
Usually if we plot frequencies that change in time, we will have the frequencies on the
y-axis and time on the x-axis, so that the movement (drift) is vertical. Such a plot is given
in Figure 2.5.

Exercise 2.5. What is your guess: Given an allele has frequency 0.5 in a population what
is the (expected) time until the allele is lost or fixed in a population of size 2N compared
to a population with twice that size? To do simulations, use
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Figure 2.5: Frequency curve of one allele in a Wright-Fisher Model. Population size is 2N = 2000
and time is given in generations. The initial frequency is 0.5.

>res=wf.freq(init.A =0.5, N = 50, stoptime = 500, batch = 100)

>plot(res, what=c( "fixed" ) )

2

2.3 The coalescent

Until now, in our explanation of the Wright-Fisher model, we showed how to predict the
state of the population in the next generation (t+1) given that we know the state in the last
generation (t). This is a useful approach that allows us to get many results. For example,
it allows us to calculate the probability that an individual has no offspring, because the
number of offspring follows a binomial distribution. However, to answer certain questions
it is more useful to look at the Wright-Fisher model backward in time. We can ask for
example: what is the probability that two individuals from the population today (t) have
the same ancestor in the previous generation (t−1)? This can easily be calculated because
all individuals pick a parent at random. If the population size is 2N the probability that
two individuals choose the same parent is

P[common parent one generation ago] =
1

2N
. (2.2)

That is because, given the first individual picks its parent, the probability that the second
one picks the same one by chance is 1 out of 2N possible ones. This can be iterated into
the past. Given that the two individuals did not find a common ancestor one generation
ago maybe they found one two generations ago and so on. Coalescence of the two lineages
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that stem from the two individuals will have occurred when they find a common parent.
The probability of no coalescence in t generations is calculated as

P
[ Two lineages do not have a common

ancestor t generations ago

]
=
(

1− 1

2N

)
· . . . ·

(
1− 1

2N

)
︸ ︷︷ ︸

t times

=
(

1− 1

2N

)t
.

Because in each time step the chance of coalescence is 1
2N

, the time of coalescence is
geometrically distributed with success parameter 1

2N
.

Maths 2.4. If a random variable X is geometrically distributed with parameter p then

P[X = t] = (1− p)t−1p, P[X > t] = (1− p)t,

i.e. the geometrical distribution gives the time of the first success for the successive perfor-
mance of an experiment with success probability p.

For the probability that in one time step more than one coalescence event occurs we
calculate the probability that three lines coalesce in one time step. This is

P
[ three individuals have a common

ancestor one generation ago

]
=

1

(2N)2

which is much smaller than the probability of only one coalescence event (at least if N
is large). Therefore we can ignore the possibility that more than one coalescence event
happens in one time.

Figure 2.6 shows the common ancestry in the Wright-Fisher animator from wf.model()

In this case the history of just two individuals is highlighted. Going back in time there
is always a chance that they choose the same parent. In this case they do so after 11
generations. We say that the two lineages coalesce 11 generations in the past. And in
all the generations that follow they will automatically also have the same parents. The
common ancestor in the 11th generation in the past is called the most recent common
ancestor.

Exercise 2.6. What is the probability that two lines in Figure 2.6 coalesce exactly 11
generations in the past? What is the probability that it takes at least 11 generations for
them to coalesce? 2

The backward-in-time, or coalescence, perspective is not restricted to a sample of size
2 but can be applied for any number n of individuals (with n ≤ N). The idea of modelling
the fate of a small number of individuals back in time instead of modelling the whole
population forward in time caused a small revolution in population genetics. It allowed
population geneticists to calculate many things much easier than before and in addition
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Figure 2.6: The coalescent of two lines in the Wright-Fisher Model
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helped to understand old results much better. It also made it possible to do simulations
much faster than before.

There is a very useful approximation of the coalescent (or, more precisely, for the
waiting times in a coalescent tree) for large populations. The mathematical link here is an
approximation of the geometrical distribution by the exponential distribution.

Maths 2.5. There is a close relationship between the geometrical and the exponential
distribution (see Maths 2.4 and Maths 1.3). If X is geometrically distributed with small
success probability p and t is large then

P[X ≥ t] = (1− p)t ≈ e−pt.

This is the distribution function of an exponential distribution with parameter p.

For a sample of size n let Tn be the time until the first coalescence occurs. Then

P[Tn > t] =
[(

1− 1

2N

)
· . . . ·

(
1− n− 1

2N

)]t
,

N→∞−−−→ e−t/2N · . . . · e−(n−1)t/2N = exp
(
− t

2N

n−1∑
i=1

i
)

= exp
(
−
t
(
n
2

)
2N

)
.

(2.3)

where we have used the approximation from Maths 1.1 which works if N is large. That
means that in a sample of size n the waiting time until the first coalescence event is

approximately exponentially distributed with rate
(n

2)
2N

.
This result, the waiting time until the first coalescence event in a sample of n, gives

a nice description for the coalescent tree of a sample of size n. Start with n individuals.

After an exponentially distributed amount of time with parameter
(n

2)
2N

the first coalescence
event occurs. As all lines are exchangeable with respect to coalescence pick two of them at
random and the first coalescence event occurs. Then start again with n−1 individuals and
wait until the next coalescence event etc. When only one line is left the tree is finished.

Exercise 2.7. What is the coalescence rate for a sample of 6 (and population size 2N)?
What is the expected time you have to wait to go from 6 to 5 lineages? And from 5 to 4,
4 to 3, 3 to 2 and 2 to 1? Draw an expected coalescent tree for a sample of 6, using the
expected waiting times. 2

The tree in Figure 2.6 or the tree you have drawn in Exercise 2.7 is called a genealogical
tree. A genealogical tree shows the relationship between two or more sequences. Don’t
confound it with a phylogenetic tree that shows the relationship between two or more
species. The genealogical tree for a number of individuals may look different at different
loci (whereas there is only one true phylogeny for a set of species). For example, at a
mitochondrial locus your ancestor is certainly your mother and her mother. However, if
you are a male, the ancestor for the loci on your Y-chromosome is your father and his
father. So the genealogical tree will look different for a mitochondrial locus than for a
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Y-chromosomal locus. A genealogical tree, just like a phylogenetic tree, has branches (or
edges) and leaves (or tips). The length of a branch can either be in numbers of generations
or in number of mutations. In the examples above it is in generations.

In order to get the tree in Figure 2.6, we did a forward in time simulation of a Wright-
Fisher population and then extracted a genealogical tree for two individuals. This is
very (computer) time consuming. It is also possible to do the simulation backward in
time and only for the individuals in our sample. These simulations are called coalescent
simulations. Simulations in population genetics are important because they can be used
to get the distribution of certain quantities where we do not have the analytical results.
These distributions in turn are used to determine whether data are in concordance with a
model or not.

The fact that in the coalescent the time Tn to the next coalescence event is exponentially
distributed with parameter

(
n
2

)
/2N enables us to calculate some important things. First

the expected time to the MRCA and second the expected total tree length. To see this,
recall the expectation and variance for exponentially distributed random variables from
Maths 1.3.

Let as above Tk be the time to the next coalescence event when there are k lines present
in the coalescent. Let moreover TMRCA be the time to the MRCA and L the total tree
length. Then

TMRCA =
n∑
i=2

Ti, L =
n∑
i=2

iTi. (2.4)

So we can calculate for a coalescent starting in n

E[TMRCA] =
n∑
i=2

E[Ti] =
n∑
i=2

2N(
i
2

) =
n∑
i=2

4N

i(i− 1)
= 4N

n∑
i=2

1

i− 1
− 1

i
= 4N

(
1− 1

n

)
.

For the total tree length L we obtain

E[L] =
n∑
i=2

iE[Ti] =
n∑
i=2

i
2N(
i
2

) = 4N
n∑
i=2

1

i− 1
= 4N

n−1∑
i=1

1

i
.

It is important to see that for large sample sizes n

E[TMRCA] ≈ 4N, E[T2] = 2N,

so that in expectation half of the total time in the coalescent till the MRCA is needed for
two remaining ancestral lines coalesce and

E[L] ≈ 4N log(n− 1).

Exercise 2.8. Any tree doesn’t have to look like the expected tree, in fact it is very
unlikely that a random tree looks exactly like the expected tree. Use coalator() from
the R-package to simulate a couple of random trees for a sample of 6 sequences. Produce
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10 trees with sample size 6. Write down for every tree that you simulate its depth (i.e.
the length from the root to a leaf). How much larger approximately is the deepest tree
compared to the shallowest tree you made? Do the same comparison for the time in the
tree when there are only 2 lines. 2

Exercise 2.9. The variance is a measure of how variable a random quantity, e.g., the
depth of a coalescent tree, is. Two rules, which are important to compute variances, are
for independent random quantities X and Y ,

Var[X + Y ] = Var[X] + Var[Y ], Var[iX] = i2Var[X].

The depth is the same as the time to the MRCA, so consider TMRCA as given in (2.4). Can
you calculate the variance of the two quantities you measured in the last exercise? 2

2.4 Mutations in the infinite sites model

When we described the Wright-Fisher Model, we left out mutation all together. If we
would account for this, we would take the altered update rule

3’. With probability 1−µ an offspring takes the genetic information of the parent. With
probability µ it will change its genotype.

This rule is very unspecific in what the change looks like. In the simplest case, we imagine
that an individual can only have one of two states, for example a and A. However, in most
cases, this doesn’t represent reality very well. Depending on the data we deal with, we
should choose a different model that tells us which changes are possible. In this course,
we will mainly deal with DNA sequence data and for these data, usually, the infinite sites
model is suited. This is the same model as in Section 1.3 when we assume that every
mutation hits a new site in the genome. Whether this assumption is fulfilled depends on
the mutation rate and the time scale that we are looking at. Let us study the impact of
these assumptions on coalescent trees. The fate of two lines is determined by two forces:
coalescence and mutations. We set first

θ = 4Nµ.

Exercise 2.10. Follow back one line in the coalescent. Assuming mutations occur with
probability µ per generation what is the probability that the line is not hit by a mutation
by time t? Can you approximate this probability? 2

DNA sequences taken from a sample out of a population differ at certain sites. That
means that for a model to explain these data a mutation process is necessary. The coa-
lescent can be adapted to also include mutations in this model. Recall that the coalescent
models lines of descent and genealogical trees. So if mutations are assumed to be neutral
they do not change the fate of an ancestral line. In this case we can simply add mutations
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on the tree. The number of mutations on the tree depends only on the mutation rate and
the length of the tree. It is important to realize that only under neutrality, mutations can
be randomly distributed on a tree and the tree shape doesn’t depend on the mutations. It
is great that this is possible, because if this wouldn’t be the case, the coalescent wouldn’t
be nearly as useful as it is. On the other hand, it also limits the usefulness of the coalescent,
because when selection plays a role, we cannot just make a tree and distribute mutations
on them.

There is a close connection between the exponential and the Poisson distribution which
we need to quantify the number of mutations in a sample of sequences.

Maths 2.6. Consider a long line starting at 0. After an exponential time with parameter
λ a mark hits the line. After another time with the same distribution the same happens etc.
Then the distribution of marks in an interval [0, t] is Poisson distributed with parameter
λt.

Along ancestral lines mutations accumulate after (approximately) exponential waiting
times. In particular, given the length of the coalescent tree, which we call L, the total
number of mutations in the tree is distributed as a Poisson distribution with parameter
Lµ = Lθ

4N
. Let S be the number of mutations on the genealogical tree. Then

P[S = k] =

∫ ∞
0

P[S = k|L ∈ d`]P[L ∈ d`] =

∫ ∞
0

e−`µ
(`µ)k

k!
P[L ∈ d`].

For the expectation that means

E[S] =
∞∑
k=0

kP[S = k] =

∫ ∞
0

`µe−`µ
( ∞∑
k=1

(`µ)k−1

(k − 1)!

)
P[L ∈ d`]

= µ

∫ ∞
0

` P[L ∈ d`] =
θ

4N
E[L] = θ

n−1∑
i=1

1

i
.

(2.5)

Estimators for the mutation rate

One aim in population genetics is to see if the models are in some way appropriate. To
decide that we need estimators of model parameters. Clearly the mutation rate is an
important parameter. With the above equations at hand we can already give two estimators
of the mutation rate.

In the infinite sites model the assumption about the mutation process is that each
mutation occurs at a different nucleotide on the chromosome. So each mutation in the
genealogical tree gives one new segregating site in the sample of DNA sequences. Assuming
that all mutations are neutral and do not change the coalescence process we can estimate
the parameter θ from (2.5).

Consider a sample of size n and its DNA sequences. If we take a subsample of 2 out of
n we see that

E[S] = θ.
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Denote by Sij the number of differences between sequence i and j. As the above equation
is true for any pair out of our sample of size n we can set

θ̂π :=
1(
n
2

)∑
i<j

Sij (2.6)

which must then be an unbiased estimator of θ. Sometimes it is simply called π but we
do not want to confuse estimators with parameters so we take θ̂π as it is an estimator of θ
based on the average number of pairwise differences which is usually referred to as π.

Another unbiased estimator for θ can be read directly from (2.5):

θ̂S =
S∑n−1
i=1

1
i

. (2.7)

This estimator was already found by Watterson (1975) using diffusion theory. Nevertheless
it only becomes apparent where it comes from in the coalescent framework.

Exercise 2.11. Can you explain why the above estimators are unbiased? 2

Exercise 2.12. Open the file 055.nex with DNASP. You see sequences of 24 individuals
of Drosophila, the first one from a line of Drosophila Simulans, 11 European lines from
Drosophila Melanogaster and 12 from the African population of Drosophila Melanogaster.
Compute θ̂π and θ̂S for the African and European subsamples (alternatively you can click

on Overview->Interspecific Data, the estimates are displayed). The estimator θ̂π is

denoted pi and the estimator θ̂S is denoted Theta W (where W stands for its discoverer
Watterson).

1. Look at the data. Can you also calculate θ̂S by hand? And what about θ̂π? Which
computation steps do you have to do here?

2. Instead of taking only the African subsample you can also take all 24 sequences and
see what θ̂π and θ̂S is. Here you see that not the number of segregating sites S are
used for computation of θ̂S but the total number of mutations (which is called eta

here). Why do you think that makes sense? Which model assumptions of the infinite
site model are not met by the data.

3. What do you think about the estimators you get for the whole dataset? Do you
expect these estimators to be unbiased?

4. The estimators for θ are much larger for the African population than for the European
one. Can you think of an explanation for this?

2
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Chapter 3

Effective population size

In the first two sections we only dealt with idealised populations. The two main assump-
tions were that the population has a constant size and the population mates panmictically.
These ideal populations are good to start with because simplified populations allow us to
derive some important results. However, real populations are usually not panmictic and
the population size may not be constant over time. Nevertheless, we can often still use
the theory that we developed. The trick is that we describe a real population as if it is an
ideal one by adjusting some parameters, in this case the population size. This is the idea
of the effective population size which is the topic of this section.

Human Population Size Example

As an example, we are going to analyse a dataset from Hammer et al. (2004). The dataset,
which may be found in the file TNFSF5.nex, contains data from different human popula-
tions: Africans, Europeans, Asians and Native Americans. It contains 41 sequences from
41 males, from one locus, the TNFSF5 locus. TNFSF5 is a gene and the sequences are
from the introns of this gene, so there should be no constraint on these sequences, in other
words every mutation should be neutral. The gene lies on the X-chromosome in a region
with high recombination. What that means for the data will become clearer later in the
course.

Exercise 3.1. Import the data in DNASP and determine θ̂π per site and θ̂S per site using
all 41 sequences. 2

As you have seen in Chapter 2, both θ̂π and θ̂S are estimators of the model parameter
θ = 4Nµ where µ is the probability that a site mutates in one generation. However,
the TNFSF5 locus is on the X-chromosome and for the X-chromosome males are haploid.
Therefore the population of X-chromosomes can be seen as a population of 1.5N haploids
(instead of 2N haploids for autosomes) and therefore in this case θ̂π and θ̂S are estimators
of 3Nµ. The reason that Hammer et al. (2004) looked at X-chromosomes is mainly because
the sequencing is relatively easy. Males have only one X-chromosome, so you don’t have

39
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to worry about polymorphism within one individual (more about polymorphism within an
individual in Chapter 4).

The mutations that you are looking at in these data are so-called single nucleotide
polymorphisms or SNPs. It is often the SNPs that are used to determine θ̂π per site and
θ̂S per site. Their (per site) mutation rate is estimated to be 2 · 10−8. This estimate of µ
was obtained by comparing human and chimpanzee sequences.

Exercise 3.2. Recall Chapter 1. Assume you know that the divergence time of chim-
panzees and humans is 10MY and the mutation rate is 2 · 10−8 per nucleotide per genera-
tion..

1. What is the expected percentage of sites that are different (or what is the divergence)
between human and chimp?

2. Both θ̂π and θ̂S are estimators for 3Nµ and both can be directly computed from the
data. What estimate of N do you get, when using the estimated θ̂ values from the
last exercise?

3. There are about 6 · 109 people on earth. Does the human population mate panmicti-
cally? Is the population constant over time? Can you explain why your estimate of
N is so different from 6 · 109?

2

The number of 6 · 109 people on earth is referred to as the census population size. This
section is about a different notion of population size which is called the effective population
size.

3.1 The concept

Before we start with calculations using effective population sizes we introduce what they
are. We use the following philosophy:

Let • be some property of a model in population genetics. This can be e.g. the
rate of loss of heterozygosity, the speed of the coalescent or the time of fixation
of a neutral allele. If there is a real population with census population size 2NX
and behaving as a model X . The effective size of the population X is the size
of an ideal (panmictic, constant-size etc.) Wright-Fisher population such that
• is the same quantity in X and the Wright-Fisher model. This is denoted the
•-effective population size.

In other words, the effective size of a real population is the size of the ideal population
such that some property of the both coincides. Originally effective population sizes were
introduced by Sewall Wright as the size of an ideal Wright-Fisher population that would
loose heterozygosity at the same rate as the observed non-ideal population. So if an ideal
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population of size 2Ne would loose heterozygosity at rate aX and a non-ideal population X
with population size Nc looses heterozygosity also at rate aX , then the non-ideal population
X is said to have a (haploid) census population size 2Nc and an effective (haploid) popula-
tion size 2Ne. We could call this effective population size the loss of heterozygosity-effective
population size.

By comparing one quantity of interest of a real population with the same quantity of
an ideal population one hopes that the whole real population behaves similar to the ideal
population of the effective size. If it would, everything known for the ideal population can
be assumed to be true for the real population. Therefore effective sizes of populations
are a powerful tool, because they capture the main behaviour of a whole population in
one number. However, sometimes they discard the main dynamics in the population that
account for a deviance from an ideal population. Why the population is not ideal is now
hidden. The effective population size is chosen to fit one parameter, for which the real
population is compared to an ideal one.

We have several choices for • and we will describe some in the next paragraphs. Ex-
amples can be found in Section 3.2.

Loss of heterozygosity

Heterozygosity can be defined as the probability that two alleles, taken at random from a
population are different at a random site (or locus). Now suppose that in a Wright-Fisher
model of size 2N this probability is H0 in generation 0. Now, ignoring new mutations, we
can get H1 from H0, where H1 is heterozygosity in the next generation. For this we use
the law of total probability which will also be used frequently in the whole course.

Maths 3.1. Let E1, E2, . . . be all possible outcomes of a random experiment. Then the
probability that a random variable X takes a value x can be calculated through

P[X = x] = P[X = x|E1]P[E1] + P[X = x|E2]P[E2] + . . .

Here read and interpret the ′|′ as ’given that’, so e.g. P[X = x|E1] is the probability
that the random variable X takes the value x given that the event E1 occurred. The above
equation is called the law of total probabilities.

One example is the following: consider a population where all families have either one
or two children with probability 1

2
. Each birth is a boy or a girl with equal chances. What

is the probability that a family has exactly one boy? Here let E1, and E2 be the events that
a family has one or two children and X is the number of boys in the family. Then

P[X = 1] = P[X = 1|E1]P[E1] + P[X = 1|E2]P[E2]

= 1
2
· 1

2
+ 1

2
· 1

2
= 1

2
.

So how do we apply this law? If we take two random alleles from the population in
generation 1, the probability that they have the same parent in generation 0 is 1

2N
. When

this is the case they have probability 0 to be different at any site because we ignore new



42 CHAPTER 3. EFFECTIVE POPULATION SIZE

mutations. With probability 1− 1
2N

they have different parents in generation 0 and these
parents have (by definition) probability H0 to be different. So for the alleles in generation
1 the probability to be different at any site is

H1 =
1

2N
0 +

(
1− 1

2N

)
H0 =

(
1− 1

2N

)
H0. (3.1)

Using the same argument again and again we obtain

Ht =
(

1− 1

2N

)t
·H0

for the heterozygosity at time t. This means that, in the absence of mutation, heterozygos-
ity is lost at rate 1

2N
every generation. So assume a real population for which heterozygosity

is lost at rate a. Then the loss of heterozygosity-effective size of this population must fulfil

1− 1

2Ne

= a

and so

N loss of heterozygosity
e =

1

2

1

1− a
.

We come to the same quantity for the effective population size if we consider the
quantity probability for coalescence in one generation. Because the probability that two
lines find a common ancestor one generation ago is strongly influenced by inbreeding this
is often referred to as the inbreeding effective population size. If p is the probability of
coalescence in one generation we can rewrite (3.1) to

H1 = (1− p)H0

and thus see that

N inbreeding
e =

1

2p
.

As p = 1− a this is the same as the loss-of-heterozygosity effective population size.

Offspring variance

Assume a Wright-Fisher model with two alleles A and a and size 2N . In Chapter 2 we
saw that if A is in frequency p in the current generation then the number of A alleles in
the next generation, 2Np′, is binomially distributed with 2N and p and therefore

VarWF [p′] =
1

(2N)2
Var[2Np′] =

p(1− p)
2N

.

Assume now we are facing a real population which evolves neutrally and mates panmicti-
cally but for each individual the offspring distribution is not a Binomial (or approximately
Poisson) but has some different variance σ2. (The expectation of the number of offspring
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of one individual has to be 1 because of neutrality.) Let in this model Xi be the number
of offspring of individual i. Then we calculate

E[XiXj] =
2N∑
x=0

P[Xi = x]E[XiXj|Xi = x] =
2N∑
x=0

P[Xi = x]xE[Xj|Xi = x]

and as E[Xj|Xi = x] = 2N−x
2N−1

≈ 2N−x+1
2N

=
1

2N

2N∑
x=0

P[Xi = x]x(2N − x+ 1) =
1

2N
(2N − σ2),

The number of offspring of individuals i and j are not independent. To see this imagine
individual i would already have N offspring. Then j must have zero offspring because the
population size is constant. A measure for the dependence between two random variables
is the covariance.

Maths 3.2. Let X and Y be two (not necessarily independent) random variables. Then
their covariance is defined as

Cov[X, Y ] = E[XY ]− E[X] · E[Y ].

When Cov[X, Y ] > 0 the random variables are positively correlated meaning that a bigger
value of X is more likely to be found when Y is bigger. They are called negatively correlated
if Cov[X, Y ] < 0.

This gives

Cov[Xi, Xj] = E[XiXj]− 1 = − σ2

2N
.

Exercise 3.3. The Covariance between Xi and Xj is negative as we saw by this calculation.
Can you find an intuitive explanation why this should be? 2

Assume currently there is a fraction p of the population carrying allele A. Let us say
these are individuals 1, . . . , x such that x

2N
= p. Then for the random allele frequency p′

of the next generation

VarX [p′] =
1

(2N)2
Var

[ x∑
i=1

Xi

]
=

1

(2N)2
E
[( x∑

i=1

Xi − x
)2]

=
1

(2N)2
E
[( x∑

i=1

(Xi − 1)
)2]

=
1

(2N)2

x∑
i=1

x∑
j=1

E[(Xi − 1)(Xj − 1)] =
1

(2N)2

( x∑
i=1

Var[Xi] +
x∑
i=1

x∑
j=1
j 6=i

Cov[Xi, Xj]
)

=
1

(2N)2
(σ2x− x2 σ

2

2N
) = σ2p(1− p)

2N
.
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Using this the offspring variance-effective size of this population must be

Noffspring variance
e =

N

σ2
.

Pairwise-difference effective population size

In a Wright-Fisher model we calculated in Chapter 2 that for a sample of size 2 the
number of segregating sites S has the property that E[S] = 4Nµ. This is because the
probability that two sequences find a common ancestor one generation ago is 1

2N
, therefore

the probability that they find a common ancestor exactly t generations ago is geometrically
distributed with success probability 1

2N
, and the expected time until they find a common

ancestor is therefore 2N . There are then 2 branches of length 2N and mutation happens
with rate µ. So, as long as double hits can be ignored, the number of differences between
the two individuals is 4Nµ in expectation. Double hits can be ignored as long as 4Nµ is
small.

From this, the pairwise-difference effective population size is

Npairwise difference
e =

E[pairwise difference]

4µ
.

As in a sample of size n, we can estimate the expected number of pairwise differences to
be

Ê[pairwise difference] = θ̂π

(see (2.6)) we obtain the estimator of the pairwise-difference effective population size from
polymorphism data as

N̂pairwise difference
e =

θ̂π
4µ
.

The same approach can be done using θ̂S instead of θ̂π as well.

Exercise 3.4. Suppose you observe a population of haploids that has census population
size 10 (from generation 1 onwards), but that had census population size 1 in generation
0. Draw the individuals as a Wright-Fisher cartoon, as was done in Chapter 2.

1. What is the probability that two lines, picked at time 10, coalesce in generation 9?
What is the probability that the two lines coalesce in generation 1?

2. What is the expected time to coalescence of the two lines? How many differences do
you expect in the two lines if the mutation probability is µ per generation?

3. Calculate the pairwise-difference expected population size.

4. What is the loss-of-heterozygosity effective population size in generation 1, 2 and t?

2

Exercise 3.5. Can you come up with other properties of an ideal Wright-Fisher population
that can be used to define an effective population size. 2
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3.2 Examples

The above calculations work for any model. However, not every effective population size
is useful in every scenario. We will see in this subsection that the different effective sizes
can have different values. This is not surprising because every effective size only compares
one quantity to that of an ideal population. It is not guaranteed that other quantities that
are not directly compared in that way show the same behaviour.

Fluctuation Population Sizes

One assumption of the Wright-Fisher model is the constant population size. However,
many natural populations fluctuate over time or have gone through a population bottleneck
in the past, e.g. if a colony is founded by a small population that only subsequently
increases in size. In these cases, the census size (and the effective size) of a population
changes from generation to generation. In order to estimate the long-term effect of drift,
we want to define a long-term effective size of the population that averages over the single
generation effective sizes.

Consider the evolution of a population with varying size over t generations and imagine
that we have already calculated the effective population size for each individual generation
N0 to Nt−1. The Ni take breeding structure etc. into account. The expected reduction of
heterozygosity over t generations then is

Ht =
(

1− 1

2N0

)
· · ·
(

1− 1

2Nt−1

)
H0.

As this takes t generations into account we can say that heterozygosity is lost at a rate

a =
[(

1− 1

2N0

)
· · ·
(

1− 1

2Nt−1

)]1/t

≈
[

exp
(
− 1

2N0

)
· · · exp

(
− 1

2Nt−1

)]1/t

= exp
(
− 1

2t

( 1

N0

+ . . .+
1

Nt−1

))
≈ 1− 1

2t

( 1

N0

+ . . .+
1

Nt−1

)
per generation. Using the effective size for loss of heterozygosity we have

N loss of heterozygosity
e =

1

2

1

1− a
≈ t

1
N0

+ . . .+ 1
Nt−1

.

So in this case the (loss of heterozygosity)-effective population size is given by the har-
monic mean of the population sizes over time. Other than the usual arithmetic mean, the
harmonic mean is most strongly influenced by single small values. E.g., if the Ni are given
by 100, 4, 100, 100, the arithmetic mean is 76, but we obtain a harmonic mean of just
Ne = 14.

We can summarise our findings by the remark that many populations are genetically
smaller than they appear from their census size, increasing the effects of drift.
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Exercise 3.6. In Exercise 3.2 you estimated Ne for the X-chromosome in humans. The
human population was not of constant size in the past. Assume that within the last 200000
years (i.e. within the last 10000 generations) the human population grew geometrically.
That means that

Nt+1 = gNt.

How large must g be in order to explain your effective population size? 2

Sex chromosomes and organelles

Take two random Y -chromosome alleles from a population. What is the probability that
they have the same ancestor one generation ago? This is the probability that they have
the same father, because Y-chromosomes come only from the father. So this probability
is 1

Nm
where Nm is the number of males in the population, so N loss of heterozygosity

e = Nm.

For mitochondrial genes N loss of heterozygosity
e = Nf where Nf is the number of females in

the population. In birds the W-chromosome is the female determining chromosome. WZ
individuals are female and ZZ individuals are male. So for the W-chromosome Ne =
Nf . For the X-chromosome in mammals and the Z-chromosome in birds it is a bit more
complicated. Take two random X-chromosome alleles, what is the probability that they
are from the same ancestor? This is

1

3
· 1

Nm

+
2

3

1

2Nf

.

Exercise 3.7. Explain the last formula. What is N loss of heterozygosity
e for the X-chromosome

if the sex ratio is 1:1? 2

Unequal sex ratios

Imagine a zoo population of primates with 20 males and 20 females. Due to dominance
hierarchy only one of the males actually breeds. What is the relevant population size that
informs us about loss of heterozygosity in this population? 40? or 21??

Let Nf be the number of breeding females (20 in our case) and Nm the number of
breeding males (1 in the example). Then half of the genes in the offspring generation will
derive from the Nf parent females and half from the Nm parent males. Now draw two genes
at random from two individuals of the offspring generation. The chance that they are both
inherited from males is 1

4
. In this case, the probability that they are copies from the same

paternal gene is 1
2Nm

. Similarly, the probability that two random genes are descendents

from the same maternal gene is 1
4

1
2Nf

. We thus obtain the probability of finding a common

ancestor one generation ago

a =
1

4

1

2Nm

+
1

4

1

2Nf

=
1

8

( 1

Nm

+
1

Nf

)
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Figure 3.1: (A) The ancestry of a population that is kept as polymorphic as possible. (B) The
ancestry of a population where each generation only has one parent

and an effective population size of

Ne =
1

2a
=

4
1
Nm

+ 1
Nf

=
4NfNm

Nf +Nm

.

In our example with 20 breeding females and 1 breeding male we obtain

Ne =
4 · 20 · 1
20 + 1

=
80

21
≈ 3.8.

The loss-of-heterozygosity effective population size is thus much smaller than the census
size of 40 due to the fact that all offspring have the same father. Genetic variation will
rapidly disappear from such a population. If males and females have equal (and Poisson)
distributions of offspring numbers, and the sex ratio is equal, then Nf = Nm = N

2
, and

Ne ≈ N ; the Wright-Fisher model thus applies with the original census population size N
in this respect.

Two toy models

Let us deal with two examples of populations that are unrealistic but helpful to understand
the concept of effective sizes. The first example that is given represents a zoo population.
In order to keep polymorphism as high as possible, care is taken that every parent has
exactly one offspring. The ancestry is given by Figure 3.1(A).

The second example is similar to the example of unequal sex ratios where the population
had 20 males, but only one of them had offspring. However, the next example is even more
extreme. In this case the individuals are haploids, and only one ancestor is the parent of
the whole next generation. A scenario like this is shown in Figure 3.1(B).
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Exercise 3.8. Figures 3.1(A) and (B) clearly do not come from ideal Wright-Fisher pop-
ulations. So Nc 6= Ne and we can try to calculate the effective population sizes for them.
Given the census size in the two cases is Nc what are the

• loss-of-heterozygosity effective size,

• offspring variance effective size,

2

3.3 Effects of population size on polymorphism

Why are effective population sizes important? Well, introducing an effective size is done
because we hope that the real population behaves like an ideal one with the effective size.
If it really does, several conclusions can be drawn. One of them was already inherent
in Chapter 2. Genetic drift namely operates faster in small populations than in large
populations, and it is genetic drift that removes variation from the population. Faster
operating drift leads to lower levels of polymorphism in small populations. Next, we
study the fate of new alleles (mutations) that enter a population. An equilibrium exists
between mutation (which creates variation) and and drift (which removes variation) from a
population. This equilibrium is called mutation-drift balance or equilibrium. In this section,
we will also study the fixation probability of new mutations that enter the population and
the time such an allele needs to reach fixation (the fixation time).

Mutation-drift balance

The neutral theory of molecular evolution tries to explain observed patterns in nucleotide
frequencies across populations with only two main evolutionary forces: mutation and drift.
Mutation introduces new variation, and drift causes them to spread, but also causes them
to be lost. Other forces like recombination are also considered in the neutral theory and
we will encounter its effect on sequence diversity in Chapter 6.

The neutral theory not only allows us to look at the long-term rate of evolution (e.g.
in the relative rates test of Chapter 1), but also allows us to predict the amount of genetic
variation we expect at any given time. We have already derived that genetic drift reduces
the heterozygosity each generation by ∆H = 1

2Ne
H. Clearly, mutation will increase genetic

variation. We can therefore imagine that we reach an equilibrium point where the decrease
in H due to drift is balanced by the increase due to mutation (mutation-drift equilibrium).
In order to derive this equilibrium frequency, we first derive the change in time of H under
mutation alone. In expectation, the heterozygosity in the new generation, before mutation
has happened, is equal to the heterozygosity in the parent generation, E[H ′|H] = H
(because we do not allow drift to have an effect - it is as if we look at an infinite population,
where the probability that two random individuals share a parent goes to zero). We now
assume that every new mutation results in a new allele that has not been present in the
population before, following the so-called infinite alleles model. This assumption is realistic
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if we distinguish alleles of a gene on the DNA sequence level, because then every pair of
genes with unequal alleles before mutation, will also have unequal alleles after mutation -
in other words, mutation cannot reduce heterozygosity And every pair of genes with equal
alleles before mutation will become heterozygote if either of the genes mutates. Then,
heterozygosity would increase every generation following: E[H ′|H] = H + 2µ(1 − H).
Adding the rate at which heterozygosity is lost due to drift and ignoring terms of order µ2

we obtain:

E[H ′|H] = H − 1

2Ne

H + 2µ(1−H), E[∆H|H] = − 1

2Ne

H + 2µ(1−H).

The equilibrium is obtained for E[∆H|H] = 0 and so

2µ(1−H)− H

2Ne

= 0, H
(

2µ+
1

2Ne

)
= 2µ

and so the equilibrium heterozygosity is at

H∗ =
2µ(

2µ+ 1
2Ne

) =
θ

θ + 1
. (3.2)

As expected, the equilibrium heterozygosity increases with increasing mutation rate (be-
cause more mutations enter the population) and with increasing population size (because
of the reduced effect of drift).

There is also another way of deriving the very same formula using the coalescent. What
we are looking for is the probability that two individuals are different at some gene or at
some nucleotide. If you would follow their history back in time, then two things can happen,
either one of the two mutates or they coalesce. If they coalesce first (before a mutation
has happened), it means that the two are identical, if one of the two mutates they are
not identical (we use again the infinite alleles model where every mutation makes a new
unique allele). For the computation we need a mathematical results about exponential
distributions.

Maths 3.3. Let X and Y be exponentially distributed with rates µ and ν then

P[X < Y ] =

∫ ∞
0

P[X = x] ·P[Y ≥ x]dx =

∫ ∞
0

µe−µxe−νxdx =
µ

µ+ ν
e−x(µ+ν)

∣∣∞
0

=
µ

µ+ ν
.

Assume X and Y are waiting times for certain events. Then the probability that X occurs
before Y is determined by the fraction of the rate for X with respect to the total rate for
both events.

Exercise 3.9. Using Maths 3.3 can you rederive (3.2)? 2
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Fixation probability of neutral mutation

The fixation probability of a neutral mutation is 1
2N

: at the time when the new mutation
occurs it has only one copy in the population. Eventually, at some point in time, there
will be only one individual in the current population left that will have offspring in the
future. This individual will then be the common ancestor to the whole population. Under
neutrality, each individual has the same probability to become the common ancestor. The
probability that it is exactly the one individual in which the new mutation occurred is

1
2N

. You can have a look again at the simulation of wf.model() that you saw in chapter
2, and check how often the lower left individual is ancestor to all individuals in the last
generation of the simulation. (Remember that, because of recombination, there is more
than one common ancestor for most populations. However, if we look, for example, at
mitochondrial DNA, then in any one generation there is only a single common ancestor
(and her mother and her mother etc) to all humans.)

Exercise 3.10. This exercise is about the equilibrium level of heterozygosity (or the main-
tenance of heterozygosity in the face of drift. It has always been (and still is) a major
question in evolutionary biology why there is variation. Selection and drift are usually
thought to remove variation, so when looking at data, the obvious question is always: how
is variation maintained. You will be dealing with the theory developed above. For this
exercise you will use the function maint() from the R-package.

If you type maint() , the function maint() is carried out with standard values N = 100,
u = 0.001, stoptime=10, init.A=1, init.C=0, init.G=0, init.T=0 is simulated. You
can e.g. change the population size by using maint(N=1000). If you want to plot the
frequencies of the alleles over time, you can put the result of maint() directly into a plot
command, for example by

>plot(maint(N=1000, stoptime=10000, u=0.00001))

If you just want to look at how the frequency of G changes, you can use the option
plot(maint(...), what="G").

This model simulates a population undergoing drift and continual mutation at a neutral
locus. The locus is really just one nucleotide and it can therefore be in four states: A, C, G
or T. At generation 0, all members of the population have the same homozygous genotype
(i.e., the frequency of the single allele in the population is equal to one). In subsequent
generations, new alleles enter the population through mutation.

1. Set the model parameters for a population of 300 individuals with a mutation rate at
this locus of 10−4. Observe the population for 10000 generations. View the graph of
the frequencies of the different alleles in the population over time. Run this simulation
a few times.

2. What happens to most new mutants that enter the population? How many alleles
in this population attained frequencies above 0.1? Do any new mutant alleles reach
a frequency above 0.9?
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3. Based on this population size and mutation rate, what is the rate at which new
mutants enter the population? (Note the appropriate formula as well as the numerical
answer.) What is the rate at which you would expect new mutants to become fixed?
You can also view the number of new mutations that occurred in the population
(using what="numOfMut"). Does it fit with your expectation? Based on this rate, how
many new mutants would you expect to become fixed during the 10000 generations
for which you observed the population (check using what="fixed")? Explain what
this value means.

4. How does the number of fixed mutations depend on the population size? What does
this mean for divergence between two species with different population sizes?

5. Now view the graph of heterozygosity over time (what="h"). What does this graph
suggest about the level of variation in the population (i.e. is it fairly constant through
time or does it change, is H above zero most of the time)? Give a rough estimate for
the average value of H throughout these 10000 generations.

6. Using (3.2), predict the equilibrium value of H. You can also plot the predicted value
using what=c("h","h.pred").

7. Would you expect the heterozygosity to increase, decrease, or remain the same if you
significantly increased the mutation rate? What would you expect if you increased
the population size? What if you increase mutation rate but decrease population
size?

8. Increase the mutation rate for the model to 5 ·10−4. View the graph of heterozygosity
over time and the graph of allele frequencies. Does this simulation confirm your
expectation (given in the last task)? What does the formula predict H∗ to be in this
situation?

2

Fixation time

You already simulated the fixation time of a neutral allele which was segregating in fre-
quency 0.5 in Exercise 2.5. Let us see how the picture changes for the fixation time of an
allele which starts from small frequency. Fixation times are not easily derived using the
tools that you’ve learned till now, so we will only look at it by doing simulations in R.

Exercise 3.11. Use maint() from the R- package. In this exercise you will look at the
fixation time for a neutral mutation in a population. Set the mutation rate so that you
a have only few (one or two) fixations in the graph. You need to set stoptime to a large
value, maybe 100.000 and N to a low value, maybe 100.

1. Use N = 100 and look at least at 10 fixation events. Record the time it takes between
appearance of the new mutation and its fixation.
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2. Take a different value for N and repeat the exercise. Plot (roughly) the relationship
between N and the mean time to fixation for a neutral mutation.

Hint: First create one instance of the evolution of the neutral locus using the com-
mand res<-maint(...). Afterwards you can look at specific times during the evo-
lution, e.g. by using plot(res, xlim=c(1000,1300)).

3. For humans, how long (in years) would it take for a neutral mutation to fix?

2



Chapter 4

Inbreeding and Structured
populations

The assumptions of a panmictic population are often not met for real populations. For
example, a mouse in Munich will most likely mate with a mouse that is also from Munich
or surroundings, and less likely with a mouse from Rome. In Chapter 3 we already saw
that in such cases one can still introduce a measure, the effective population size, in order
to compare a real population with an ideal one. However, in this section, we will see that
having a number for the effective population size is not always enough to describe the
population. In some cases, we would also like to know more about the structure of the
population and understand why Ne is lower (or higher) than the census population size.
So we have to introduce models to capture the structure of a population. Structure can
be geographical structure, but can also mean other kinds of structure. In this section we
will be dealing with two models that can still be called neutral because the differences in
mating are not due to genotypes. These two are inbreeding and structured populations.

To infer deviances from an ideal (panmictic) population we in fact use deviances from
Hardy-Weinberg equilibrium which we will therefore explain first.

4.1 Hardy-Weinberg equilibrium

In the diploid Wright Fisher model we assumed that mating is random and a new diploid
individual is formed by combining two random haploid gametes (taken from diploid par-
ents). In an ideal, panmictic, population, the two haploids have equal chances to come
from any two members of the population. If at a locus two alleles A1 and A2 are present
and we already know that p is the frequency of allele A1 and q = 1− p is the frequency of
allele A2 then we should find fractions

p2 of genotype A1A1

2pq of genotype A1A2

q2 of genotype A2A2.

53
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of homo- and heterozygotes. If the measured genotype frequencies in a population are not
significantly different from the predicted values, then we say the population is in Hardy-
Weinberg equilibrium. Hardy-Weinberg equilibrium is the null-model that tells us how
allele and genotype frequencies are expected to interact. Historically, Hardy-Weinberg
equilibrium is important, because in the days before the sequencer, it was possible to
distinguish alleles by their phenotype or using gel-electrophoresis, so genotype and allele
frequencies could be estimated - and therefore the Hardy-Weinberg equilibrium or disequi-
librium could be detected. It took many decades before other population genetic quantities,
such as the number of segregating sites could be measured. Hardy-Weinberg equilibrium
also very important because it serves as a first test to see if a data fit with the null model
of an ideal population. Inbreeding, population subdivision, selection, assortative mating
all make a population deviate from Hardy-Weinberg equilibrium. It is important to realize
though that Hardy-Weinberg disequilibrium has a short memory. One generation of ran-
dom making restores Hardy-Weinberg equilibrium. You will see later in the course that,
for example, linkage disequilibrium has a much longer memory and can tell us more about
the history of a population.

Short detour: detecting heterozygotes

How do we distinguish homo- and heterozygotes after a sequencing reaction? To see this
let us look at the output of a sequencing machine in Figure 4.1. Here the sequencer
reads through the genome in four different channels, one for each of the four bases. These
four channels are drawn as four different colours in the figure. Ideally for each site only
one channel is used which makes it quite sure that in the sequenced genome there is the
corresponding base. But occasionally the sequencer is not sure about the base, or, as
drawn at the position of the arrow in the figure, finds two bases at a certain site. As the
sequencer in fact has two homologous parts of the genome to sequence it finds partly a
Tymin and partly a Cytosin. This is interpreted as the fact that on one chromosome there
is a T whereas on the other there is a C meaning the individual is heterozygous at that
specific site.

Note that, although we can identify the heterozygotes and also which bases form the
heterozygote, it is impossible from the above graph to detect which chromosome carries
which basepair. So when the individual is heterozygote for two sites, it is impossible to
say which pairs of bases are on the same chromosome. This is usually referred to as not
knowing phase. Not knowing phase is a big problem e.g. when one wants to estimate
recombination rates. There are methods to find out phase, e.g. cloning but we will not
treat this here.

4.2 Inbreeding

The mating of relatives to produce offspring is referred to as inbreeding. The most extreme
form of inbreeding is self-fertilisation which is possible in many plants but also in snails
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Figure 4.1: The output of a sequencing machine for the DNA of one individual. The machine
recognises the order of the bases and draws four curves for the amounts of Adenine,
Cytosine, Guanine and Tymine it finds. At some places, as e.g. seen in the middle
of the figure, there is a heterozygote meaning that at this site two bases are found by
the machine. That means that there are two bases present in the individual, meaning
that at this site it is heterozygous.

and funghi. For simplicity we will deal mainly with the case of self-fertilisation because the
analysis is simpler there. The model of inbreeding is of a population in which a part of the
population consists of self-fertilising individuals. Therefore let f be the probability that
the two homologous alleles have the same (haploid) parent, i.e. are identical by descent
one generation ago. This number f is called the inbreeding coefficient.

This model can be extended to populations where inbreeding occurs when e.g. brothers
and sisters mate, i.e. when fertilisation is more probable under close relatives. However,
this leads to more complicated mechanisms. Take the example where brother-sister matings
are more probable than under panmixia. Tracing back two lines here we have to calculate
the probability that the two lines both come from one brother-sister mating. When this
is the case there is a chance that the two lines coalesce in one generation, which is the
case when both have the same parent (either the brother or the sister) already in the next
generation. It is also possible that coalescence occurs in two generations when the brother
and the sister that mated had a common ancestor.

Exercise 4.1. Take the example of a population where self-fertilisation is possible. Given
the inbreeding coefficient in a population is f , what is the fraction of individuals that were
produced by self-fertilisation?

The inbreeding effective population size in the case of inbreeding

Consider a Wright-Fisher model with inbreeding. Here it is important to model the popu-
lation as N diploids and not as 2N haploids because one needs to know which chromosomes
are together in one individual.

Exercise 4.2. Draw a Wright-Fisher model, similar to Figure 2.2, with inbreeding.
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We would like to describe a diploid population with population size N and with in-
breeding coefficient f as a haploid population with population size 2Ne. Remember that by
definition of the inbreeding effective population size, the overall probability that two ran-
domly picked haploids coalesce in one generation must equal 1

2Ne
which is the coalescence

probability of two lines in an ideal population of (haploid) size 2Ne. We have

1

2Ne

=
1

2N − 1
f +

2N − 2

2N − 1

1

2N
≈ 1

2N
f +

1

2N
. (4.1)

To understand this equality imagine first that we pick two random haploids, these haploids
can be in one individual (with probability 1

2N−1
) or they can be in different individuals

(with probability 2N−2
2N−1

). In the first case, the probability to coalesce in one generation is

f , in the other case it is 1
2N

.
Rearranging the approximation in (4.1) gives the inbreeding effective population size

under partial self-fertilisation

Ne =
N

1 + f
.

Exercise 4.3. To see the effect of inbreeding on genetic drift use the function inbreeding()

of the R-package. This function simulates the time evolution of an allele A in a (partially)
selfing population with inbreeding coefficient f . The population starts with two alleles (a
and A) at equal frequencies. Drift makes one of the two go to fixation.

1. Consider several runs of the time evolution for some inbreeding coefficients. What do
you assume to see for larger inbreeding coefficients? How can you observe a decreased
effective population size?

Before we come to the next part of the exercise we introduce the mathematical notion
of a distribution function.

Maths 4.1. For any random variable X the distribution function of X is the function

FX(x) := P[X ≤ x].

This function increases and eventually reaches 1 Any point xmed with FX(xmed) = 0.5 is
called a median of (the distribution of) X.

2. Let’s now look at the quantitative effect of inbreeding. Display for 200 runs the aver-
age number of fixed alleles over time. To do this use e.g. plot(inbreeding(batch=200),
what="fixed"). This curve exactly tells you now in which proportion of the runs,
one of the two alleles has fixed at a certain time. This means that you are actually
displaying the distribution function of the fixation time under inbreeding.
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The median for the fixation time is the generation number for which 50% of all
possible runs have already fixed. Compare the median for several coefficients. How
well does your finding fit to the predicted change in the inbreeding effective size by
a factor of 1

1+f
? To see this plot (1 + f) · xmed for different values of f .

3. What is the largest effect inbreeding can have on the effective population size? Com-
pare this to unequal sex-ratios.

Inbreeding and Hardy-Weinberg equilibrium

If a population with inbreeding can be adequately described by a population without
inbreeding with just a lower Ne, then how can we detect inbreeding from data? Let us
consider a population with f = 1. When a new mutation arises it is either lost in one
generation or, in the next generation it will be found only in homozygotes. From this it
is clear that almost only homozygotes can be found in such a population. That means
that the population is not in Hardy-Weinberg equilibrium. Also for inbreeding coefficients
smaller than 1 inbreeding populations have an excess of homozygotes and a deficiency of
heterozygotes. How big this shift from Hardy-Weinberg equilibrium is can be measured
and we will try to find a value for f (inbreeding coefficient) that makes the data fit to our
model with inbreeding.

Assume a population with two alleles that have frequencies p and q = 1− p. After one
generation of inbreeding with inbreeding coefficient f we pick one individual at random
from the population. The observed genotype is denoted by G. The two possibilities for
the ancestry of the two alleles of this individual are that the alleles are identical by descent
(ibd) or not identical by descent (ibd). Using the law of total probabilities (introduced in
Maths 3.1) we calculate,

P[G = A1A1] = P[G = A1A1|ibd] ·P[ibd] + P[G = A1A1|ibd] ·P[ibd]

= pf + p2(1− f) = p2 + fpq.

Analogously we can calculate

P[G = A2A2] = q2 + fpq.

and so
P[G = A1A2] = 1−P[G = A1A1]−P[G = A2A2]

= 1− p2 − q2 − 2fpq = 2pq − 2fpq = 2pq(1− f).
(4.2)

With these probabilities we can now calculate a lot of things. For example what is the
allele frequency of A1 after inbreeding? If we denote the frequency of the A1 allele in the
next generation by p′ then

E[p′] = P[G = A1A1] + 1
2
P[A1A2] = p2 + fpq + pq(1− f) = p(p+ fq + q − fq) = p
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meaning that the allele frequency for A1 does not change under inbreeding and so the
model is neutral. Furthermore we obtain a new interpretation of the inbreeding coefficient
f by rearranging (4.2). We obtain

f =
2pq −P[G = A1A2]

2pq
. (4.3)

Thus f measures the relative deviance of genotypes from Hardy-Weinberg equilibrium as
2pq is the Hardy-Weinberg proportion of heterozygotes.

Of course, if we look at data and observe an excess of homozygotes, we may conclude
that there is inbreeding in the population. But inbreeding is just one explanation; there
are more mechanisms that can cause such an excess. One of them is geographical structure
(also called population subdivision), which will be our next topic.

4.3 Structured Populations

An experimentalist who collects individuals in the field often takes samples from different
places. She can suspect that the fact that she collected them from different places affects
properties of the collected DNA patterns. So she must not forget about the locations of
her samples. Let us look again at the sample from human populations which we already
examined in example in Chapter 3.

Here a total of 41 sequences were taken from human X-chromosomes, 10 from Africa,
10 from Europe, 11 from Asia and 10 from America. To analyse structure in the model we
have to define these groups. For the dataset this is already done. If the groups would not
have been defined yet, you can do it under Data->Define Sequence Sets. First, to get
an overview over the amount of difference between the populations, we can do a pairwise
analysis of divergence between populations. This shows how different they are.

Exercise 4.4. When comparing the African sample with the non-African one (this is also
defined as a sequence set), DNASP outputs:

Between populations:

Number of fixed differences: 0

Mutations polymorphic in population 1, but monomorphic in population 2: 8

Mutations polymorphic in population 2, but monomorphic in population 1: 6

Shared Mutations: 2

1. From these numbers would you say that the two populations are very diverged? Or
would you say that the whole sample is close to panmixia?

2. There is a certain amount of difference between Africa and the rest of the world.
Between Africa and which subgroup (Europeans, Americans, Asians) is the most
divergence as can be seen from these numbers?
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We will use Analysis->Gene Flow and Genetic Differentiation to see more about
the level of differentiation between the populations. One task when working with DNASP

is to interpret the numbers on the screen. When executing Gene Flow and Genetic

Differentiation we have to define the sequence sets that determine the subpopulations.
Here we exclude NonAfrican because this is only the combination of Europeans, Americans
and Asian sequences.

To make use of the geographic information of a sample, we need models that capture
geographic space. These models are usually referred to as structured models. But also
without these models we can make summary statistics that describe important facts about
the population.

We saw that the inbreeding coefficient f can be seen as a measure of the deviance of
observed numbers of heterozygotes relative to the expected number of heterozygotes under
the assumption of Hardy-Weinberg equilibrium. In this respect structured populations are
similar to inbreeding populations. For structured models this deviance is measured by
Wright’s fixation indices.

Fixation indices

For structured populations there is more than one ’inbreeding coefficient’ that can be read
from data. These values are called fixation indices or F -statistics. It was Sewall Wright
who introduced them. For structured populations there are three of them FIS, FIT and
FST . All have the form

F• =
Hexp −Hobs

Hexp

(4.4)

where H stands for the heterozygosity. Note that (4.4) has the same shape as (4.3), only
(4.4) is more general. FIS, FIT and FST differ with respect to the range for which to expect
a certain amount of heterogozity; For FIS it is the deficiency of heterozygote individuals
given the allele frequencies in the subpopulation. For FIT it is again the deficiency of
heterozygote individuals but now given the allele frequencies in the total population. FST
measures the difference between expected and observed heterozygosity of subpopulations
compared to the total population.

To calculate the fixation indices we need mean values. Since we will need them often
we should define them exactly:

Maths 4.2. If x = (x1, . . . , xn) is a list of numbers the mean of the list is given by

x = 1
n

n∑
i=1

xi.
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With this procedure, if e.g. another list y = (y1, . . . , yn) is given distinguish between

x y =
( 1

n

n∑
i=1

xi

)( 1

n

n∑
i=1

yi

)
, (4.5)

indicating the product of means and

xy =
1

n

n∑
i=1

xiyi (4.6)

which is the mean of the product.

Assume data were collected from d locations and allele frequencies are p1, q1, . . . , pd, qd
for two alleles A1 and A2 and p12,j is the observed frequency of heterozygotes in deme j.
Then we define

p = 1
d

d∑
j=1

pj, pq = 1
d

d∑
j=1

pjqj, p12 = 1
d

d∑
j=1

p12,j,

HS = 2pq, HT = 2p q, HI = p12

and

FIS =
HS −HI

HS

, FIT =
HT −HI

HT

, FST =
HT −HS

HT

. (4.7)

So all these fixation indices have the form (4.4). It is important to note that FIS and
FIT deal with actually observed heterozygote individuals whereas FST only measures allele
frequencies from the n subpopulations. Therefore we can calculate FST from the human
X chromosome dataset.

Exercise 4.5. In Gene Flow and Genetic Differentiation we saw for our data that
several numbers were computed. Among them, also FST . In the help of DNASP it is
mentioned that FST is calculated according to Hudson et al. (1992). In Figure 4.2 you
see what is actually calculated there. Assume you are given sequence data of length one
nucleotide, from two demes, 5 individuals per deme. The data is A, A, T, T, T for deme 1 and
A, A, A, A, T for deme 2.

• What is the mean number of pairwise differences within subpopulation 1 and withing
subpopulation 2?

• What is the mean number of pairwise differences for all sequences?

• What is 1− Hw

Hb
?

• Compute FST as given above.
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Figure 4.2: The definition of FST taken from (Hudson et al., 1992).

• Do the definitions of FST and the one given by Hudson match? If not, where is the
difference?

An important question for anyone using F -statistics is: in which range are the values of
the fixation indices? The answer to this question gives a hint which F -values are expected
in structured populations. By definition all of the F -coefficients are smaller than 1. The
value of F depends on whether there an excess or a deficiency in heterozygotes in the
subpopulations compared to the total population. If the subpopulations are in Hardy-
Weinberg equilibrium, there is always an excess of homozygotes in the subpopulations.
This is not only a theoretical prediction, but can be computed as we will see next.

We can write

pq = 1
d

d∑
i=1

pi(1− pi) = 1
d

d∑
i=1

pi − 1
d

d∑
i=1

p2
i = p− p2

Observe here the difference between p2 and p2, i.e.

p2 =
(1

d

d∑
i=1

pi

)2

, p2 =
1

d

d∑
i=1

p2
i .

Actually FST can be seen to be related to the variation in the pi’s. This is measured by
the sample variance.

Maths 4.3. If x = (x1, . . . , xn) is a list of numbers the sample variance of the list is given
by

s̃2(x) = 1
n

n∑
i=1

(xi − x)2 = 1
n

n∑
i=1

(x2
i − 2xxi + x2) = 1

n

n∑
i=1

x2
i − 2x 1

n

n∑
i=1

xi + x2 = x2
i − x2

i .

Note that by the first equality s̃2(x) ≥ 0 and it equals 0 if and only if all values in the list
are the same.
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Therefore

HT −HS = 2(p q − pq) = 2(p− p2 − p+ p2) = 2(p2 − p2) = 2s̃2(p) > 0

and thus

FST =
s̃2(p)

pq
and so FST > 0

where s̃2(p) is the sample variance of the pi’s. So from these calculations there cannot be
a deficiency of homozygotes in the subpopulations compared with the total population.

There is a connection between the three fixation indices FIS, FST and FIT . So two of
them always determine the third one. The connection is

(1− FIS)(1− FST ) =
HS

HI

HT

HS

=
HT

HI

= 1− FIT . (4.8)

To see in which range FIS can be found consider the most extreme case that there are only
heterozygotes in all subpopulations. Then pi = 1

2
for all demes i and thus

FIS =
2pq − p12

pq
=

1
2
− 1
1
2

= −1

which is the lower bound for FIS. With (4.8) it is clear that also FIT is between −1 and
+1.

Since FST measures the excess of homozygotes a small FST -value means that our data
comes from a population that is unstructured or only a little bit structured. What a small
value for FST is depends also on the species. For Drosophila an FST of 0.2 would be
considered big whereas for plants it would not.

The Wahlund effect

As we have seen in the last paragraph, even when all subpopulations are in Hardy-Weinberg
equilibrium, there will be an excess of homozygotes in the total population - unless allele
frequencies are exactly the same in all subpopulations. This is called the Wahlund effect af-
ter its inventor Sten Wahlund. The consequence is that data from a subdivided population
look like data from an inbreeding population.

Exercise 4.6. Suppose you have sampled individuals from a plant population and you look
at one gene that has two alleles A1 and A2. You find 28 individuals that have genotype
A1A1, 32 that have A1A2 and 40 that have A2A2.

1. What is the frequency of A1 in the whole population?

2. What would the Hardy-Weinberg equilibrium be?

3. Does this plant population deviate from Hardy-Weinberg?
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4. What would be your conclusion about this population?

Now imagine there are two subpopulations (or demes) of this plant. They grow not far
apart, but for some reason pollinators just don’t fly from one population to the other.
Now suppose you would take samples from both populations and would find the following
number of individuals:

A1A1 A1A2 A2A2

Deme 1 26 13 1
Deme 2 2 19 39

1. Answer the above questions in this case.

2. What would the value of FST be in the above example?

FST already gives some idea about the amount of structure. There are also statistical
tests to decide whether the population shows structure. Look at the table of Exercise 4.6.
This is usually referred to as a contingency table. In this instance it has two rows and three
columns. Extending it we could also write

A1A1 A1A2 A2A2

∑
Deme 1 26 13 1 40

Deme 2 2 19 39 60∑
28 32 40 100

where the row and column sums are added. Assuming that the genotypes are equally
distributed among the demes we would e.g. expect that in deme 1 genotype A1A1 has a
total number of 100 · 40

100
· 28

100
= 11.2. However we observe 26 in this group. A χ2-test can

be used to decide if the deviance of the table from a random distribution of the individuals
to the groups is significant. The test statistic has the form

χ2 =
∑ (Observed− Expected)2

Expected

where the sum is over all cells in the table. This test statistic is approximately χ2 dis-
tributed with (R − 1)(C − 1) degrees of freedom, R denoting the number of rows and C
the number of columns of the contingency table.
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Exercise 4.7. In the analysis DNASP performs a χ2 test to infer structure. However it uses
not genotypes but haplotypes. Do the Gene Flow and Genetic Differentiation using
the samples of Africa and the rest of the world.

1. How many haplotypes do you find in the total population, how many in Africa and
how many outside? How many are shared between Africa and Non-Africa?

2. For the χ2 test DNASP outputs

Chi-square (table), Chi2: 31,239 P-value of Chi2: 0,0031 **; (df = 13)

ns, not significant; *, 0.01<P<0.05; **, 0.001<P<0.01; ***, P<0.001

Why is df (which is the number of degrees of freedom) 13? With this result, can you
conclude if there is genetic differentiation between Africa and the rest of the world?

4.4 Models for gene flow

Although we can now detect a deviance from panmixia by the use of the F -statistics and
a χ2-test we have no model yet to explain these deviances. The oldest and most widely
used models of population structure are the mainland-island and the island model. In
these models, it is assumed that the subpopulations have existed for a long time and
migration rates are constant over time, so that an equilibrium between migration and
drift is established. If these assumptions are met, we can use the F -statistics to estimate
migration rate.

Several schemes of gene flow are possible mainly depending on the sizes of the subpop-
ulations and the connections between the subpopulations; but only in very special models
we can calculate quantities of interest, such as FST . The two examples we cover are the
mainland-island and the island model. The first is a model for a population consisting of
one big subpopulation and one (or more) smaller ones; in the second model the population
consists of many small subpopulations, on islands, that exchange genes. These two models
can be found schematically in Figure 4.3. In each case, the subpopulations are assumed to
be randomly mating. You may be surprised that these models deal with islands, but the
idea of subpopulations on islands is not as strange as you might think. Island in this case
can be seen as islands of suitable habitat in a sea of unsuitable habitat. Think of deer in
Europe that live in islands of forest surrounded by seas of agricultural land and cities.

The mainland-island model

Consider a population living on a continent and occasionally sending migrants to surround-
ing islands. For simplicity assume that there is only one island; an allele A has frequency
pm on the continent (where the m stands for mainland) and p on the island. The conti-
nent is so big that drift is negligible and migrants that come from the islands back to the
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Figure 4.3: The mainland-island and the island model for gene flow. In the mainland island
model only migration from the mainland to the island plays a role, whereas for the
island model gene flow occurs between any two demes.

continent can be ignored. A fixed fraction m of the island population is replaced every
generation by individuals from the mainland. Ignoring random sampling, i.e. ignoring
genetic drift the allele frequency follows the deterministic equation

pt+1 = (1−m)pt +mpm = pt +m(pm − pt)

which has
p = pm

as a stable equilibrium.

The island model

Quite different is the island model. Here a population is distributed on several islands.
On each island a fixed fraction of the population is replaced by individuals from the so-
called gene-pool. The gene-pool consists of all individuals on all islands. Here the allelic
frequencies can again be computed. As an allele taken from one subpopulation has the
chance 1 − m to be a descendant from the same subpopulation and m to come from
somewhere else we have, again ignoring genetic drift,

pt+1 = (1−m)pt +mp = pt +m(p− pt).

As we assume no drift p stays constant and is therefore also the equilibrium frequency of
A.

Theoretical predictions on the excess of homozygotes

But what can we say about the excess of homozygotes in these two models? Let us assume
that we are dealing not only with 2 but with an arbitrary number of alleles and every
mutation will create a new allele. These are the assumptions of the infinite alleles model.
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Furthermore, for the mainland-island model assume that the mainland, which is much
bigger than the island, is not affected by drift. Backwards in time that means that just
picking two chromosomes at random from the same population they will not coalesce for a
very long time. During this very long time it is very likely that a mutation has happened
and so any two randomly picked chromosomes from the mainland will be different. As the
mainland is much bigger than the island, this means that any two picked chromosomes
from the population are different.

For the island model, assume that there are a lot of islands, so that picking two indi-
viduals at random means that they will come from different islands. Furthermore, because
the number of islands is very high the population as a whole is also not affected by drift.
Hence similar to the mainland-island model, two chromosomes from different demes are
very likely to be different.

This means that under these assumptions we have

HT ≈ 1.

And what about HS? Well, let us consider here two chromosomes from one deme and
think about their most recent common ancestor. Looking backward in time two events
are possible, migration away from the deme or coalescence of the two lines. Migration
away from the deme occurs when forward in time one lineage was in fact a migrant from
somewhere else. As m is the migration probability the first time Tm until one of the two
lineages migrates away from the deme is geometrically distributed with parameter 2m.
Additionally the time when the two times coalesce Tc is geometrically distributed with
parameter 1

2N
. As the geometric distribution is close to the exponential distribution with

the success probabilities as rates (compare Maths 2.5) we can compute the probability for
a heterozygote as the probability that one lineage migrates before both coalesce. To do
this we use Maths 3.3.

This means that approximately

HS ≈ P[Tm < Tc] =
2m

2m+ 1/(2N)
=

4Nm

4Nm+ 1
.

So we can conclude that

FST =
HT −HS

HT

≈ 1−HS =
1

4Nm+ 1
. (4.9)

Let us define
M = Nm,

which is the total number of (diploid) migrants per deme in each generation. The haploid
number is then 2M . As we have seen we can compute FST from data. Using (4.9) we can
therefore - under the island model of migration - estimate M from data.

Exercise 4.8. Can you give an estimate of M from (4.9)? Calculate this estimator for
the human X chromosome data set. Discuss whether the assumptions of this estimator
are met for the human population.
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Exercise 4.9. Use the function popSubdivision() from the R-package, Check its the
default values and write

>res<-popSubdivision(m=0)

Plot the frequencies in all demes using plot(res).
You are now looking at an island model population with 10 demes. The demes are really

populations in themselves because migration is 0, but for now we will keep calling them
demes. Setting the migration rate to 0 means that the demes are completely independent
of each other. The initial frequency of the A allele is 0.5 . And we run the model for 500
generations. (If the mainland parameter is FALSE we have an island model if it is TRUE

we have a mainland-island model.) Because the individual populations are small drift has
a strong effect on them. The plot of allele frequencies shows you the frequency of the A
allele in each of the demes. You should see 10 lines on your plot.

1. After 100 generations how many of the populations are fixed for either of the two
alleles? Run the model a couple of times to see if the answer is always the same.

2. Now you can allow for migration. You can do this by choosing m = 0.01, which gives
every individual the probability of 0.01 to be replaced by a migrant. The probability
that a migrant has the A allele is simply the overall frequency of A. What is the
mean number of migrants per island per generation?

3. Now, after 100 generations how many of the populations are fixed for either of the
two alleles? Run the model a couple of times to see if the answer is always the same.
Can you explain your observation? What does migration to variation?

4. Now try increasing m in small steps. What happens to your demes? How high do
you need to make m to lose all (detectable) population structure? Note that setting
m to 1 makes all individuals migrants and this is the same as saying that all demes
are really one population.

Non-equilibrium approaches to population structure

In the last years, programs such as BAPS and Structure became important in the analysis of
population structure. These programs are not based on F -statistics and they are not based
on migration drift equilibrium assumptions. They do assume Hardy-Weinberg equilibrium
in the subpopulations. Another program, BayesAss does not make the Hardy-Weinberg
assumption. We will discuss the approaches briefly in the lecture.
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Chapter 5

Genealogical trees and demographic
models

Look again at data from the human X chromosome. If you assume that they are consistent
with the neutral theory you can now, for example, estimate the population size. But how
can you know that the data is consistent with the neutral theory? You might not be able
to answer this question at the moment, and well for the following reason: we haven’t yet
talked about what patterns to expect in sequence diversity, so we have no predictions and
so nothing we can test. For example, we have looked at θ and how we can use it to estimate
the mutation rate or the population size. But the neutral theory doesn’t tell us what value
θ should have, and so a single θ value doesn’t tell us whether our data is consistent with
an ideal neutrally evolving population. Now we will look at two more complex aspects of
a set of DNA sequences and which can be used to test whether the data are consistent
with neutrality. The two aspects that we will look at are the site frequency spectrum (in
Subsection 5.2) and the mismatch distribution (in Subsection 5.4). The reason that we
look at exactly these two aspects of the data is that they are independent of the mutation
rate and population size. We will also, in Subsection 5.3, consider the effect of changing
population size on the site frequency spectrum. However, before we go into all this we
will need to have a closer look at genealogical trees. Two things to keep in mind at all
times are that (i) processes in the population are stochastic (for example where and when
mutations happen and which individual has how many offspring) and (ii) we are usually
looking at only a small random sample taken from the whole population.

5.1 Genealogical trees

The coalescent, which was introduced in Chapter 2, is the ideal candidate for an approach
to derive predictions under the neutral theory. That is because it deals with samples
from populations and not with complete populations, which reduces the complexity of
our studies. Furthermore, the coalescent can deal with the most important aspects of
the history of a sample: the mutations that happened and the genealogical relationships

69
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of the sampled sequences. These genealogical relationships are usually represented in a
tree. Times when mutations happen are determined by the mutation rate and times when
coalescences happen are determined by the (effective) population size. The coalescent can
also deal with recombination and migration and with changing population sizes.

The history of a sample has many different aspects. The most obvious are genealogical
relationships, which are usually represented in a tree. The second is the lengths of the
branches between the nodes of the tree. These lengths can be given in numbers of mutations
(because that is the information we usually have) but the lengths can also be given in
generations (which allows us to predict the number of mutations on the branch). Then,
another aspect of a tree - which we don’t observe but infer - is the intermediate sequences,
including the sequence of the MRCA, and the exact timing of the mutations.

Exercise 5.1. The following sequences are from 5 individuals, the alignment is already
done.

1 AATCCTTTGGAATTCCCT

2 GACCCTTTAGAATCCCAT

3 GACCCTTTAGGATTCCAT

4 GACCTTCGAGAGTCCTAT

5 GACCTCCGAGAATCCTAT

Assume that in the history of your sample every mutation hits a different site. Can you
draw a bifurcating tree, with mutations on the branches, that would produce the observed
data?

Reconstructing trees, or inferring phylogenies, is a big scientific field of its own, we will
not spend too much time on it in this course. Look at Felsenstein (2004) if you want to
learn more about this topic. At least, from the last exercise you can see that the topology
of the genealogical tree can, at least in certain cases, be reconstructed from data.

As you might have noticed, mutations (SNPs in this case) can be divided in two classes,
those relevant and those irrelevant for the tree topology. Mutations that split the sample
in 1 and 4 (or 1 and n − 1 if the sample has size n) tell us nothing about the topology
whereas every other mutation divides the sample in two subsamples that are bigger than
1 and that are separated by the mutation. In DNASP you can view these sites by clicking
on Parsimony Informative Sites on the view data sheet.

Exercise 5.2. In the tree that you have made in the last exercise where are the parsimony
informative sites and where are the parsimony uninformative sites?

The MRCA sequence and the outgroup

Every sample of homologous sequences must have a common ancestor. Now that we know
the genealogical tree, we can ask whether we can also infer the sequence of the MRCA of



5.1. GENEALOGICAL TREES 71

the sample? If you try this for all sites in the above example, you will see that you can
infer the sequence for some but not all sites. E.g. the first mutation divides the sample in
those carrying an A and those carrying G, but we don’t know whether the MRCA carried
an A or a G

There is a way to find out the whole sequence of the MRCA, with relative certainty by
using an outgroup sequence. This means that you add to your tree a lineage where you
can be sure - for which reason ever - that the MRCA of the extra lineage with the whole
sample lies further in the past than the MRCA of the sample. This lineage can either
be a sequence of an individual sampled from a different population or from a different
species. The species you use for the outgroup should not be too far away (i.e., the MRCA
of the outgroup and the rest of the sample should not be too far in the past) because
then the assumption that every new mutation hits a different site in the sequence is likely
to be violated. The outgroup for human data is usually a chimpanzee sequence, and for
Drosophila data it would be another Drosophila species.

Exercise 5.3. Assume that the homologous sequence of a closely related species for the
data of Exercise 5.1 is

Outgroup AACCCTTTAGAATTCCAT

Draw the tree topology for the sample including the outgroup. Can you now say what
the sequence of the MRCA of the sample is?

By using the outgroup sequence we found the point in the sample tree which is furthest
in the past. This specific point is often called the root of the tree.

Exercise 5.4. Genealogical trees are important to compare observations in data with
theoretical predictions.

1. Look at the human X chromosome data using DNASP. Forget all models you learned
in the past sections. Can you find some numbers, also called statistics, (such as e.g.
the number of segregating sites) that describe your data?

Now think again of genealogical trees. Take e.g. the number of segregating sites and
assume you know µ and N . Then we can drop mutations that lead to segregating sites
under the infinite sites assumption on the coalescent. This means that the probability of
a given number of segregating sites can be computed by the coalescent process.

2. Use the data from Exercises 5.1 and 5.3. Here you already know something about
the genealogical trees behind the data. Take the statistics you found in 1. Can you
compute them not by looking at the data but by looking at the genealogical tree and
the mutations that hit the tree?

3. Take your statistics you found in 1. Here comes a conjecture:
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The distribution of every statistic that can be computed from polymor-
phism data alone can at least principally be calculated from the distribu-
tion of genealogical trees using a mutation process.

In other words: the probability that the statistic takes a certain value is a function
of the mechanism of creating the genealogical tree including the mutations.

Can you agree with this conjecture? Or can you falsify it using your statistics from
1?

Number of possible rooted and unrooted trees

It is hard to be sure that you have found the best tree for the above dataset. Now, we have
not really defined what a good tree is and there are different ways to do that. But more
problematic is usually the number of possible trees. Even if we only consider the topology
of a tree (not the branch lengths or the mutations etc.), tree space is multidimensional and
very large. Let us calculate the number of possible trees for a given sample size:

Given a tree with n leaves (which corresponds to n sampled sequences) there must be
n− 1 coalescence events until the MRCA of the sample. This creates n− 1 vertices in the
tree. This makes a total of 2n − 1 vertices (leaves or internal vertices) in the coalescent
tree. But how many branches are in this tree. Every vertex has a branch directly leading
to the next coalescence event. Only the MRCA, which is also a vertex in the tree does not
have a branch. This makes 2n−2 branches in a rooted tree with n leaves. As two branches
lead to the root, i.e. the MRCA the number of branches in an unrooted tree with n leaves
is 2n− 3.

Let Bn be the number of topologies for unrooted trees with n leaves. Assume you have
a tree with n− 1 leaves, which represent the first n− 1 sampled sequences. In how many
ways can the nth sequence be added to this tree. Any branch in the tree can have the split
leading to the nth leave. As there are 2n− 3 branches in a tree with n leaves there must
be 2n− 5 branches in a tree with n− 1 leaves. This gives

Bn = (2n− 5)Bn−1.

This is a recursion as the nth number is given with respect to the n− 1st. However in this
case it is easy also to give an explicit formula for Bn as

Bn = (2n− 5)Bn−1 = (2n− 5)(2n− 7)Bn−2 = . . . .

This must be
Bn = 1 · 3 · · · (2n− 7) · (2n− 5).

Of these trees only one represents the true history of your sample.

Exercise 5.5. Let us see what this number of trees really is and how big it can be.

1. How many tree topologies for unrooted trees are there for a tree with 4 leaves? Can
you draw all of them?
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2. A usual sample size is 12. How many tree topologies do you obtain in this case? A
large sample would include 20 sequences. How many tree topologies do you count
then?

Hint: You can use R to compute this number.

Simple estimation of branch lengths

Given that we have a tree topology of our sample, with all the mutations and the sequence
of the MRCA, the next thing we can look at is the branch lengths. Only then we can claim
to have reconstructed the genealogical tree.

We can use the number of mutations between two nodes to estimate the branch lengths.
Obviously when we find many mutations on a branch it would be natural to assume that
this branch is a long branch. Let us first do some reverse engineering and assume we
know branch lengths in numbers of generations in an ideal Wright-Fisher model. Assume a
branch has length L. As in each generation the per locus mutation rate is µ, the probability
that we find k mutations on this branch is

P[k mutations on branch of length L] =

(
L

k

)
µk(1− µ)L−k.

As typically L is large compared with k and µ is small we can approximate this probability
by using the Poisson-distribution as we already did in Maths 2.1. The parameter of the
Poisson distribution is µL and so

P[k mutations on branch of length L] ≈ e−µL
(µL)k

k!
.

As the expectation of a Poisson-distribution equals its parameter we have

E[number of mutations on branch of length L] = µL =
θL

4N
.

So the easiest estimator of the branch length is L = S
µ

where S is the number of SNPs.
Recall that branches are supposed to be short near the tips of the tree and long towards
the root. In this simple estimate of the branch length we have completely ignored this
knowledge. But with a little more sophisticated calculations we could make a much better
estimate of the branch lengths.

5.2 The frequency spectrum

When you reconstructed the tree in Exercise 5.1 you already observed that mutations can
be ordered by the split they produce in the sample. E.g. the first mutation in the exercise
split the sample in 1/4. By using the outgroup from exercise 5.3 we know that state A is
ancestral (because it is also carried by the outgroup) and G is derived. We say that this
mutation has size 4, because there are 4 sequences with the derived state.
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Exercise 5.6. Use the sequences from exercise 5.1 and the genotype of the MRCA which
you found out in Exercise 5.3. How many mutations are there of size 1, 2, 3 and 4? How
many mutations of size 5 do you expect?

Draw a histogram of the sizes of mutations, i.e. on the X-axis you put the size of the
mutation and the Y -axis is the count of the number of mutations with this size in the data.

The last figure you produced is called the site frequency spectrum and is often used to
infer historical events in the population from data. Our next task is to find a theoretical
prediction what the frequency spectrum looks like under a neutral model of a constant size
population. Therefore denote by Si the number of mutations in your sample that are of
size i.

For this we have to have a closer look at the coalescent trees. We say the tree is in state
k when it has currently k lines (so it always starts in state n and ends in state 1). A branch
at state k is of size i if exactly i of the sequences are descendants of this branch. So in
order to get the expected number of mutations of this size we have to sum over all possible
states (2 to n) and within each state we sum over all branches (1 to k) the probability that
a branch has size i times the expected number of mutations on that branch. Then,

E[Si] =
n∑
k=2

k∑
l=1

P[lth branch at state k is of size i]·

E[number of mutations on lth branch at state k].

The second term in this sum is easy because we are only calculating expectations. We have
here

E[number of mutations on lth branch at state k]

= µ · E[length of the lth branch at state k] =
2µN(
k
2

) =
θ

k(k − 1)

as the state k has a length 2N

(k
2)

in expectation.

The first term is more tricky. There is a way to generate the tree topology from the
root of the tree to its leaves which turns out to be a useful idea. This is done using the
Polyas urn scheme.

Maths 5.1. A Polya urn scheme is the following: Take an urn conatining balls, namely k
balls with k different colors. Take out one ball, put it back to the urn and add one ball of
the same color. Do this again. And again...

Assume a tree of state k. The k balls in the urn represent the k branches at that state.
Generating the k + 1 state of the tree from the kth means picking a branch at random and
splitting it. In the urn this amounts to adding a ball of the same color. Same colors here
mean that the ancestor at the ’beginning of the urn scheme’, i.e. at state k is the same.
From the k + 1st to the k + 2nd the same game begins. Every branch is equally likely to
split and this is exactly also done by Polyas urn.
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So when starting the Polya urn with k balls and stopping it when it has n balls the
number of balls of each color represents the number of individuals in the sample who are
descendants from a specific line.

Now consider the `th branch at state k. For this consider the Polya urn that starts
with k colours and consider the `th one. We must put n − k balls into the urn to obtain
the sample of size n. Exactly when we put i − 1 balls of colour ` into the urn the `th
branch will have i offspring among the sample of size n. Let us consider an example with
k = 5, n = 10 and i = 4. We write e.g.

(` 22 ` `)

Here ` stands for a ball of colour ` and 2 stands for a ball of any other colour. In this
example we start putting colour `, then a different colour (i.e. one of the k − 1 other
colours), again a different one, and then two balls of colour `. As three balls of colour `
enter the urn this leads to i = 4. The probability for a configuration like this is

P[` 22 ` `] =
1

k
· k − 1

k + 1
· k

k + 2
· 2

k + 3
· 3

k + 4

=
(i− 1)!(k − 1) · · · (n− i− 1)

k · · · (n− 1)

as exactly i− 1 balls of colour ` and n− k balls of different colours enter the urn. (Check
this for the above example.) This is true for any configuration that contains i− 1 balls of
colour ` and n− k − i+ 1 others. There are

(
n−k
i−1

)
of these configurations as we only have

to distribute the i− 1 balls of colour ` to the n− k slots of the configuration. Altogether
this gives

P[lth line at state k is of size i] =

(
n− k
i− 1

)
(i− 1)!(k − 1) · · · (n− i− 1)

k · · · (n− 1)

=
k − 1

i

(
n− k
i− 1

)
i!

(n− i) · · · (n− 1)
=

(
n−k
i−1

)(
n−1
i

) k − 1

i
.

Exercise 5.7. A coalescent with 5 individuals can have several topologies. Look at the
split the root of the tree generates in the sample. What is the probability that 1,2,3 or 4
leaves lie on one side of the root with the rest on the other side?

A little more maths with binomial coefficients:

Maths 5.2. There are many formulas for these binomial coefficients. The most simple
one is (

n

k − 1

)
+

(
n

k

)
=

n!

(k − 1)!(n− k + 1)!
+

n!

k!(n− k)!
=
n!k + n!(n− k + 1)

k!(n− k + 1)!

=
(n+ 1)!

k!(n+ 1− k)!
=

(
n+ 1

k

)
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This gives

E[Si] =
n∑
k=2

k∑
l=1

(
n−k
i−1

)(
n−1
i

) k − 1

i

θ

k(k − 1)

=
θ

i

1(
n−1
i

) n∑
k=2

(
n− k
i

)
=
θ

i

1(
n−1
i

) n∑
k=2

((n− (k − 1)

i

)
−
(
n− k
i

))
=
θ

i

1(
n−1
i

)( n−1∑
k=1

(
n− k
i

)
−

n∑
k=2

(
n− k
i

))
=
θ

i
.

So under the neutral model with constant population size the prediction is that among all
mutations those of size i have a relative frequency of 1

i
.

Exercise 5.8. Let us check how good our theoretical prediction for the site frequency
spectrum is reflected in simulations. To do this we use seqEvoNeutral() from the R-
package.

1. Use the option wait=-1, sfs=TRUE to see the joint evolution of the sequences and
the site frequency spectrum. From the starting configuration, you can obtain the site
frequency spectrum by hand using only the sequences on the left side.

2. Given stoptime=100, in how many generations do you see singletons? In how many
generations are there variants with frequency N −1? Can you explain your findings?

Exercise 5.9. What do you think, using the frequency spectrum, do the sequences from
exercise 5.1 coincide with the neutral model of constant size?

Exercise 5.10. In Gavrilin et al. (2000) two sets of Polioviruses were studied. The data
is stored in the file PolioVP1.nex. Let us exclude some lines from the sample. One line
from Azerbeijan 169AZB59 was already sampled in 1959 and the last 5 lines which were
sampled in the USA. (Use Data->Include/Exclude Sequences.) The rest forms one set of
Polioviruses which are highly polymorphic. Using Analysis->Population Size Changes

you can plot the frequency spectrum.

1. The X-axis only reaches until 11 although 23 sequences were used. Why is this the
case?

2. Do you agree with the opinion of the authors that in this group mutations are pre-
dominantly neutral?

3. Which assumptions on the model are possibly not met for the data? Could they
confine your finding in the last question?
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The frequency spectrum gives a nice graphical summary of the data that can easily be
compared with a theoretical prediction. However this expectation should not be taken too
literally. Data collected in population genetics are almost always correlated in a statistical
sense. So sampling more sequences does not mean that the observed frequency spectrum
should be closer to the expectation.

Let us make an example to illustrate this: Assume an unfair dice. Unfair means that
the 6 numbers do not occur with equal probabilities. However you do not know how unfair
it is. You can only assign probabilities on how big the deviance from fairness is. It might
well be that still on average you through a 3.5 as for a fair dice. An extreme case would be
that with probability 1

6
the dice shows 1 with 100% certainty, and also with 1

6
it shows 2

with certainty and so on. Throwing this dice imposes correlations on the random outcomes
of throwing the dice. Take the above example: once you know the first result of rolling
the dice you can already predict all others because you know that with certainty only one
number is adopted. After a long run of trials with the dice you will not have reached to
3.5 on average which is because these rolls were correlated.

But what does this mean for sequence data? Well, suppose that you have found un-
expectedly many singletons in your sample. And you now suddenly have extra sequences
from the neighbouring locus. Analysing the new data you find again many singletons.
At first glance you may think that this is additional proof that something strange is go-
ing on in the population. However this need not be the case. The results from the two
neighbouring loci are very much correlated. The second locus gives you no independent
evidence of anything, you have only added more of the same information. In order to know
more of the population you need information from unrelated loci, for example from another
chromosome.

Nevertheless, the frequency spectrum is a useful tool. It is especially useful because
its predictions do not depend on the mutation rate or the population size. The frequency
spectrum - as already indicated by DNASP - is often used to infer changes in population
size. In order to understand how it can be used for that we nee to look at some models for
changing population sizes.

5.3 Demographic models

One main property of the standard Wright-Fisher model is a constant population size.
Here, we will relax this assumption, i.e., we consider models with varying population sizes.
Several demographic events lead to patterns in SNP data that can be detected. As you
learned in Exercise 5.4 this is mainly because they highly affect what genealogical trees
look like.

But before we will speak about the coalescent backward in time let us talk about the
forward in time evolution. Assume the population size at time t is Nt and assume we
know these numbers for any point in time. Time is measured in generations. To adapt
the Wright-Fisher model to the case of a fluctuating size we condition it on the path of
population sizes Nt. So how is the generation at time t+ 1 built from the tth generation?
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One feature of the Wright-Fisher for constant population size was that we can model the
ancestry of the next generation by simply saying that every individual in the generation
t + 1 chooses its ancestor at time t purely random; furthermore all individuals in the
population choose their parents independently. This can still be done for a non-constant
population size.

Exercise 5.11. Assume a population of size 100 that expands to a size of 1000 in one
generation. How many offspring does an individual have on average? Is there also a chance
that one of the 100 individuals does not produce any offspring? What is the distribution
of offspring numbers in this population?

Looking backward in time that means that two individuals at time t + 1 choose the
same ancestor, i.e. coalesce by time t with probability 1/Nt. We used this kind of argument
already in the computation of effective population sizes in Chapter 3. This already tells
us a lot, e.g. in case the population size grew in the past then coalescence of the two
lines happens faster as in each time step backward in time they have a higher chance of
coalescence. In case there was a population size decline coalescence happens slower than
expected.

Population expansion

The simplest model of a population size change is that of an exponentially growing (or
declining) population. Assume a population of size N0 colonises a new habitat at time
t0 where it finds an abundance of resources. Then the population can expand. How fast
does it grow? That depends on many circumstances which we are not interested in from
a modelling point of view. The simplest view is that on average an individual will leave a
certain number of offspring (more than one for expansion and less than one for a decline).
So the change in population size is proportional to the number of individuals currently
living in the population. This leads to an exponential growth of the population. The
population site at time t is given by

N(t) =

{
N0, t ≤ t0,

N0e
λ(t−t0), t > t0

(5.1)

for some parameter λ which quantifies the speed of growth.
Graphically this looks like Figure 5.1(A). Furthermore in this figure you see an instance

of a coalescent tree in this expanding population. Coalescence gets more probable the
smaller the population size as the number of possible ancestors to choose from is smaller.
So the coalescent tree in an expanding population looks squeezed compared to a neutral
one in (B). Lineages stay uncoalesced a long time but when a first coalescence occurs it is
very probable that the population size is already quite low. But when the population size
is low the chance that more coalescences are to come soon is very high.

Comparing the coalescent trees in Figure 5.1 which come from an expanding population
and a population of constant size we use population sizes such that the total tree lengths
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Figure 5.1: (A) The coalescent for an expanding population and (B) for a population of constant
size.

are approximately equal. For neutral mutations which afterwards can be seen in data that
means that the number of neutral mutations on the trees are approximately equal.

Exercise 5.12. Consider the trees in Figure 5.1. Assume that on both trees 10 mutations
have happened. As every generation and every line is as likely as any other to be hit by a
mutation, these mutations are distributed randomly on the tree. Try to mimic a random
generator and distribute the 10 mutations on both trees. (Observe that a uniform distri-
bution does NOT mean that the mutations are all in approximately the same distances.
A uniform distribution only means that any point on the tree is equally likely to be hit.)

Next, let us consider the effect of mutations falling on the tree on statistics like θ̂π and
θ̂W . Assume the MRCA of the sample has the sequence AGTCTCGTGTTT. Use the mutations
you created to obtain the sequences that you would sample today, i.e. the sequences at
the tips of the coalescent trees. For both the expanding and the constant population size
calculate θ̂S and θ̂π. Additionally draw the frequency spectrum in both cases. Did you
really need the sequence of the MRCA to calculate θ̂π and θ̂S?

Exercise 5.13. Let us look at Figure 5.1. Assume the MRCA of the sample has the
sequence AGTCTCGTGTTT. Use the mutations you created in the last exercise to obtain the
sequences that you would sample today, i.e. the sequences at the tips of the coalescent trees.
For both the expanding and the constant population size calculate θ̂S and θ̂π. Additionally
draw the frequency spectrum in both cases. Did you really need the sequence of the MRCA
to calculate θ̂π and θ̂S?

It is generally true that in the example with the expanding populations very few muta-
tions will fall on the tree where coalescence has already happened for any two lines. That
means that most mutations will only affect one individual in the sample. This is clearly
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seen in the frequency spectrum because here high frequency variants are missing. But it
is also possible to make theoretical predictions how θ̂π and θ̂S differ for constant size and
expanding populations. When both trees have the same length the number of mutations
that fall on the tree will be similar and so θ̂S is similar because it only uses the number
of segregating sites. But θ̂π will be different. As most mutations in the expanding pop-
ulation only affect one individual most mutations will only contribute to n − 1 pairwise
comparisons. This is much less than in the constant population size case. Here we have
already calculated that among all mutations those affecting i individuals have an expected
frequency proportional to 1

i
. So let Z be the number of individuals a randomly chosen

mutation will affect. Then

P[Z = i] =
1

an−1

1

i
, am =

m∑
j=1

1

j
.

Given a mutation affects i individuals it contributes to i(n − i) different pairwise com-
parisons. So the expected number one mutation contributes to the pairwise comparisons
is

n−1∑
i=1

i(n− i)P[Z = i] =
1

an−1

n−1∑
i=1

n− i =
1

an−1

n−1∑
i=1

i =
(n− 1)n

2an−1

.

As n > 2an−1 this is bigger than n−1 which was the same number in the case of expanding
populations. That means that compared with a neutral population of constant size θ̂S can
be the same but θ̂π is much smaller in the case of an expanding population.

Exercise 5.14. The human population certainly did not have a constant size in the past.
Can you somehow see this in the data from TNFSF5? In addition to that consider the
European subpopulation and try to see population expansion here. In your analysis you
use certain statistics that you (or DNASP) calculated from data. Which information do
these statistics use from the data? E.g. the positions of the SNPs do not play a role for
the value of most statistics, so the information stored in them is not used.

Are you confident with your findings for the European population?

Bottlenecks

Sometimes for a population the environment changes. This can lead to big challenges
the population has to solve. Think e.g. of a new parasite entering the habitat of the
population or a change in the climate. But before the population can recover from this
change it reduces in size. After the change the population slowly grows again in size. This
scenario is known as a bottleneck.

Again individuals that are sampled today can be traced back in history and again the
probability that two lines at time t find a common ancestor at time t− 1 is 1/Nt−1. This
is seen in two examples in Figure 5.2. As for the expanding populations as there are few
individuals at the time of the bottleneck shortly after the bottleneck there is a big chance
of coalescence. In Figure 5.2(A) all lines coalesce. In that case the pattern observed in



5.3. DEMOGRAPHIC MODELS 81

(A) (B)

tim
e

population size

tim
e

population size

Figure 5.2: Two cases in a bottleneck mode. (A) Only one ancestral line survives the bottleneck.
(B) Two or more lines survive which leads to different patterns in observed data.

data looks exactly the same as for a population expansion. As there is no line leading
before the time of the bottleneck there is no way of distinguishing the bottleneck model
from the model of a population expansion. The effect is then also the same, reduction in
high frequency variants and θ̂π < θ̂S.

However there is also the chance that two or more lines have not coalesced at the time
of the bottleneck as seen in Figure 5.2(B). Since from then on the population is again
backward in time larger coalescence will occur as in the case of a constant population size
with that size. The effect in this case is exactly the opposite of the first case. As the lines
surviving the bottleneck need some time to coalesce but already are ancestors of several
individuals in the sample there will be an increase in high frequency variants.

But which of these two examples is more likely for a bottleneck? Well, that depends
on several things. Above all, it depends on two things. First, on the length of the time
when there is a bigger chance of coalescence. Forward in time this is related to the rate at
which the population recovers from the bottleneck. Second on the reduction of population
size at time t0 because the stronger the reduction the higher the chance of coalescence.

These two parameters, the rate how fast the population size recovers and the reduction
in population size are usually combined to the severity of the bottleneck which is the product
of these two parameters.

On the one hand one cannot be sure what happens under a bottleneck. On the other
hand one can try to infer from data how strong the bottleneck really was. We do not go
into details here.
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5.4 The mismatch distribution

For two sequences we can calculate the probability that they are separated by k mutations.
That is the case if k mutations on the two lines occur before they coalesce. The mutation
rate is µ and coalescence rate is 1/2N . Since there are two branches the probability that
exactly one mutation before coalescence occurs is

2µ

2µ+ 1/2N
· 1/2N

2µ+ 1/2N
=

θ

θ + 1

1

θ + 1
.

Here we have used a restart argument. Once the mutation event happened we can start
the coalescent new and again the coalescence rate is 1/2N and the mutation rate for both
lines is 2µ. This is true because of the Markov property of the coalescent process. So the
probability that there are k mutations separating the two lines is( θ

θ + 1

)k 1

θ + 1
. (5.2)

In a sample of size n there are
(
n
2

)
pairs we compare. These pairs of DNA sequences

were already used to calculate θ̂π in (2.6). We can also ask for the distribution among
pairwise differences, so e.g. how many pairs in our sample are separated by 5 mutations.
This distribution is called the mismatch distribution. On the x-axis there is the number of
mutations by which a pair is separated and on the y-axis the frequency of pairs with this
number of differences.

What is the theoretical prediction for this mismatch distribution? In (5.2) we gave the
probability that a pair is separated by k mutations. Approximately this formula should
give the frequency of pairs with this number of differences.

Exercise 5.15. Draw the mismatch distribution for both samples from Exercise 5.12.
Assume θ = 0.4. Draw the theoretical prediction from (5.2) into the figure of the last

exercise.

So why is the theoretical prediction not met in this example? As simulations show
it is seldomly met also for neutral populations of constant size. The statement that the
frequency of something in a sample is close to the probability of something is often used
but it relies on the independence of the sample. The pairs which build the sample in this
case are highly dependent. This is for two reasons. First, as one individual appears in
n − 1 pairs these n − 1 pairs are dependent. Second, all sampled individuals are part of
one coalescent tree which makes them dependent.

Exercise 5.16. Assume a coalescent tree with three individuals. When the first two
individuals are separated by 3 and the second and the third individual by 5 mutations
there are only a few possibilities how the mutations fall on the coalescent tree. What is
the minimal and maximal number of mutations by which the first individual is separated
from the third?



5.4. THE MISMATCH DISTRIBUTION 83

This dependence of the sampled sequences is - from a statistical point of view - a major
challenge in population genetics. It is also the reason why very many statistical standard
techniques can rarely be used in population genetics.

However the mismatch distribution is still useful. Let us consider the expanding pop-
ulation example from Figure 5.1. There we saw that most coalescence events occur in the
past when the population began to grow. That means that most pairs in the sample will
coalesce around this time in the past. Given this time τ in generations the number of mu-
tations that separate one pair is Poisson distributed with parameter 2τµ. Especially that
means that we can expect most pairs to be separated by approximately 2τµ mutations.
For this reason in expanding populations we expect a peak in the mismatch distribution
at around 2τ mutational units. Therefore this is a simple way to give a guess about the
time of a population expansion.

Exercise 5.17. You already saw some datasets. Think of which populations should have
signs of population expansions. Look at the data and try to see your conjectures in the
data.
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Chapter 6

Recombination and linkage
disequilibrium

In the beginning of the 20th century recombination was studied by the geneticist Morgan
and his students. They were able to determine recombination rates between certain genes
by doing crossing experiments and measuring genotype frequencies. Using these results
they were able to infer genetic maps.

In this chapter, we will first describe the molecular basis of recombination. Then, we
introduce recombination in the Wright-Fisher model. We assume the recombination rate
is already known (maybe from crossing experiments) and ask which theoretical predictions
come from models with recombination, and which consequences do these predictions have
for data taken from a sample of a population. One consequence, linkage disequilibrium, is
discussed in the last part of the chapter.

6.1 Molecular basis of recombination

In diploid organisms recombination happens during meiosis. Recombination mixes parental
and maternal material before it is given to the next generation. Each gamete that is
produced by an individual therefore contains material from the maternal and the paternal
side. To see what this means, let us look at your two chromosomes number 1, one of
which came from your father and one from your mother. The one that you got from your
father is in fact a mosaic of pieces from his mother and his father, your two paternal
grandparents. In humans these mosaics are such that a chromosome is made of a couple
of chunks, more than one, but probably less than ten. Chromosomes that don’t recombine
are not mosaics. The Y -chromosome doesn’t recombine at all, you get it completely from
your father and your paternal grandfather. Mitochondrial DNA also doesn’t normally
recombine, (although there is evidence for some recombination, see Eyre-Walker et al.
(1999)), you normally get the whole mitochondria from your maternal grandmother. The
X-chromosome only recombines when it is in a female.

Exercise 6.1. Who, of your 4 grandparents contributed to your two X chromosomes (if

85
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Figure 6.1: Recombination (Crossing Over) of chromosomes.

you are female) or single X chromosome (if you are male)?

Figure 6.1 shows how parts of chromosomes are exchanged. The picture shows what will
become 4 gametes. Here you see the effect of crossing over, which is the most well-known
recombination mechanism. Parts of homologous chromosomes are exchanged. Crossing
over only happens in diploid individuals. However, exchange of genetic material can also
happen in haploid individuals. In this case two different individuals exchange pieces of
their genome. In a diploid, recombination only makes a difference if the individual is not
completely homozygous. Gene conversion, which is another mechanism of recombination,
will not be treated here. We will therefore use the term recombination as a synonym for
crossing over.

Mendels second law (independent assortment) states that genes are inherited indepen-
dently of each other. This is in fact only true for genes that lie on different chromosomes or
that are far away from each other on the same chromosome. It means that the probability
of inheriting an allele from your grandmother at one chromosome doesn’t tell you anything
about the probability that you also inherit other alleles from your grandmother located on
different chromosomes. On the other hand, if genes are on the same chromosome they are
said to be physically linked, if genes are very close to each other recombination between
them is very rare and they will be inherited together. So when considering two loci, the
two extreme cases are: completely unlinked genes leading to independent inheritance and
completely linked genes that are always inherited together.

Let us first look at an example of independent inheritance. That is a case where Mendels
second law is correct. We are looking at two genes that are on different chromosomes.
Mendel mated a plant that was homozygous for round R and yellow Y seeds with a
plant that was homozygous for wrinkled r and green y seeds. R and Y are dominant
alleles (indicated by capital letters here) which means that the phenotype of the plant is
determined by the presence or absence of this allele no matter what the second allele is.
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All offspring are Rr Y y (which is called a dihybrid) and they all have round and yellow
seeds. In controlled crosses the parental generation is referred to as the P generation, the
offspring of the P generation is called the F1 generation, the generation after that the F2

generation etc. To simplify the analysis, we (virtually) mate the dihybrids Rr Y y from the
F1 generation with a homozygous recessive strain rr yy. Such a mating is called a test cross
because it exposes the genotype of all the gametes of the strain being evaluated. Because
of the independence of inheritance, the probability of finding a Rr yy individual will be the
same as the probability of finding a Rr Y y individual.

Exercise 6.2. Calculate the probabilities for the test-cross offspring for each possible
genotype and calculate the probabilities for the phenotypes.

Linked genes in a test-cross

Now we will treat the case intermediate between the two extremes, i.e. partially linked
genes. Imagine that the two genes would have been on the same chromosome and close to
each other. Remember that the individuals that Mendel started with (the P -generation)
were double homozygotes, so that if they had a Y they certainly also had an R. This Y
and R would stay together if they were close to each other on the same chromosome.

We start with two different strains of corn (maize). One that is homozygous for two
traits, yellow coloured kernels CC which are filled with endosperm causing the kernels to be
smooth ShSh and a second that is homozygous for colourless kernels cc that are wrinkled
because their endosperm is shrunken shsh.

When the pollen of the first strain is dusted on the silks of the second (or vice versa), the
kernels produced (in the F1 generation) are all yellow and smooth. So the alleles for yellow
colour C and smoothness Sh are dominant over those for colourlessness c and shrunken
endosperm sh. Again we do a test-cross (mate the F1 with recessive double homozygotes)
because it exposes the genotype of all the gametes of the strain being evaluated. In this
example the genes are so close that only 2.8% of the offspring is cc Shsh or Cc shsh. All
the others are cc shsh or CcShsh. Instead of 25% we find 48.6% of the genotype cc shsh.

Note that recombination rate can be given per nucleotide or as the probability that a
recombination event happens between two loci on a chromosome. Generally, in population
genetics, it will be given as the per nucleotide per generation recombination rate.

Exercise 6.3. 1. In the last example the probability of recombination was 2.8% per
generation. If this probability would be close to 0, what would be our conclusion
about the location of these genes?

2. Given that the per nucleotide per generation recombination rate is 10−8 how far away
from each other do you think the genes for C or c and Sh or sh are?
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6.2 Modelling recombination

We will look at the Wright-Fisher model again. In this model we imagined that offspring
chooses a single parent at random. When we include the possibility of recombination, it
is maybe more natural to think about single chromosomes having parental chromosomes.
So you can think of two loci on your chromosome 1, we call them locus A and B. We only
look at one copy of your chromosome 1, the one you got from your mother. Now, if we
trace back the history of the loci A and B, the step back to your mother is obvious,but
then in the next step, they could have come from her mother or from her father. We first
decide for locus A where it came from - let’s say it came from your grandfather. Now
with a certain probability, the allele at locus B came from your grandfather too (if there
was no recombination) and with a certain probability from your grandmother (if there was
recombination).

Forward in time let the probability that a recombination event occurs be ρ. Then
backward in time the probability of choosing the same parent is

P[two loci have the same parent] ≈ 1− ρ.

The approximation here is that no more than one recombination event occurs between the
two loci which has a probability of order ρ2 and may be neglected. If a (one) recombination
event happened between the two loci, the second locus will have a different parent. As
long as ρ is small this is the probability of choosing a different parent. In other words,
with probability 1−ρ the second locus is on the same chunk of DNA and it will be derived
from the same grandparent (grandmother or grandfather).

Taking reality not too literally we can say that the two ancestors are chosen randomly
in the whole population. This is not true for many reasons, one being that when the
two chunks of DNA choose two different parents necessarily they come from individuals of
opposite sexes. But one generation before that they come from a male and a female with
probabilities proportional to the males and female frequency in the population. Figure 6.2
shows a cartoon of the Wright-Fisher model with recombination.

Recombination and the coalescent

The coalescent was used as a stochastic process that gives the ancestry of a sample of
sequences. However, just like in the Wright-Fisher model, if we include recombination,
there is a chance that two loci on a chromosome do not have the same ancestry. How can
this be built into the coalescent?

Take one lineage. Tracing it back recombination events can happen. Recombination
occurs with probability ρ each generation, therefore the waiting time until the first recom-
bination event is geometrical with success parameter ρ. This is almost the same as an
exponential with rate ρ (see Maths 2.5). If we look at more than one lineage, both recom-
bination and coalescence can happen. As we can see from the Wright-Fisher model two
lines find a common ancestor with probability 1/2N per generation. And recombination
happens with probability ρ in every lineage in every generation. Even though there are
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Figure 6.2: The Wright-Fisher model with recombination (see text). At certain points a recom-
bination event happens (dashed lines). This leads to a different ancestry of the A/a
and the B/b locus. The B/b-locus is inherited via the dashed lines whereas the A/a
locus goes along with the solid lines.
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recombination point

Figure 6.3: The coalescent with recombination starting with a sample of size 2. One recombina-
tion event splits the chromosome in two parts. The first shares its left part with the
sample, the second one the right part.

now more events possible, we still assume that not more than one event happens at any
given time. We now have as an approximate process the following:

• Given n lines coalescence of two of them occurs with rate
(n

2)
2N

. After coalescence n−1
lines are present in the coalescent process.

• A recombination event occurs in each line with rate ρ. Given that a line in the
coalescent tree shares both loci with the sample these loci split leading to a split of
one line into two lines one carrying locus A and the other carrying locus B.

This process is illustrated in a very simple case in Figure 6.3.

Many coalescent trees for a stretch of DNA

As one moves along the genome, one will have a series of sites that all have the same
coalescent tree, with no recombination anywhere in that tree. But eventually one hits a
site where the genealogy changed. This will cause a particular kind of rearrangement in
the genealogy. That tree will then hold for a while as one moves along the genome and
then there will be another breakage and re-attachment. After some distance the tree has
changed to be totally different.

But starting at some site how far will we have to go until the next recombination
event? You might think that this is far apart but it is not. In humans one expects about
one recombination event every 108 bases every generation. So r = 10−8 (we refer to the
recombination rate between two adjacent nucleotides with r and between more distant loci
with ρ) in the coalescent with recombination. Given two sites that are d base pairs apart,
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the recombination rate is ρ = rd. So, if we consider two lines coalesce with rate 1/2N
and recombine with rd we are interested when to expect a recombination between the two
sites. Let us say we want to calculate the distance we need in order to have a 50% chance
to have a recombination event between the site. Then we have to solve

P[recombination before coalescence] =
2rd

2rd+ 1/2N
= 1− 1

4Nrd+ 1
≥ 0.5

for d. Again we used the competing exponentials from Maths 3.3. This gives

4Nrd ≥ 1, d ≥ 1

4Nr
.

For humans we have Ne ≈ 104 and r ≈ 10−8. This gives

d ≥ 1

4Ner
≈ 2500.

If the human population size would be 105 this number changes to only 250 bases. In
Drosophila, where the effective population size is larger the distance is much shorter (about
10 to 100 times shorter).

We must think of the coalescent trees in a genome as each holding for only a small region
in the genome, and that there may be a million different coalescent trees that characterise
the ancestry of our genome. Virtually every locus has its own most recent common ancestor
(MRCA), at widely differing times and places. As put in Felsenstein (2004): ”We not only
have as our ancestors mitochondrial Eve and Y-chromosome Adam (who did not know
each other) but also hemoglobin Sam and cytochrome Frieda, and a great many others as
well.”

The number of lineages in a coalescent tree with recombination

Let us make one more example for the coalescent with recombination. For a tree of a sample
of 5, going back in time two things can happen: a coalescent event or a recombination
event. Recombination occurs at rate rd and when there are currently n lines, coalescence

occurs at rate
(n

2)
2N

. So when the process starts this rate is 10
2N

. Suppose first a coalescence
event happens (the number of lineages goes to 4) and then a recombination event happens
(the lineage splits and there are then again 5 branches) and then only coalescence events
happen. In Figure 6.4 you find a picture. Because recombination events increase the
number of lineages it can take a long time before all lineages find a common ancestor.
However, each time that the number of lineages grows, the coalescence rate increases,
whereas the recombination rate stays the same. Therefore in finite time the sample will
find a common ancestor.

Exercise 6.4. Look at Figure 6.4. Let us assume in the recombination event the left part
of the chromosome takes the left branch and the right part of the chromosome takes the
right branch. Draw the genealogy of the left branch and the right branch in two separate
trees.
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Figure 6.4: The coalescent with recombination for a sample of 5 individuals. One recombination
event leads to different ancestries at two loci on the chromosome.

The importance of recombination

In humans and Drosophila mutation and recombination tend to happen on the same scale,
that means if you expect to find mutations on a tree you can also expect to find recom-
binations. This is just a coincidence because µ and r in humans are both on the order of
10−8.

Recombination is very important for population genetics research. Without recombina-
tion all loci on a chromosome would share one tree and they would basically constitute one
data-point. We would never be able to get more data points than there are chromosomes.
Fortunately, recombination makes loci that are relatively far away from each other on the
same chromosome independent, thereby dramatically increasing the amount of information
that we can extract from sequence data.

Exercise 6.5. Sequencing costs time and money. Suppose you have data for 10 individuals
for one locus and the data look like there was a population bottleneck in the past. However,
the reviewers of your manuscript don’t believe it yet and ask for more data. Now, you could
either

• sequence a larger sample at the same locus,

• sequence several loci in the same sample.

What would you suggest and why?



6.3. RECOMBINATION AND DATA 93

6.3 Recombination and data

The four-gamete-rule

Recombination affects the genealogical tree of the sequenced sample. So it must also affect
the SNP data we obtain by sequencing. The four-gamete rule is a handy tool to see quickly
whether recombination must have happened in the history of a sample. The main idea
is that recombination is responsible if two parts of a sequence have different trees. Look
again at Figure 6.4 and recall Exercise 6.4. In the tree of the left part of the chromosome,
there could be mutations that affect sequence 1, 2 and 3 at the same time. Imagine that
there is a nucleotide where a mutation took place from a C to a G affecting individuals 1, 2
and 3. 1, 2 and 3 will now carry the G there and the others (4 and 5) a C. We could write
this in a table as DNASP does:

1 G

2 G

3 G

4 C

5 C

Other mutations on the tree could affect 1 and 2, or 1, 2, 3 and 4 or a mutation can
affect just one of the individuals. If it had affected 1 and 2, it would show in the table as
follows:

1 G A

2 G A

3 G T

4 C T

5 C T

Exercise 6.6. Now draw an unrooted tree of the 5 individuals and indicate where the
mutations must have happened.

Given the tree that you have drawn, it is impossible that a mutation affects 3 and 4, but
not 5, because there is no branch on the tree that is shared by 3 and 4 and not 5. However,
if recombination changes the tree, than suddenly other combinations of individuals share
branches and mutations can affect them. In Figure 6.4, the right tree allows for 3 and 4
to share a mutation that is not shared with 5. In the table this would look like this. And
from the information in the table, you can see that recombination must have taken place.
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1 G A C

2 G A C

3 G T A

4 C T A

5 C T C

To immediately see that recombination must have taken place you don’t need to draw
trees, you can use the four-gamete-rule:

If you can find four different gametes (which is the same as genotype or hap-
lotype) in a sample, by considering just two (diallelic) polymorphic sites, a
recombination event must have taken place between the two sites.

In the example, if you look at the first and third mutation, you find that 1 and 2 have
genotype GC, 3 has GA, 4 has CA and 5 has CC, which are four different genotypes. You
can now immediately conclude that recombination must have taken place between the two
sites.

Exercise 6.7. Can you tell from the last table to decide whether recombination has taken
place to the left or to the right of the second mutation?

Exercise 6.8. The aim of this exercise is to find out the number of recombination events
in the stretch of DNA that is sequenced in the TNFSF5 study. The sequences are about
5000 nucleotides long.

1. How many recombination events do you expect to find? To calculate this compute
the average tree length (or find it in a different Chapter of this manuscript) and the
average number of recombination events given this length.

2. Open the file TNFSF5.nex in DNASP. First of all you only need the different hap-
lotypes in the sample because the four-gamete-rule works with haplotypes. Use
Generate->Haplotype Data File to produce a file only consisting of the different
haplotypes. Do you see if recombination has taken place in the past?

3. You can also ask DNASP to look for recombination (use Analysis->Recombination).
How many pairs of segregating sites do you find where the four-gamete-rule detects
recombination? What is the minimum number of recombination events in the history
of the sample?

Linkage Disequilibrium and recombination

We argued that linkage between loci can be broken up by recombination. The amount to
which loci are linked can be measured using linkage disequilibrium. Let us again consider
a model with two loci both of which have two alleles. All combinations of alleles are found
in Figure 6.5. The probability that a recombinant gamete is produced at meiosis was
denoted by ρ. A different measure is the genetic map distance of two loci which is always
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Figure 6.5: In the model with two loci and two alleles per locus four different gametes are
possible.

greater that ρ because it is the average number of recombinational events rather than the
probability of producing a recombinant offspring.

Figure 6.5 shows that there are four gametes in the population, A1B1, A1B2, A2B1, and
A2B2 with frequencies p11, p12, p21 and p22 respectively. The frequency of the A1 allele as
a function of the gamete frequencies is p1· = p11 + p12. Similarly the allele frequency of B1

is p·1 = p11 + p21. Recombination changes the frequencies of the 4 gametes. For example,
the frequency of the A1B1 gamete after a round of random mating, p′11 (where the ′ stands
for the next generation) is

p′11 = (1− ρ)p11 + ρp1·p·1. (6.1)

This expression is best understood as a statement about the probability of choosing an
A1B1 gamete from the population. We use the law of total probabilities again. A randomly
chosen gamete will have had one of two possible histories: either it will be a recombinant
gamete (this occurs with probability ρ) or it won’t (with probability 1− ρ). If it is not a
recombinant, then the probability that it is an A1B1 gamete is p1. Thus, the probability
that the chosen gamete is an unrecombined A1B1 gamete is (1 − ρ)p1 which is the first
term on the right side of (6.1). If the gamete is a recombinant, then the probability that
it is a A1B1 gamete is the probability that the A locus is A1, which is just the frequency
of A1 which we denote by p1·, multiplied by the probability that the B locus is B1, p·1.
The probability of being a recombinant gamete and being A1B1 is ρp1·p·1. When it is a
recombinant the two loci are chosen independently and so we have to multiply frequencies
of A1 and B1 which are p1· and p·1.
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Exercise 6.9. Derive the three equations for the frequencies of the A1B2, A2B1, A2B2

gametes after a round of random mating.

The change in the frequency of the A1B1 gamete in a single generation of random
mating is, from (6.1)

∆ρp11 = −ρ(p11 − p1·p·1) (6.2)

where ∆ρ measures the change in linkage disequilibrium due to recombination. Linkage
means that the loci do not behave independently. We can define a linkage disequilibrium
parameter D as

D = p11 − p1·p·1, (6.3)

which is the difference between the frequency of the A1B1 gamete, p11, and the expected
frequency if alleles associated randomly on chromosomes, p1·p·1. We can now write

∆ρp11 = −ρD.

The equilibrium gamete frequency is obtained by solving

∆ρp11 = 0 and so p∗11 = p1·p·1.

So we have concluded formally what we already knew intuitively: recombination reduces
linkage disequilibrium.

The frequency of the A1B1 gamete may be written

p11 = p1·p·1 +D,

which emphasises that the departure of the gamete frequency from its equilibrium value is
determined by D. We can rearrange the terms of the above definition of D to obtain

D = p11 − p1·p·1 = p11 − (p11 + p12)(p11 + p21)

= p11 − p11(p11 + p12 + p21)− p12p21 = p11 − p11(1− p22)− p12p21

= p11p22 − p12p21.

(6.4)

Calculating the same things for the other associations between A1, A2 and B1, B2 we obtain
the following:

Gamete: A1B1 A1B2 A2B1 A2B2

Frequency: p11 p12 p21 p22

Frequency: p1·p·1 +D p1·p·2 −D p2·p·1 −D p2·p·2 +D
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Exercise 6.10. Show that the gamete frequencies as a function of D are correct in the
above table.

The A1B1 and A2B2 gametes are sometimes called coupling gametes because the same
subscript is used for both alleles. The A1B2 and A2B1 gametes are called repulsion gametes.
Linkage disequilibrium may be thought of as a measure of the excess of coupling over
repulsion gametes. When D is positive, there are more coupling gametes than expected at
equilibrium; when negative, there are more repulsion gametes than expected.

Using linkage disequilibrium we want to measure association between alleles. In statis-
tical terms association results in the correlation of certain random variables. The measure
D can also be seen in this way as a covariance of two random variables. (See Maths 3.2.)
But which random variables must we take in order to see D as the covariance. Let us pick
(virtually) one individual from the population and set

X =

{
1, if we find allele A1,

0, if we find allele A2,

Y =

{
1, if we find allele B1,

0, if we find allele B2.

(6.5)

Then

E[X] = P[X = 1] = p1· and E[Y ] = P[Y = 1] = p·1.

Then their covariance is

Cov[X, Y ] = E[XY ]− E[X] · E[Y ] = p11 − p1·p·1 = D.

Now let us see how D evolves. The value of D after a round of random mating may be
obtained directly from equation (6.3) by using p11 = p1·p·1 +D to be

D′ = p′11 − p′1·p
′
·1 = (1− ρ)p11 + ρp1·p·1 − p′1·p

′
·1

= (1− ρ)(p11 − p1·p·1) = (1− ρ)D
(6.6)

Here we have used that p′1· = p1· and p′·1 = p·1 which is approximately true at least in large
populations as drift can be neglected there. The change in D in a single generation is thus

∆ρD = −ρD,

which depends on the gamete frequencies only through their contributions to D. Finally
this equation gives nothing but a geometric decay of D, meaning that

Dt = (1− ρ)tD0,

showing, once again, that the ultimate state of the population is D = 0.
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Exercise 6.11. Consider two loci A and B with ρ = 0.5. In this case in the diploid
organism the probability of inheriting the A locus from one individual is independent of
whether or not the B locus is inherited from this chromosome. This is the reason why one
speaks of ρ = 0.5 as free recombination. However, linkage disequilibrium measured by D
does not vanish immediately after one generation of random mating. Can you clarify why
it doesn’t? Did we do something wrong in our calculations? (Tip: write down for two
generations the genotype frequencies and the gamete frequencies when you start with half
of the pop AABB and half aabb)

Solution: The solution is that even after a round of random mating, many individuals
will still carry alleles that were together before. To see this, write down for two generations
the genotype freqs and the gamete freqs when you start with half of the pop AABB and
half aabb.

In natural populations, the reduction in the magnitude of linkage disequilibrium by
recombination is opposed by other evolutionary forces that may increase |D|. We will
come to some of them in the next chapter.

We saw that D can be seen as the covariance of two random variables. Unfortunately
D is very sensitive to allele frequencies. As frequencies must be positive we can read from
the table of allele frequencies that, when D is positive,

D ≤ min{p1·p·2, p2·p·1}.

A normalised measure taking account of this and which is therefore much less sensitive to
allele frequencies is

r2 =
D2

p1·p·1p2·p·2
.

Again this can be seen as a statistical measure.

Maths 6.1. Given the random variables X and Y of Maths 3.2 define the correlation
coefficient rXY of X and Y as

rXY =
|Cov[X, Y ]|√
Var[X]Var[Y ]

.

So taking the random variables from (6.5) we have, as X and Y are binomial with suc-
cess probabilities p1· and p·1 respectively that r2 is the square of the correlation coefficient
of these two random variables.

Exercise 6.12. DNASP calculates D and r2. Use the TNFSF5 data set to see some values.

1. Our above calculations were done in a model. Now DNASP has calculated something
from real data. Is D in the above equations really the same D as the D that is
calculated by DNASP?

2. Linkage should decay with distance between two segregating sites. DNASP is capable
of analysis that addresses this question. Can you find out what the program does?
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3. Two locus data can be arranged in a contingency table as you saw on page 63 (this
time with only two columns). Whenever data can be arranged like this, a χ2 test can
be done. And, additionally, if it is a 2× 2 contingency table, Fishers exact test can
be used, which is a better test in this case which can also be computed by DNASP.
Using DNASP, is there a significant amount of linkage disequilibrium in the dataset?

6.4 Example: Linkage Disequilibrium due to admix-

ture

Since linkage disequilibrium vanishes exponentially fast, we must ask why it can still be
observed in real data. One example is the situation of admixture of two populations. A
population which recently was separated in two different populations does not need to be
in linkage equilibrium.

Exercise 6.13. We will simulate the situation of an admixed population using linkage()

from the R-package. Before you start read ?linkage and make yourself familiar with details
of the model.

1. Assume the loci A and B are on different chromosomes. What is the rate of recom-
bination between them? Set the parameters on the model to represent the following
scenario:

• A and B loci on different chromosomes

• pop1 was initially fixed for the A1 allele and the B2 allele

• pop2 was initially fixed for the A2 allele and the B1 allele

Create a graph that displays gamete/haplotype frequency (p11, p12, p21, p22) over time.

2. What is the frequency of each haplotype in the first generation? (You can use
res<-linkage(...) and res$Haplotype.freq[1,].) Explain why there are no
individuals with the A1B1 or A2B2 haplotypes in the population.

3. Calculate D for the population in the first generation and check using res$LD[1].
Which haplotypes are more common than you would expect if the population were
in linkage equilibrium? Which are less common?

4. Assume that both populations are large such that genetic drift does not operate.
Judging from the graph, about how many generations does it take for the gamete
frequencies in the mixed population to stop changing? What is the frequency of each
haplotype at that point? Using these haplotype frequencies, calculate the value of
D.

5. What does this value of D say about gamete frequencies in the population (i.e. what
does linkage equilibrium mean)?
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Exercise 6.14. We have encountered Hardy-Weinberg and linkage equilibrium. Moreover,
both equilibria can interact with genetic drift in small populations which we will investigate
next.

1. Take the same initial frequencies as in Exercise 6.13. Compute by hand the inbreed-
ing coefficient at the A and B locus at the time of the admixture. In how many
generations is Hardy-Weinberg equilibrium reached?

2. Use n.pop1=100, n.pop2=100, set stoptime=200 and vary r from 0.001 to 0.1. Plot
D by using what="LD". For r = 0.001 you sometimes do not see a decay in linkage
disequilibrium at all, sometimes it goes down to 0. Can you explain this? In contrast,
do you see a clear decay in D for r = 0.1?

Exercise 6.15. In Exercise 6.12 you calculated if the human population was in linkage
equilibrium or not. But is the human population in Hardy-Weinberg equilibrium at the
TNFSF5 locus?

Exercise 6.16. A survey of human blood group and serum protein frequencies in a
Michigan town revealed that the loci controlling these neutral phenotypes were in Hardy-
Weinberg equilibrium (i.e. genotypes at each locus were observed at their expected Hardy-
Weinberg frequencies). Does this information tell you anything about the history of the
population more than 1 generation ago? Explain why or why not.

The data also showed that the gamete frequencies were in linkage disequilibrium. What
does this suggest about the length of time that the population has been mating at random?
If you know that the area of study was settled recently by people from different parts of
the world, what hypotheses might you form about the cause of linkage disequilibrium at
these loci?

Exercise 6.17. Recombination has some impacts on sequence variation. Let us produce
one of them using seqEvoNeutral() from the R-package.

Compare the evolution of the site frequency spectrum for sequence evolution with and
without recombination. Use N=25, u=1, stoptime=200, seq=FALSE, sfs=TRUE. Do one
simulation with r=0 and one with r=1. Which of the two final plots is closer to the neutral
expectation? Can you explain your result?



Chapter 7

Various forms of Selection

The neutral theory, which was mainly developed by Motoo Kimura since the 1950s, assumes
that every individual in a population has the same chance to produce offspring. This
contradicts the Darwinian view on evolution that fitter individuals will produce more, or
more viable offspring and eventually form the basis of all future generations. Which view is
more realistic cannot be said generally. A big step towards unifying these two approaches
is to attribute selection coefficients to certain genotypes. Roughly, the selection coefficient
of an allele tells you how much more (or less) offspring the carrier of the allele is expected
to have, compared to a reference allele. In a population of constant size, the expected
number of offspring is 1 for every individual, if a new allele in the population has selection
coefficient 0.05 this means the expected number of offspring of the carrier of the allele is
1.05. In this case the allele is said to have a fitness effect, and selection can only act if
there are fitness differences caused by alleles with fitness effects. In Kimura’s view, selection
coefficients are usually close to zero, because most mutations are neutral, in other words,
have no fitness effect.

Originally fitness is seen as a trait of a phenotype. Remember that high fitness means
that an individual produces much viable offspring that contributes to future generations.
As the phenotype has its genetic basis, we can also attribute fitness to a genotype. However,
the question how genotypes translate to phenotypes is a very difficult one. In population
genetic models we therefore attribute fitness directly to genotypes. A consequence of this
is that it conceals the mechanisms where these fitness differences really come from.

7.1 Selection Pressures

What forces are responsible for differences in fitness of certain genotypes? Many mecha-
nisms have been suggested.

The simplest example of an allele that has a fitness effect (this means it has a selection
coefficient that is not zero) is if the allele produces a different protein (which is of course
only possible in coding regions) which then can have positive or negative effects on the
chances to produce viable offspring. Prominent examples are mutations in insects that

101
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results in insecticide resistance or, rather the opposite, mutations that cause an essential
protein not to function anymore, so that the individual dies. But mutations that don’t
change proteins can also have fitness effects, for example if the mutation changes the
abundance of a protein.

Selection can act on different parts of the life cycle of an individual. Let us give some
examples:

Viability selection

Individuals with a high fitness not only produce much offspring but also produce viable
offspring that reach maturity to produce offspring itself. Growing to adulthood is a big
challenge for an individual. At first it has to survive as a zygote which can already be
hard. (Also in humans natural abortions are very common.) And then it has to survive
until adulthood.

Sexual selection

Having evolutionary success means to have a large number of offspring, but in sexual species
this is only possible if you have a mate. Some phenotypes have a higher chance to find
a mate. This can e.g. be due to assortative mating which means that individuals prefer
to mate with individuals that are alike. Assortative mating is common (e.g. in human
populations where mating occurs according to social status), but disassortative mating
also occurs (e.g. in plants where certain alleles can only reproduce when they mate with a
different allele. These are called self-incompatibility alleles). Sexual selection can also be
due to male competition and/or female choosiness. This is well-known from peacock-males
and fights for the best female in bighorn sheep.

Gametic selection

Gametes themselves can also be more or less successful as they can also be more or less
viable, e.g. because the genotype determines the protein constitution of a sperm cell. In
meiosis it is possible that certain genotypes are more likely to produce gametes than others.
This is known as meiotic drive which results in a non-Mendelian segregation of the alleles.
One can recognise meiotic drive if an excess of gametes of a heterozygous individual carry
the same genotype.

Fecundity selection

Fitness also depends on how many gametes an individual produces. This is known as
fecundity (or fertility) selection. In male plants fitness depends on how many seeds the
individuals pollen can pollinate, if it produces more pollen it will pollinate more seeds. For
female plants the individual will have more offspring if it produces more seeds. In animals
that take care of their young fertility selection acts on the family size.
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The above list gives examples of selective forces that do not depend on the other
individuals in the population. This is not always the case. The most important examples
are

Density and frequency dependent selection

Density dependent selection means that fitness of an individual depends on the density of
the population. This happens if certain phenotypes do well when the population density
is low whereas other phenotypes do well when there is a lot of competition due to a high
population density. This is called density-dependent selection.

Often, the frequency of a genotype in the population plays a role. Think e.g. of an allele
that can only reproduce if it mates with a different allele, such as the self-incompatibility
allele of a plant. For those alleles it is clearly an advantage when they are in low frequency
in the population because the chance to produce offspring is higher. Their fitness will go
down if their frequency goes up. This is called negative frequency-dependent selection.

Exercise 7.1. Can you think of an example of positive frequency dependence? Do you
think you are likely to find such examples in nature?

Several more complicated effects that have to do with selection have been described.
We mention two of them.

Pleiotropy

It is possible that the alleles at one locus affect several phenotypic traits of an individual.
This is called pleitropy. A gene affecting the embryonic growth rate may also affect the age
of reproduction of the individual. These traits can either be both selectively advantageous
or can point to different directions. If a genotype increases the fertility of an individual
but reduces its viability the overall effect on fitness may be small.

Epistasis

Many quantitative traits, e.g. height or weight, are affected by many genes. These genes
can have effects that depend on other genes. The simplest example is when at one locus,
the gene produces a protein if the individual carries allele A, and doesn’t produce anything
if the individual carries allele a. At another locus, the gene determines the abundance of
the protein, it has two alleles, B for producing a lot of protein, b for producing half the
amount. The effect of the alleles at the second locus now depends on the allele at the
first locus. An individual carrying an A will produce more protein if it carries a B than
it would if it would carry a b. However, an individual carrying an a will produce nothing,
independent of whether it carries a B or a b. The dependence of one trait on different loci
is called epistasis. Epistatic selection is complicated and will be ignored in the rest of the
course.



104 CHAPTER 7. VARIOUS FORMS OF SELECTION

Exercise 7.2. Various forms of selection were introduced above. From your biological
experience find five examples where selection seems obvious to you.

7.2 Modelling selection

The main aim of mathematical modelling is to find simple models that capture most
(or all) of the biological features. These models can then be used for several things, for
example to make predictions. Population geneticists are mainly interested in changes in
allele and genotype frequencies, therefore population genetic models should take the forces
into account that are responsible for these changes. In principle we would have to model
the following:

meiosis random union survival
Adults =⇒ Gametes =⇒ Zygotes =⇒ Adults

(N) fertility (∞) sexual (∞) viability (N)
selection selection selection

To start with simple models for this scenario we do not consider the kind of selection
too closely. In fact, we will only deal with viability selection here (as is usual in population
genetics). The population consists of adults and has discrete generations. Consider two
homologous alleles, A1 and A2 that are present in a population. If an individual has
genotype A1A1 then its probability of surviving to maturity is w11. Similarly, the genotypes
A1A2 and A2A2 have survival probabilities w12 and w22. When allele A1 has frequency p
in the adult population a new born individual in the next generation will have genotype
A1A1 with probability p2. So in the next adult generation the frequency of the genotype
A1A1 will be proportional to p2w11. (It is not equal, but only proportional to that number
because population size is assumed to be fixed.) This gives the following table

Genotype A1A1 A1A2 A2A2

Frequency in newborns p2 2pq q2

Viability w11 w12 w22

Frequency of adults p2w11/w̄ 2pqw12/w̄ q2w22/w̄

where we have set q := 1− p and

w̄ = p2w11 + 2pqw12 + q2w22 (7.1)

which indicates the mean fitness in the whole population. Only by this constant of pro-
portionality we can assume that population size is constant, i.e.

frequency of A1A1 + frequency of A1A2 + frequency of A2A2 = 1.
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The coefficients w11, w12 and w22 are called fitness coefficients. It is clear from the above
formulas that multiplying all w2’s with a constant factor does not change genotype fre-
quencies in the following generations.

Another way of writing the above table is by introducing a selection coefficient s and a
dominance coefficient h. By this we mean to write

Genotype A1A1 A1A2 A2A2

Viability 1 1− sh 1− s

which (in the case s > 0) means selection against the A2 allele. Here the effect of selection
is more clear: being homozygous for A2 decreases the viability of an individual by s.
Being in an intermediate genotype A1A2 means that fitness is not changed to 1 − s as
for homozygotes but to 1 − sh. The coefficient h is called the dominance coefficient and
ranges from −∞ to 1/s, because viabilities have to be positive numbers. When h = 0
then genotypes A1A1 and A1A2 have the same fitness which means that A1 is a completely
dominant allele. When h = 1 then the fitnesses of A1A2 and A2A2 are the same and so A2

is dominant. The cases h < 0 and h > 1 are also of interest. We will come to this later.

Using these notations and conventions there are two different ways to model selection;
either by stochastic models (which we will do next) or by deterministic models (which
comes afterwards).

Selection in the Wright-Fisher model

The standard Wright-Fisher model was very simple. Every individual had the same chance
to be ancestor of any other individual in the next generation. But how can we extend this
model to deal with selection? The above tables of fitness coefficients already gives us a
hint.

Consider a population with allele frequencies p and q = 1− p for alleles A1 and A2, re-
spectively. When these adults produce zygotes they will be in Hardy-Weinberg equilibrium.
However, assume the number of zygotes is very large, much larger than the population size
which is N for diploids or 2N for haploids. The viability of the zygotes is determined by
their genotype and chance. When the offspring grows to adulthood the probability that a
randomly chosen adult has genotype A1A1 is p2w11/w̄ with w̄ as in (7.1). (Again divid-
ing by w̄ is done because of normalisation.) For the other genotypes the probabilities are
derived analogously.

The Wright-Fisher model only gives allele frequencies but no genotype frequencies.
So we have to calculate the allele frequencies from the genotype frequencies. Given the
genotype frequencies from (7.1), what is the probability that a randomly chosen allele is
of type A1? This is the probability of either choosing an individual with genotype A1A1 or
choosing one with A1A2 and picking from this individual its A1 allele which is done with
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probability 1
2
. When we fill in the appropriate selection and dominance coefficients this

gives

p̃ =
p2 + (1− sh)p(1− p)

w̄
=
p(1− sh) + shp2

w̄
(7.2)

for the probability that an allele from the next generation picks an A1 as ancestor and

w̄ = p2 + 2(1− sh)p(1− p) + (1− s)(1− p)2. (7.3)

As individuals are produced independently of each other and given the total number of A1

alleles in the previous generation t was i this gives the transition probabilities

P[Xt+1 = j|Xt = i] =

(
2N

j

)
p̃ji (1− p̃i)2N−j = binom(2N, p̃i; j) (7.4)

with p̃i from (7.2), pi = i
2N

, and w̄ from (7.3). This formula only holds approximately
because it is not true that the haploids are built independently of the diploids. When the
first allele of an individual is picked it has probability p̃i of being an A1. But when the
second allele is picked the probabilities are already influenced by the first allele. We will
discard this dependency and hope that the approximation is good.

The transition probability is a simple binomial distribution, just like in the neutral
Fisher-Wright model. We already know from Maths 1.5 the expectation and variance of a
binomial distribution and so it is now possible to calculate how selection affects the path
of the selected allele. We set pt := Xt

2N
and calculate

E[pt+1 − pt|pt = p] =
1

2N
E[Xt+1|Xt = 2Np]− p

=
p(1− sh) + shp2

w̄
− p = . . . =

sp(1− p)
(
1− h+ p(2h− 1)

)
w̄

.

(7.5)

Exercise 7.3. Is the right side of (7.5) really correct? Check this!

For the variance we will only calculate an approximation. We assume that the selection
coefficient s is so small that we can assume that s

2N
is a small number. As

p̃ = p+O(s),

meaning that p̃ and p are different only by a quantity which is proportional to s (and not
so
√
s or so) we immediately have

Var[pt+1|pt = p] =
1

2N
p̃(1− p̃) =

p(1− p)
2N

+O
( s

2N

)
≈ p(1− p)

2N
(7.6)

which is surprisingly the same variance as in the neutral Fisher-Wright model. So selection
influences the expected frequency path but not the variability of the frequency path around
this expected curve.

Exercise 7.4. In the beginning of this section we talked about various forms of selection.
Consider a case of frequency dependent selection where fitness of an allele is greatest when
it is in low frequency. How would you change the Wright-Fisher model to account for this
frequency-dependence?
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The fixation probability

Using the expectation and variance that we have just calculated we can calculate one
character of interest, namely the fixation probability. Assume that an allele is already
present at frequency p. If the allele were neutral the probability that it eventually fixed
is p (see Section 4.3). But what if the allele is beneficial (i.e. it has a positive selection
coefficient)? We will derive an approximate formula for this under the Wright-Fisher model.
For simplicity we set h = 1

2
. Then selection is additive because the fitness is determined

by the number of selected alleles an individual carries. Define

π(p) = P[fixation|p0 = p],

i.e. π(p) is the fixation probability of the allele given it is in frequency p today.
The basic equation we use is that

π(p) =
∑
∆p

P[p1 − p = ∆p]π(p+ ∆p) = E[π(p+ ∆p)|p0 = p]. (7.7)

The second equality is just the definition of an expectation. The first equality means that
the fixation probability given the frequency p is transported to the next generation. When
in the next generation the allele has frequency p + ∆p, which happens with probability
P[p1 − p = ∆p] the new fixation probability is π′(p+ ∆p). But necessarily π = π′ because
the fixation probability does not depend on the number of the generation. We will use an
approximation of π which is a Taylor approximation.

Maths 7.1. Let f be a function for which derivatives can be calculated (which applies to
almost all functions you know). Under some conditions which are usually met for any point
x0 we can write f as

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n = f(x0) + f ′(x0)(x− x0) + 1

2
f ′′(x0)(x− x0)2 + . . .

where we have set f (0)(x) = f(x). The series on the right side is called the Taylor series
of f around x0.

Often Taylor series are used for approximation. Then the function f is approximated
by its Taylor series e.g. up to second order; i.e. one discards terms in (x−x0)n for n ≥ 3.

Exercise 7.5. Calculate the Taylor series of the function f(x) = ex around 0 up to
the order 1. Compare your findings with Maths 1.1. Do you already see that

ex =
∞∑
k=0

xk

k!
?
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For π(p+ ∆p) we use a Taylor series approximation around p up to order 2. We have

π(p+ ∆p) = π(p) + π′(p)∆p+ 1
2
π′′(p)(∆p)2. (7.8)

Combining (7.7) and (7.8) we have approximately

π(p) = π(p) + π′(p)E[∆p] + 1
2
π′′(p)Var[∆p]

and so

0 = 1
2
sp(1− p)π′(p) + 1

2

p(1− p)
2N

π′′(p)

or

π′′(p) = −2Nsπ′(p).

This is a differential equation for π(.). However it is very simple. First, every function
f for which we know that f ′ = af for some number a satisfies f(x) = ceax. So we know
taking π′ for the function f that

π′(p) = C exp(−2Nsp).

But then with C ′ = C/2Ns

π(p) =

∫
C exp(−2Nsp)dp = C ′ exp(−2Nsp) +D

for some number D. The only thing that remains to be calculated are the numbers C ′

and D. This is done by using boundary conditions. There are two numbers we already
know about π(.). First π(0) = 0 as an allele cannot be fixed when it is not present in a
population (and, of course, when no mutation is assumed). Second, π(1) = 1 as in this
case the allele is already fixed in the population. This gives two equations, namely

C ′ +D = 0, 1 = C ′ exp(−2Ns) +D.

Plugging the first into the second equation gives

−1 = C ′
(
1− exp(−2Ns)

)
, C ′ = − 1

1− exp(−2Ns)
, D =

1

1− exp(−2Ns)

and so

π(p) =
1− exp(−2Nsp)

1− exp(−2Ns)
. (7.9)
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Exercise 7.6. Assume a new mutant enters the population which has a fitness advantage
of s. Initially its frequency is 1/2N . Assume 2Ns � 1. It was Haldane1 who came up
with the approximate probability of

π(1/2N) ≈ s. (7.10)

Can you explain how this approximation is derived using (7.9)?

Exercise 7.7. We made several approximations in our calculation of the fixation proba-
bility (which ones?). It is certainly worth checking (7.9) numerically. In addition to that
we can also check (7.10) and see when it breaks down.

For the simulations we use wf.freq() from the R-package. Here the above described
Wright-Fisher model with selection and fitnesses 1, 1− sh and 1− s is implemented. You
will use the parameter batch to study the fixation probability of a newly arisen beneficial
allele. To do this always set init.A to 1/2N.

1. Use N=500. Simulate 1000 runs and plot the average curve using

>res<-wf.freq(N=500,init.A=0.001,s=0.01,stoptime=2000,batch=1000)

>plot(res, what="freq.A")

As eventually an allele is either lost or fixed the Y -axis shows you the frequency of
runs where the beneficial allele fixed. To see the exact value in how many of your
runs the allele A fixed, use

>mean(res$freq.A[2000,])

Use s = 0.2, 0.05, 0.01, 0.001 and simulate the fixation probability. Compare your
values with (7.9) and (7.10). Where do you see the greatest deviance? How much do
you trust in your runs for small values of s?

11892-1964, John Burdon Sanderson Haldane; British geneticist, biometrician, physiologist, and popu-
larizer of science who opened new paths of research in population genetics and evolution.

Haldane, R.A. Fisher, and Sewall Wright, in separate mathematical arguments based on analyses of
mutation rates, size, reproduction, and other factors, related Darwinian evolutionary theory and Gregor
Mendel’s laws of heredity. Haldane also contributed to the theory of enzyme action and to studies in
human physiology. He possessed a combination of analytic powers, literary abilities, a wide range of
knowledge, and a force of personality that produced numerous discoveries in several scientific fields and
proved stimulating to an entire generation of research workers. His studies included investigation of the
effects of inbreeding and crossbreeding among guinea pigs, animals that he later used in studying the
effects of gene action on coat and eye color, among other inherited characters.

He announced himself a Marxist in the 1930s but later became disillusioned with the official party line
and with the rise of the controversial Soviet biologist Trofim D. Lysenko. In 1957 Haldane moved to India,
where he took citizenship and headed the government Genetics and Biometry Laboratory in Orissa. (from
Encyclopedia Britannica, 2004)
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2. Make a plot out of the values. Compare your plots with other members of the class.
You should get a hint in which parameter range to use (7.9) and (7.10).

Deterministic models

As we saw in the Wright-Fisher model the expectation and the variance of the change in
allele frequency were given by (7.5) and (7.6). We saw that the expectation was of the
order O(s) whereas the variance was of the order O(1/2N). When selection is strong or
population size is large, i.e. when s� 1/2N or 2Ns� 1, we can ignore the variance, and
thus forget about the stochasticity, i.e. forget about genetic drift and use a deterministic
model instead to describe the changes in allele frequencies where

pt+1 − pt = spt(1− pt)
1− h+ pt(2h− 1)

w̄
.

Another approximation is to use continuous time. That means we use a differential equa-
tion, i.e.

dp

dt
= sp(1− p)1− h+ p(2h− 1)

w̄
. (7.11)

Exercise 7.8. Again it was Sewall Wright who claimed (already in the thirties) that

dp

dt
=
p(1− p)

2w̄

dw̄

dp
.

Can you check if he was right?
Solution: For

w̄ = p2+2(1−sh)p(1−p)+(1−s)(1−p)2 = p2(1−2(1−sh)+(1−s))+p(2(1−sh)−2(1−s))+c

we have
dw̄

dp
= 2s(1− h) + 2sp(2h− 1) = 2s

(
1− h+ p(2h− 1)

)
and hence the assertion follows.

What can you read from this equation? E.g. what is a sufficient and necessary condition
for the allele frequency to increase in terms of the average fitness? Exactly when does the
frequency not change any more?

7.3 Examples

There are some main examples we will deal with. Depending on the selection and dom-
inance coefficients the solution of the differential equation (7.11) has different properties.
The function selectionDet() is an implementation of the differential equation (7.11). We
will be studying several cases.
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h = 0 selection against a recessive allele
h = 1 a selection against a dominant allele
0 < h < 1 incomplete dominance
h = 1

2
additive selection

h < 0 overdominance
h > 1 underdominance

When h = 0, which means that genotype A1A1 is as fit as genotype A1A2 meaning that the
disadvantageous A2-allele is recessive. When h = 1 the roles of A1 and A2 are interchanged
and so A2 must be dominant and A1 recessive. Any point between these two extreme cases,
i.e. 0 < h < 1 is denoted by incomplete dominance. Here the fitness of the heterozygote is
somewhere between the homozygotes. But also the case of a fitter heterozygote must be
assumed. Here h < 0 which means that the heterozygote has fitness greater than 1. The
last case is when the heterozygote is less fit than the two homozygotes which occurs for
h > 1.

We will be dealing with all cases using biological examples using our R-package. To
make e.g. a plot of the frequency curve of an allele with s = 0.01, h = 0.5, initial frequency
0.1 for the first 500 generations, you may type in one command

>plot(selectionDet(init.A=0.1,s=0.01,h=0.5,stoptime=500),what="freq.A")

Exercise 7.9. The allele for the human disease phenylketonuria (PKU) is recessive and
causes the body to be unable to process phenylalanine in the homozygous state. Consider
a deterministic model in which the PKU allele is initially rare (p0 = 0.05) and in which
the PKU phenotype has a fitness of 0.25 relative to the normal phenotype.

1. Which case of the above table applies in this case?

2. What happens to the PKU allele frequency over time? How many generations would
it take for the PKU allele to reach a frequency of 0.01? (By adding plot(...,

xlim=c(90,110), ylim=c(0.98,1)) or something more appropriate you see a zoomed
version of your original plot. You might also want to use abline(h=0.99) to see when
the PKU-allele has reached a frequency of 0.01.)

3. Now consider what would happen if better screening techniques were developed such
that more individuals with PKU could receive treatment immediately, and the fitness
of the PKU phenotype increased to 0.80 relative to the normal phenotype which has
fitness 1. The initial frequency of PKU allele is still 0.05. In this situation, how many
generations would it take for the PKU allele to reach frequency 0.01?

Exercise 7.10. Huntington’s disease is inherited as a Mendelian dominant phenotype.
The disease is characterised by neural degeneration that often does not set in until after
the individual has passed child-bearing age.
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1. Which case of the table on page 111 applies in this case?

2. Consider a deterministic model in which the Huntington’s allele initially occurs in
low frequency (p0 = 0.05) and has a selection coefficient of only 0.20 due to the late
onset of the disease. How many generations would it take for the Huntington’s allele
to reach frequency 0.01?

Exercise 7.11. 1. Compare the length of time required for the deleterious allele to
reach frequency 0.01 in the case of the PKU allele (Exercise 7.9) and in the case of
the Huntington’s allele (Exercise 7.10). In which case does it take longer? Explain
why. The situations are the same except for the dominance of the allele.

Hint: Think about what selection sees in each case and about the frequency of
homozygotes of rare alleles.

Exercise 7.12. 1. Consider a situation in which a favoured, dominant allele A1 is ini-
tially rare in a population with p0 = 0.05. Explore some different values for the
selection coefficient against the recessive homozygote until you get a feeling for how
the allele frequency changes over time. Choose a value for s that is between 0.5 and
0.2 and set stoptime to 150 generations. Sketch the graph of how the frequency of
the dominant allele changes over time.

2. Now consider the same situation as above but with a favoured recessive allele A1

(i.e. use the same selection coefficient and initial p, and just change the fitness of the
heterozygote).

Sketch the dominant case from Exercise 7.10 and the recessive case from Exercise
7.9.

3. Initially (when the favoured allele A1 is still rare), in which case (A1 dominant or
A1 recessive) is selection more efficient at increasing the frequency of the favoured
allele?

4. Towards the end of the process (when the deleterious A2 allele is rare), in which
case is selection more efficient at increasing the frequency of the favoured allele (i.e.
decreasing the frequency of the deleterious allele)?

5. Explain why these two selective regimes have different effects on allele frequencies
over time (i.e. why the curves are shaped differently).

In the two cases, A1 dominant and A1 recessive when the A1 allele manages to prevail in
the population it will eventually fix. This is also true for the case of incomplete dominance.
However this situations differs in the case of overdominance. Here the heterozygote is fitter
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than both homozygotes. Therefore the population will not eliminate the A2 allele because
it will still be present in most fit heterozygotes. But at which frequency will it be?

This can e.g. be calculated from (7.11). The allele frequencies do not change any more
if

1− h+ p∗(2h− 1) = 0 or p∗ =
1− h
1− 2h

. (7.12)

Here p∗ is called the equilibrium of allele frequencies. Clearly p∗ is between 0 and 1 if either
h < 0 or h > 1, i.e. in the cases of over- and underdominance.

Exercise 7.13. Sickle cell anaemia has been described as an example of heterozygote
advantage (where the heterozygote has a higher fitness than either homozygote). Explore
different parameter values that represent this situation.

1. What happens to allele frequencies over time for different values of s? What is the
equilibrium allele frequency?

2. Does changing the initial allele frequency affect the value of the allele frequencies at
equilibrium? If so, how?

3. What does it mean to have reached an equilibrium?

4. Now examine the average fitness of a population w̄ undergoing selection at a locus
with heterozygote advantage. (To see w̄, add plot(..., what="w.bar") to your
command. You might also want to add plot(..., ylim=c(0,2)) to expand the
y-axis.) Experiment with different values for s and h, keeping h < 0. In the case of
heterozygote advantage, does the population ever reach its maximal fitness of 1−hs?
Briefly explain why selection does not increase the average fitness of the population
to its maximum in this case.

5. Check (numerically or using a calculation) that the average fitness in equilibrium is

w̄∗ = 1 + s
h2

1− 2h
.

Also in the case of underdominance, i.e. h > 1 meaning that the heterozygote has a
lower fitness that both homozygotes (7.12) gives an equilibrium value of p between 0 and
1.

Exercise 7.14. Now consider a case of underdominant selection.

1. Explore different parameter values for a while.
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2. Now vary the initial allele frequency, keeping the fitness the same. Does the value
of this parameter affect the outcome of the model (i.e. does it affect which allele
eventually reaches a frequency of 1 or whether either allele reaches that frequency)?
If so, explain how, and describe the possible outcomes of the model.

3. Again (7.12) gives an equilibrium in this case. Set the initial frequency exactly to
this value. What happens if you change this frequency a little bit? Can you explain
this behaviour? This behaviour is described as an instable equilibrium. Can you
explain why?

4. Plot also w̄. As you see it always increases. However its maximal value is not always
1. What happens in these cases?



Chapter 8

Selection and polymorphism

Now we are going to look at how selection can influence variation and how variation in turn
can influence selection. The first subsection deals with negative selection, it shows that
deleterious mutations can be kept at an equilibrium frequency in a population and how
these deleterious mutations effect the mean fitness of the population. The second subsection
introduces the idea that, at least in simple models, mean fitness always increases. The
third subsection is again about deleterious mutations and the distribution of the number
of mutations that individuals carry. It also shows how the minimum number of deleterious
mutations carried by an individual in a population may increase over time due to an effect
that is named Muller’s Ratchet. Finally the fourth subsection is about the effect of strong
positive selection on linked neutral variation, this effect is called hitchhiking.

8.1 Mutation-Selection balance

Let us consider deleterious mutations, or, in other words, alleles that have a negative
fitness effect. Individuals carrying such mutations or alleles will have, on average, fewer
offspring than the other individuals in the population. Through this negative selection the
mutations will eventually disappear from the population if mutation does not create new
alleles of this type. If mutation does create the allele with lower fitness at rate u, that is

A −→ a at rate u

then a dynamic equilibrium can be reached. Mutations enter the population at a certain
rate, depending on mutation, and will be purged from the population due to selection. The
equilibrium is called mutation-selection balance. Or if we include stochasticity, mutation-
selection-drift balance.

We assume only viability selection. This means selection acts between the zygote and
adulthood. Mutations, however, happen at the production of gametes, before building the
zygotes. Now if the frequency of the wild-type allele A is p in the adult population, then
in their zygotes the frequency of allele A will be

p′ := p(1− u).

115
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.
Remember, from these zygotes, we calculated the effect of selection on the next gener-

ation in (7.4) in the last section. We can do the same calculation in our present context.
We have (from the Wright-Fisher model)

P[Xt+1 = j|Xt = 2Np] = binom(2N, p̃′; j)

where p̃′ is - according to (7.2) - the probability that an individual in the next generation
will choose a parent with genotype A, given the set it can choose from has a frequency of
p′ of the A alleles. This probability is the normalised fitness of the A individuals times the
frequency of the A allele in the zygotes. To normalise the fitness we need the mean fitness
w̄.

w̄ = (p′)2 + 2(1− sh)p′(1− p′) + (1− s)(1− p′)2 = 1− 2shp′(1− p′)− s(1− p′)2. (8.1)

Approximately we can say that by mutation the allele frequency is decreased from p to
(1−u)p, so the difference is −up. So if an equilibrium is to be reached the increase should
be up. We have already calculated the increase in frequency as

sp(1− p)(1− h+ p(2h− 1))

w̄

In equilibrium we must therefore have

up =
sp(1− p)(1− h+ p(2h− 1))

w̄
.

Discarding terms of order u(1− p)2 and us(1− p) we approximately have that

u = sh(1− p)(2p− 1) + s(1− p)2. (8.2)

Also ignoring terms s(1− p)2, assuming that p ≈ 1 such that 2p− 1 ≈ 1 we find that

1− p ≈ u

sh
. (8.3)

Exercise 8.1. In the case of a recessive disadvantageous allele we have h = 0 and so the
above equation breaks down. Can you calculate an approximation of the mutation-selection
balance in this case?

In equilibrium we can also ask what the average fitness of the population will be.
Plugging (8.3) in (8.1) we find, ignoring differences between p and p′ on w̄, that

w̄ = 1− 2sh
(

1− u

sh

) u
sh
− s u2

(sh)2
≈ 1− 2u

where we have ignored some terms.
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The difference of the maximum fitness to the average fitness in the population is called
the genetic load. The genetic load is defined as

L = wmax − w̄

and so in our case is

L = 2u, (8.4)

which is, surprisingly, independent of s and h! The result that the genetic load is in-
dependent of s and h but only depends on the mutation rate is called the Haldane-
Muller1principle. This principle says that the mean fitness of the population doesn’t
depend on the effect of single mutations, but only on the rate at which they occur in the
population. To understand this, think of a population where every mutation has a large
fitness effect. In such a population an individual carrying a deleterious mutation would
most likely not leave any offspring and the mutation would be kept at a very low frequency.
The effect on the individual is large, but the effect on the population is not so large. On
the other hand, if you would consider a population where mutations would have very small
effects, then individuals with these mutations would most likely leave as much offspring
as the other individuals and therefore the frequency of the mutation can be higher in the
population. The effect on the individual would be small, but the effect on the population
would be the same. The reason that the genetic load is independent of h is the same as for
s. Since deleterious mutations are expected to be rare and only occur in heterozygotes, s
and h always occur together in the equations anyway, as a compound parameter.

Exercise 8.2. Let us check the Haldane-Muller principle numerically. We use the function
wf.freq() of the R-package. Here you can also set mutation parameters uA2a which is the
rate for an A to mutate to an a and ua2A for the other direction. Set N = 500.

11890-1967; Muller, American geneticist, best remembered for his demonstration that mutations and
hereditary changes can be caused by X rays striking the genes and chromosomes of living cells. His
discovery of artificially induced mutations in genes had far-reaching consequences, and he was awarded
the Nobel Prize for Physiology or Medicine in 1946.

Muller attended Columbia University where his interest in genetics was fired first by E.B. Wilson, the
founder of the cellular approach to heredity, and later by T.H. Morgan, who had just introduced the fruit
fly Drosophila as a tool in experimental genetics. The possibility of consciously guiding the evolution
of man was the initial motive in Muller’s scientific work and social attitudes. His early experience at
Columbia convinced him that the first necessary prerequisite was a better understanding of the processes
of heredity and variation.

He produced a series of papers, now classic, on the mechanism of crossing-over of genes, obtaining his
Ph.D.in 1916. His dissertation established the principle of the linear linkage of genes in heredity. The
work of the Drosophila group, headed by Morgan, was summarised in 1915 in the book The Mechanism
of Mendelian Heredity. This book is a cornerstone of classical genetics.

Muller was a socialist, and he initially viewed the Soviet Union as a progressive, experimental society
that could pursue important research in genetics and eugenics. But by this time the false doctrines of
the biologist T.D. Lysenko were becoming politically powerful, bringing to an end valid Soviet scientific
research in genetics. Muller fought Lysenkoism whenever possible, but he ultimately had to leave the Soviet
Union. Then he worked in Edinburgh and several universities in the USA (adapted from Encyclopedia
Britannica, 2004).
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1. Take u = 0.01. Vary s from 0.01 to 0.5 and h from 0 to 2 to see the parameter range
where the Haldane-Muller principle is valid. Use batch=100 to obtain the average
of 100 runs of the simulation. Make a plot that compares actual values with the
theoretical prediction.

2. In 1. you will find some parameter combinations where the Haldane-Muller principle
it is not applicable. Can you explain what happens in these ranges?

3. For h = 0 you calculated in Exercise 8.1 the equilibrium frequency for a dominant
beneficial allele. Is the genetic load also independent of s and h in this case? Compare
your calculation with the values you obtained in 1.

8.2 The fundamental Theorem of Selection

Ronald Fisher stated that ’the rate of increase in fitness of any organism at any time is
proportional to its genetic variance in fitness at that time.’ This has since been called
the Fundamental Theorem of Selection. Although the term genetic variance comes from
quantitative genetics with which we are not dealing in this course, we can at least conclude
that the rate of increase in fitness must be positive because the variance in fitness has to
be positive. So in other words, fitness will always go up. A useful way to see this process is
to imagine the fitness landscape as a hilly landscape, where a population is always moving
towards the top of a hill.

In Exercise 7.8 we found an equation relating the mean fitness of an allele to its evolution
in time. Let’s assume there is a stable equilibrium point p∗ for p with 0 ≤ p∗ ≤ 1, so either
partial dominance or overdominance. As long as p < p∗ we have dp

dt
> 0 and thus dw̄

dt
> 0

so fitness will increase. When p > p∗ then dp
dt
< 0 and so dw̄

dp
< 0 leading to

dw̄

dt
=
dw̄

dp

dp

dt
> 0.

So we see that the average fitness always increases in this model.

Exercise 8.3. What will happen if selection is underdominant, i.e. h > 1?

Exercise 8.4. Draw dw̄
dt

against w̄ in the case of partial or overdominance. To do this,
proceed (e.g. for h = 0.9) as follows:

>res<-selectionDet(init.A=0.1, s=0.1, h=0.9, stoptime=150)

>plot(res$w.bar[1:149], res$w.bar[2:150]-res$w.bar[1:149],xlab="", ylab="")

>title(xlab=expression(paste(bar(w))))

>title(ylab=expression(paste(d, bar(w), "/dt")))
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The qualitative evolution of w̄ can be read from this diagram which is often referred to as
a phase diagram. Draw the direction of the movement of w̄ on the x-axis in the diagram.

Unfortunately the fundamental theorem of selection is only true for a very simple model
with constant selection. The Fundamental Theorem of Selection was under heavy debate
and today is assumed not to be generally true (and thus not a theorem). Let us make
an example. We have already seen that the theorem holds for the simple model, so in
order to show that it is not general we need to look at a more involved one.Let us consider
two partially linked loci A and B that both contribute to the fitness of an individual.
Both loci have two alleles A/a and B/b. Furthermore assume that the fitness of AB is
higher than that of any other haplotype and the population starts off with a large fraction of
AB’s. Then by recombination these genotypes are broken up leading to less fit individuals.
Consequently when the initial frequency was high enough the average fitness will decrease
and so the Fundamental Theorem does not hold. Other examples involve changing fitness
landscapes. Suppose that a population needs some resource, and as the population gets
better at using the resource, the resource gets depleted, what was a peak in the landscape
becomes a valley as soon as the population arrives there. Mean fitness may go down in
this case.

Exercise 8.5. Can you think of yet another example?

8.3 Muller’s Ratchet

Deleterious mutations that accumulate in a population do not only lower the mean fitness
of a population if they occur at an equilibrium frequency of mutation- selection and drift.
Another question is how many individuals in a population carry zero, one or two etc. dele-
terious mutations. Of course deleterious mutations can be removed from the population
by selection. Under some circumstances, i.e. when drift is strong enough, it can happen
that the class of individuals with no deleterious mutations goes extinct. This is described
as one click of Muller’s Ratchet. If this happens repeatedly it can be dangerous for the
population because it can eventually drive it extinct. If Muller’s Ratchet clicks, the max-
imal fitness is a little bit less than before. It is assumed that in humans every newborn
carries three or four newly arisen harmful mutations. The reason why they do not cause
a major problem for the human population are twofold. First, they are often almost re-
cessive and so they don’t have a large fitness effect. Second, sex helps: by recombination
mutations are reordered and thus it is possible that individuals have fewer mutations than
both of their parents. This is in contrast to asexual populations, where recombination is
not possible and as soon as the ratchet has clicked there is no way to recreate the class of
zero mutations.

We will approximate the frequency distribution of the number of deleterious mutations
that individuals carry. We assume the following: each mutation has a multiplicative fitness
effect of (1 − s) so if an individual carries i mutations its fitness is (1 − s)i. During
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reproduction new mutations accumulate. In our model we assume that the number of new
mutations each generation in an individual is a Poisson number with parameter u.

Exercise 8.6. Let us see how fast mutations are accumulated depending on the parameters
N, s and u.

1. Use the function seqEvoMullersRatchet() to see how mutations are accumulated.
Running e.g. seqEvoMullersRatchet(wait=-1) lets you see how the sequence pat-
terns change in each generation. For wait=0.2 you see a new picture every 0.2
seconds.

2. Fix N = 50 and use the plot=FALSE option. How often does the ratchet click for
u = 1, 0.5, 0.3, 0.1 and s = 0.5, 0.3, 0.1, 0.05 in 100 generations?

To efficiently simulate this you might want to do the following:

>u<-c(1,0.5,0.3,0.1)

>s<-c(0.5,0.3,0.1,0.05)

>rate<-matrix(0, ncol=4, nrow=4)

>for(i in 1:4)

+for(j in 1:4)

+rate[i,j]<-seqEvoMullersRatchet(N=50, u=u[i], s=s[j],

+stoptime=100, plot=FALSE)

Why does the number of clicks increase with increasing u and decreasing s?

3. Haigh (1978) estimated that the average time between clicks of the ratchet is approx-
imately N · e−u/2. How well do your results reflect his approximation?

In the last exercise you saw that the rate of the ratchet was not well approximated.
Today it is still an open problem to determine the rate at which deleterious mutations
accumulate, depending on the model parameters N, u and s.

The ratchet can operate best if genetic drift operates; hence, the ratchet cannot work in
large populations. In the limit of an infinite population, we next compute the distribution
of the number of deleterious alleles in the population after a long time. So we would like to
know the number of individuals that has 0, 1, 2, etc deleterious mutations. To make this
a feasible task we rely on the equilibrium that will be reached to be stable. When we can
guarantee that this stable equilibrium exists, all we have to do is to find the equilibrium
and show that it does not change any more. We will try a Poisson distribution for the
number of deleterious alleles that is carried by the individuals in the population with some
(yet unspecified) parameter λ.

If we assume that at some time t this probability that one individual carries i mutations
is

pi(t) = e−λ
λi

i!
.
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As mutations accumulate during reproduction we will have to compute the distribution of
a sum of Poisson random variables.

Maths 8.1. Let X ∼ pois(λ) and Y ∼ pois(µ) two independent random variables. Then

P[X + Y = k] =
k∑
i=0

P[X = i, Y = k − i] =
k∑
i=0

e−λe−µ
λi

i!

µk−i

(k − i)!

=
1

k!
e−(λ+µ)

k∑
i=0

(
k

i

)
λiµk−i =

1

k!
e−(λ+µ)(λ+ µ)k,

so X + Y ∼ pois(λ+ µ).

After accumulation of new mutations the number of deleterious mutations is therefore
Poisson distributed with parameter

λ′ = λ+ u,

so after accumulation of new mutations (i.e. when forming gametes) in the next generation

p′i(t+ 1) = e−λ
′ (λ′)i

i!
.

Then reproduction uses selection to increase the frequency of genotypes with only a few
mutations. Writing pi for pi(t) and p′i for p′i(t+ 1), we have

pi(t+ 1) =
p′i(1− s)i
∞∑
j=0

p′j(1− s)j
=
e−(λ+u)(λ+ u)i(1− s)i

i!e−(λ+u)
∞∑
j=0

(λ+u)j(1−s)j

j!

= e−(λ+u)(1−s) (λ+ u)i(1− s)i

i!
= pois((λ+ u)(1− s))(i).

Here we have used the formula for ex from Exercise 7.5. So under the above assump-
tions pi(t + 1) is again Poisson distributed. In equilibrium the parameters of the Poisson
distributions for pi(t) and pi(t+ 1) must coincide. Thus

λ = (λ+ u)(1− s) or 0 ≈ u− λs

which gives

λ∗ =
u

s
.

So in equilibrium the distribution of the number of deleterious alleles a randomly picked
individual carries is Poisson distributed with parameter λ∗. This is the same as to say that
the frequency of individuals which have i mutations is

eu/s
(u/s)i

i!
.

So for i = 0 the frequency is e−u/s and the absolute number is Ne−u/s.
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Exercise 8.7. In this exercise you will use mullersRatchet() from the R-package to see
how the equilibrium distribution of deleterious alleles is approached.

1. The frequencies for the first 20 classes and first 50 generations for u = 0.1 and
s = 0.05 are generated using

>res<-mullersRatchet(u=0.1,s=0.05,init.freq=1,stoptime=50,n.class=20)

Here, the starting position was a population without any deleterious mutation and
thus p0 = 1. The frequency of class j − 1 in generation i can now be accessed using
res$freq[i,j].

2. Typing res$freq[2,1] tells you that the frequency of the best class in generation
2 is approximately 90%. Can you compute using the above formulas that this value
is correct? What is the equilibrium frequency of the class carrying no deleterious
mutation?

3. To see what the frequencies after 50 generations look like compared to the equilib-
rium, we use plot(res). Are the frequencies already in equilibrium? Is there a big
difference after 500 generations?

4. To see how the equilirbium is approached, we use

>for(i in 1:50) plot(res, i)

Use different starting distributions to see if the Poisson equilibrium is always attained.

5. Explain in your own words what an equilibrium distribution is and why it means that
the Poisson distribution with parameter u

s
is such a thing in the present context.

6. We said that the Poisson equilibrium must be valid if the population size is large
such that genetic drift cannot operate. Assume N = 106, u = 1 and s = 0.05. How
many individuals would you expect carrying no mutations in equilibrium, i.e., under
the Poisson distribution? Would you expect that such an N is already large enough
such that the ratchet does not click?

As you have seen, the frequency of the zero-mutations-class can become low under
certain parameter values. If you would have a finite population size, this low frequency
means a small number of individuals. And because in reality offspring number is a random
variable, the few individuals may fail to reproduce and the zero-mutations-class may die
out. In a population without recombination this can not be reversed (unless by a back
mutation, which is expected to be very rare). If this happens the ratchet has clicked and
the ’equilibrium’ distribution will have shifted one mutation.
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Exercise 8.8. Muller’s ratchet deals with the decrease in fitness. In (8.4) we computed the
genetic load L = 2u, which also describes a decrease in fitness. What are the differences
in the assumptions of Muller’s ratchet and the calculation with genetic load? Especially,
answer the following questions for both models:

1. Is the maximal or mean fitness affected?

2. Does recombination play an important role in the model?

3. Is the ratio u/s or the mutation rate u the most important factor in the analysis of
the model?

4. Is the effect predominant in finite populations?

8.4 Hitchhiking

Detecting where positive selection acts in a genome is one of the major goals when studying
evolution at the molecular level. Positive selection leads to the fixation of mutations that
lead to new adaptations (i.e. fitness increase) in a population. Of course we do not only
want to know where it acts in the genome but also how. But here we will look at a way to
detect the location of positive selection.

In 1974 John Maynard Smith2 and John Haigh wrote a paper on the effect of positive
or directional selection on heterozygosity at a linked neutral locus (Maynard Smith and
Haigh, 1974). They considered (roughly) the following situation: A mutation happens
that changes b into B. B has a selective advantage over b. Close to the b-locus there is a
neutral a-locus. This locus is polymorphic, which means that there is an a allele and an
A allele (that could be a SNP, or a microsatellite or an indel). The mutation from b to
B occurred on a chromosome carrying an a-allele. If the A/a and the B/b locus are very
close together (which means tightly linked), the B mutation will drag along the a-allele
to fixation. This will lead to lower polymorphism at the a-locus, an effect that is called a
selective sweep. Selection happens at the gametic stage and if we assume that there are
no dominance effect, a gamete carrying a B has a relative fitness of 1 + s/2 and a gamete
carrying a b has a relative fitness of 1.

One example of a region of decreased polymorphism was found in Schlenke and Begun
(2003). A region in the genome of Drosophila simulans was known to carry alleles respon-
sible for DDT resistance. So these loci should have been under strong selection in the 50’s
60’s and 70’s of the last century. The pattern that was observed here is given in Figure 8.1

21920-2004; British evolutionary biologist and geneticist. Originally an aeronautical engineer during
the Second World War, he then took a second degree in genetics under the great J.B.S. Haldane. Maynard
Smith was instrumental in the application of game theory to evolution and theorised on other problems
such as the evolution of sex and signalling theory. (from Wikipedia)
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Figure 8.1: A region of reduced polymorphism as found in Schlenke and Begun (2003).

Let’s model hitchhiking mathematically. We are using a deterministic model, which
should not be a problem if we assume that selection is strong compared to drift. This is
justified for large s because we already calculated that genetic drift is much weaker than
selection for large selection coefficients (see Chapter 7). Let pt be the allele frequency of B
at time t and p0 = 1

2N
which means that initially one B enters the population. Additionally

the frequency of B is given by the differential equation

ṗ = 1
2
sp(1− p). (8.5)

Exercise 8.9. Can you find the differential equation from Chapter 7 that boils down to
(8.5)?

Exercise 8.10. Can you calculate using Maths 8.2 that

pt =
p0

p0 + (1− p0)e−st/2
(8.6)

solves the differential equation (8.5) with the correct start value?

Assume you do not know the solution of (8.5) given in the exercise. There is still a way
to find it.

Maths 8.2. Some differential equations can easily be solved. Take e.g.

dg(x)

dx
= f(x)g(x).

Then formally rewriting this as
dg

g
= f(x)dx
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and integrating gives

log g(x) =

∫
1

g
dg =

∫
f(x)dx+ C

for some constant C. If the integral on the right side can be solved explicitely you can now
solve this equation for g. The constant C is used to adjust some already given value of g.

Exercise 8.11. Can you apply Maths 8.2 to find the solution of (8.5) given in Exercise
8.10?

A first question concerning hitchhiking could be: how long does it take for the B allele
to fix in the population? As our model is deterministic we ignore drift and the solution to
(8.5), which was given by (8.6), has 1 only as an asymptote. So we ask for the time τ it
takes to go from a frequency p0 to 1− p0 using p0 = 1

2N
. We can use the same trick as in

Maths 8.2 and rewrite
2dp

sp(1− p)
= dt

and integrate ∫ 1−p0

p0

2

sp(1− p)
dp =

∫ τ

0

1dt = τ

and so

τ =
2

s

∫ 1−p0

p0

(1

p
+

1

1− p

)
dp =

2

s

(
log p− log(1− p)

)∣∣∣1−p0
p0

=
2

s
log
( p

1− p

)∣∣∣1−p0
p0

=
4

s
log
(1− p0

p0

)
≈ 4

s
log(2N).

(8.7)

When s is not too small this is much smaller that 4N which is the expected time of fixation
of a neutral allele. (See Exercise 3.11.)

Exercise 8.12. Let us use wf.freq() to see if the fixation time we just computed is well
reflected in simulations. Take s = 0.1, N = 103, 104, 105, 106 with p0 = 1/2N and run
wf.freq() for several times until the allele is fixed. Write down the time of fixation of the
beneficial allele. How well do you results fit compared to (8.7)?

The reason why there can still be variation on a chromosome after a sweep has happened
is recombination. Think again of the A/a and the B/b locus. If the B occurs on a chromo-
some carrying an a-allele, the A-alleles will disappear completely unless a recombination
event creates a chromosome with an A-allele and a B-allele.

In a two-locus two-allele model there are four possible gametic genotypes: ab, Ab, aB
and AB. Recombination between an Ab and the aB chromosome can create an AB gamete.
If this happens the a-allele will not go to fixation.

Exercise 8.13. Let us use seqEvoHitchhiking() from the R-package to see the effect
of recombination. By calling e.g. seqEvoHitchhiking(N=10,s=0.1,rho=0.1,u=0.1) you
see the sequence evolution during a selective sweep in a population of size 10, where the
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recombination rate between the endpoints of the sequence is 0.1 and the mutation rate
for the total sequence is 0.1. In particular, new mutations are created during the selective
sweep.

1. Use the option wait=-1 to see step by step, what changes during the sweep. Addi-
tionally, use showFixed=TRUE to see how many mutations become fixed during the
sweep. (To see the same simulation twice, you can use seed=1 or any other number.)

2. We argued that more variation is kept during the sweep if the recombination rate is
larger. Set rho= 0.01, 0.1, 1 and record the number of segregating sites at the end of
the sweep for 10 runs. Do you see that the level of sequence variation is higher for
larger recombination rates?

The parameter r is the recombination rate between two sites. It is easily calculated by
taking the recombination rate per nucleotide and multiplying by the distance between the
two sites. rho = r · L (with r is recombination rate and L is the distance in nucleotides)

To understand the pattern of strong directional selection at the linked neutral A-locus
we study genealogies at the end of the selective sweep. First consider the B/b locus. At
the end of the sweep all individuals carry the B-allel; in contrast at the beginning only a
single individual carries the beneficial B-allele. As a consequence, the B-allele of the only
individual carrying the beneficial allele at the beginning of the sweep is a common ancestor
to all beneficial alleles at the end of the sweep; see Figure 8.2(A).

Things change a bit at the neutral A/a-locus. Assume that we are given lines carrying
an A/a-locus. At the end of the sweep we are sure that all are linked to a beneficial B
allele. When we trace back a line it is either linked to B or b. By recombination events
in the past it may change from B to b and back. We thus might draw lines changing
backgrounds from the B to the b allele as in Figure 8.2(B).

Assume a recombination event occurs on the line we are considering when the B allele
has frequency p. The probability that the recombinant carried a b allele rather than a
B allele is 1 − p. Hence we say that a line changes background from B to b at rate
ρ(1−x). Using this description we can already compute the probability that a line changes
background at some time in the sweep. The probability that it does not change background
during some time dt when the frequency of B is p is given by exp(−ρ(1− p)dt). (This is a
special case of the exponential distribution with a non-constant rate; see Maths 1.3.) So,
the probability that there is no change of backgrounds during the sweep is

q = exp
(
− ρ

∫ τ

0

(1− pt)dt
)

= exp
(
− 2ρ

s

∫ 1−p0

p0

1
p
dp
)

= exp
(
− 2ρ

s
log
(1− p0

p0

))
≈ exp

(
− 2ρ

s
log(2N)

) (8.8)

and the probability that there is no such event is 1 − q. One can compute that back-
recombinations from the b to the B-background can be ignored.
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Figure 8.2: Genealogies at the selected and a linked neutral site. Lines above the curve are linked
to a beneficial allele B; lines below the curve are linked to the wild-type b. (A) At
the end of the sweep the genealogy at the selected site is almost star-like. (B) By
recombination, a line of the A/a-locus can become linked to a wild-type b-allele.

To obtain the full genealogy of a sample of neutral loci we assume that the genealogy
at the selected site is star-like. This is only an approximation because it might well be
that some pairs of B-loci have a common ancestor during the sweep; see Figure 8.2(A).

Combining our calculations on the recombination of neutral loci and the genealogy at
the selected site we have the following description: at the selected site there is a star-like
genealogy. The length of each branch is 4

s
log(2N). The genealogy at the neutral loci is

linked to this star-like genealogy. Namely, every branch is hit by a recombination event
with probability 1 − q. Before the hitchhiking-event the genealogy is given by a neutral
coalescent. The resulting genealogy is drawn in Figure 8.3.

Exercise 8.14. Consider the genealogy of Figure 8.3. Assuming that you see a typical
genealogy at the end of a selective sweep, what kind of signature of a sweep do you expect
to find in data?

The most important signal of a selective sweep in data is the reduction of genetic
variation. Next, let us make a finer analysis of the signature of a selective sweep in
sequence data. Look at Figure 8.3 and assume that a mutation falls on the left branch
before the hitchhiking event. Such a (neutral) mutation is carried by the founder of the
hitchhiking event and therefore increases in frequency during the selective sweep. In the
genealogy this is the same as saying that a lot of lines carry this neutral mutation. In other
words, such a mutation occurs in high frequency in the sample. Such frequencies were the
subject of the site frequency spectrum in 5.2.
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Hitchhiking event

Figure 8.3: An approximate genealogy at the end of a selective sweep. The six leftmost lines are
followed to the founder of the selective sweep while the two rightmost lines are linked
to a wild-type allele at the beginning of the sweep. Before the beginning of the sweep
(at the lower part of the figure) lines coalesce as in a neutral coalescent.

Exercise 8.15. Let us use again seqEvoHitchhiking() from the R-package. To look at
the frequency spectrum we use the option sfs=TRUE.

1. Consider a population of N = 50, say. Since the diversity pattern is so complicated,
switch its display off using the option seq=FALSE. Change the values for rho from
0.001 to 1 and look at the evolution of the site frequency spectrum at the end of the
sweep. For which values do you see an excess of high-frequency variants?

2. For rho = 0.001 you do almost never observe high frequency variants. Using the
genealogy of Figure 8.3, can you explain why?

3. For rho = 1 or larger values of rho the frequency spectrum you observe looks almost
like the neutral expectation (at least for the low frequency variants). Why?

4. For which values of rho do you actually observe an excess of high-frequency variants?



Chapter 9

Neutrality Tests

Up to now, we calculated different things from various models and compared our findings
with data. But to be able to state, with some quantifiable certainty, that our data do not
fit with the predictions, we need statistics. That means that it is not enough to describe
phenomena, we need to quantify them and assign probabilities to observed data to see
how probable they are under certain scenarios, such as neutrality or population expansion.
Next we will deal with neutrality tests, which measure if data deviate from the expectations
under a neutral model with constant population size. The first three tests we introduce,
which all are called by the name of their test statistic, are Tajima’s D, Fu and Li’s D
and Fay and Wu’s H. These are based on data from a single population (plus one line of
an outgroup to see which states are ancestral and which ones are derived). Then we are
dealing with the HKA test and the McDonald-Kreitman test that both use data from two
or more species or populations.

The statistical procedure is very general, only the used methods, i.e. what to compute
from data, is unique to population genetics. Therefore we start with some general statistics.

9.1 Statistical inference

Let us start with a brief summary about statistical testing: Statistical testing starts by
stating a null hypothesis, H0. A test statistic, T , is chosen. If the value of T , calculated
from the data, falls within a certain range of values called the critical region, R, then the
null hypothesis H0 is rejected. The size of the test is α = P[T ∈ R |H0]. If the test statistic
is scalar - (this is most often the case, and in this case you can say whether the statistic is
smaller or bigger than a certain value) - then we can calculate a p-value, p = P[T ≥ t |H0]
where the observed value of the test statistic is t. What did all of this mean? And more
importantly, why is this the way we do statistical testing?

Firstly, the null hypothesis H0. This has to be a mathematically explicit hypothesis.
“There has been an effect of natural selection on my data” is not mathematically explicit,
but unfortunately “There has not been an effect of natural selection on my data” is not
sufficiently explicit either. Mathematical models are required for statistical testing. An
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example for a sufficiently explicit hypothesis would be:

The population is in equilibrium, behaves like a Wright-Fisher model with
constant population size 2Ne. All mutations are neutral. The mutation rate is
µ. There is no recombination.

With an H0 like this many relevant parameters can be calculated and they can be compared
with the observed data.

The test statistic T is a function of the data. It usually summaries or condenses the
data. There is a range of possible statistics that could be chosen. The aim is to choose
one that contains the information we want, and ignores the information that we believe
is irrelevant, as far as is possible. For the test to work at all, it is essential to know the
distribution of T when H0 is true, written P[T |H0]. Sometimes this distribution can be
calculated analytically but for more complex tests it may have to be estimated by computer
simulation.

The size of the test, α = P[T ∈ R |H0], is the probability that the null hypothesis will
be rejected when it is in fact true. This is a false positive error, a.k.a. a type I error. We
can control the chance of such an error occurring, by our choice of either T or R. Note that
some supposedly authoritative sources say that the p-value is the probability of making a
type I error. This is not true! Only the size of the test, if determined before the data are
inspected, has this property.

An interpretation of a p-value is the probability of observing data like the data that was
observed or more extreme, given the null hypothesis. These p-values can only be calculated
for scalar test statistics. This is because we need to define an order, so that we can say
which data are more extreme than others.

The other type of error is a false negative, a.k.a. a type II error, which is a failure to
reject the null hypothesis when it is in fact wrong. We cannot control the chance of these
errors occurring; they depend on what alternate hypothesis is true instead of H0. If an
alternative hypothesis H1 is in fact true, then the power of the test for H1 is P[T ∈ R |H1],
which is determined by the choice of T and the critical region R. High power is desirable.
Therefore, in order to design a good test it is important to have a good idea about which
alternative hypotheses could be true. For genetic data there are usually an infinity of
possible choices for T and R, so some kind of biological insight is important.

Exercise 9.1. Assume you are given two datasets, data1 and data2. You perform a test
of neutrality on both of them. For data1 you get a significant result (with α = 5%) and
for data2 a non-significant one. Which of the following conclusions can you draw?

• The dataset data1 does not stem from a neutral model of constant size.

• The dataset data2 stems from a neutral model of constant size.

Which error is involved in these two conclusions? Which error is controlled by the size of
the test? 2
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Acacia
species

Not invaded Invaded Total

A 2 13 15

B 10 3 13

Total 12 16 28

Figure 9.1: Example of data to use Fisher’s exact test.

Example: Fisher’s exact test

Let us look at an example, taken from Sokal and Rohlf (1994). We will be dealing with
Fisher’s exact test which will be of relevance in this section. This test uses as data a
2× 2-contingency table. This is a table of the form given in Figure 9.1. Here acacia trees
were studied and whether or not they are invaded by ant colonies. The aim of the study
was to find out whether species A is more often invaded by ant colonies than species B.

From species A, 13 out of 15 trees were invaded, but only 3 out of 13 from species B.
So it certainly looks as if A is more often invaded. But we would like to know whether
this is statistically significant. Now, you know that in the study there is a total of 15
trees from species A and 13 from species B. and you know that 16 trees are invaded by
ants and 12 are not. Using only this data, and if you would assume that both species are
equally likely to be invaded you would expect that 16 · 15

28
≈ 8.57 trees of species A would

be invaded. This value is the expected value under the assumption that the species of a
tree and whether or not it is invaded are two independent things.

You already know of the χ2-test which can also be used in this case. To make the
χ2-test all you need is your data in the contingency table and the expectations like the one
we just computed. Then, you calculate, as on page 63,

χ2 =
∑ (Observed− Expected)2

Expected

=
(2− 15

28
12)2

15
28

12
+

(13− 15
28

16)2

15
28

16
+

(10− 13
28

12)2

13
28

12
+

(3− 13
28

16)2

13
28

16
≈ 11.4991

Usually, you now say that the statistic you just computed is χ2-distributed with (rows−
1)(lines− 1) = 1 degree of freedom. You can then look up in a table of the χ2-distribution
with 1 degree of freedom that a value of 11.4991 or larger only appears with probability
p = 0.0006963 which is then also the p-value. However, all of this relies on the χ2-
distribution of the statistic we computed. And in this case the statistic is not exactly
χ2-distributed, because our data are discrete and not continuous, as they would have to
be in order to be χ2-distributed. There are corrections for this, but here we will use a
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different method: Fisher’s exact test.
The test is called exact because the distribution of the test statistic is exact and not

only approximate as it would be for the χ2-test. Fisher’s exact test relies on computing the
probability of obtaining the observed data given the marginals of the contingency table.
To compute these the number of ways to put 28 balls into four urns such that all marginals
are correct is (

28

15

)(
28

16

)
.

To calculate the number of ways to obtain not only the marginals but the numbers in the
four cells assume you must lay 28 balls in a row, where 2 have colour a, 13 have colour b,
10 have colour c and 3 have colour d. The colour a balls can be put on the 28 sites in

(
28
2

)
ways. There are 26 positions remaining. Next choose 13 positions for the balls of colour b,
which give

(
26
13

)
possibilities. Afterwards, for colour c you have

(
13
10

)
possibilities. The balls

of colour d must then be put in the remaining positions. This totally gives(
28

2

)(
26

13

)(
13

10

)
=

28!

2!13!10!3!
.

Let us assume we have data a, b, c, d instead of the given numbers. Then, as the
probability of the observed data must be the number of ways of obtaining it divided by
the number of all possibilities, we have

P[(a, b, c, d)] =
n!

a!b!c!d!(
n
a+b

)(
n
a+c

) =
(a+ b)!(a+ c)!(b+ c)!(b+ d)!

a!b!c!d!n!
. (9.1)

So in our case we have

P[(2, 13, 10, 3)] =
15!13!12!16!

28!2!13!10!3!
= 0.00098712.

which is the probability of finding the contingency table that we had. However, the p-
value was defined as the probability that, given the null-hypothesis, the data are at least
as extreme as the observed data. The data would be more extreme if the data would like
one of the tables given in Figure 9.2. Note however, that the marginals of the contingency
table are fixed here. We only check independence of invasion and species given these
marginals.

Using these more extreme cases we can calculate the p-value, by adding up the prob-
abilities for all the more extreme cases. It turns out to be 0.00162. This means that the
test is highly significant and the hypothesis, that the invasion of ants is independent of the
species can be rejected. All about Fisher’s exact test is summarised in Figure 9.3.

The easiest way to perform tests on contingency tables is by using a web-based calcula-
tor. You can find a χ2-calculator e.g. at http://schnoodles.com/cgi-bin/web chi.cgi,
one for Fisher’s exact test is found at http://www.matforsk.no/ola/fisher.htm. Also
programs like DNASP (use Tools->Tests of Independence: 2x2 table) and of course
any statistical package like R can do such tests.
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Acacia
species

Not invaded Invaded Total

A 1 14 15

B 11 2 13

Total 12 16 28

Acacia
species

Not invaded Invaded Total

A 0 15 15

B 12 1 13

Total 12 16 28

Acacia
species

Not invaded Invaded Total

A 11 4 15

B 1 12 13

Total 12 16 28

Acacia
species

Not invaded Invaded Total

A 12 3 15

B 0 13 13

Total 12 16 28

Figure 9.2: More extreme cases for Fisher’s exact test

Exercise 9.2. A plant ecologist samples 100 trees of a rare species from a 400-square-
kilometer area. His records for each tree whether or not it is rooted in serpentine soils and
whether its leaves are pubescent or smooth. The data he collected in Figure 9.4.

Use

1. a χ2-test

2. Fisher’s exact test

to assess whether the kind of soil and the kind of leaves are independent. Compute the
p-values in each case? Interpret your results. 2

9.2 Tajima’s D

Recall that, if the neutral theory and the infinite sites model hold, there are a number
of different unbiased estimators of θ = 4Neµ. These include the estimator θ̂S (see (2.7))
where S is the number of segregating sites in a sample of n sequences. A second was given
in (2.6) to be θ̂π which is the mean pairwise difference between the sequences in the sample.
Both these estimators are unbiased but they use different information in the sample. This
motivated Tajima (1989) to propose his d statistic, which is defined as

d := θ̂π − θ̂S. (9.2)
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Fisher’s exact test

checks for independence in a 2× 2 contingency table.

Data a, b, c, d as given below; their distribution is any distribution
for which a+ b, a+ c, b+ c and b+ d are fixed

Case 1 Case 2 Total

Case A a b a+ b

Case B c d c+ d

Total a+ c b+ d n

Null-hypothesis a, b, c, d are distributed independently on the table, leaving
a+ b, a+ c, b+ c, b+ d fixed,

P[(a, b, c, d)|a+b, a+c, b+c, b+d, n] =
(a+ b)!(c+ d)!(a+ c)!(b+ d)!

a!b!c!d!n!
.

p-value p =
∑

a,b,c,d at least
as extreme as data

P[(a, b, c, d)|a+ b, a+ c, b+ c, b+ d, n].

Figure 9.3: Schematic use of Fisher’s exact test

Leaf
form

Serpentine
soil

No serpentine
soil

Total

Pubescent 19 18 37

Smooth 17 46 63

Total 36 64 100

Figure 9.4: Data for Exercise 9.2
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Since both estimators are unbiased, for neutral/infinite sites model E[d] = 0. However,
because the two statistics have different sensitivities to deviations from the neutral model,
d contains information.

Exercise 9.3. Take the data from Exercise 5.1. Compute d in this case either by hand or
using R. 2

We know that the expectation of d is 0, but in order to use it as a test statistic we
need to know also the variance. As Tajima (1989) showed, the variance can be estimated
by (we don’t give the derivation because it is too long)

V̂ar[θ̂π − θ̂S] =
c1

a1

S +
c2

a2
1 + a2

S(S − 1)

with

c1 = b1 −
1

a1

, c2 = b2 −
n+ 2

a1n
+
a2

a2
1

, (9.3)

b1 =
n+ 1

3(n− 1)
, b2 =

2(n2 + n+ 3)

9n(n− 1)
, (9.4)

a1 =
n−1∑
i=1

1

i
, a2 =

n−1∑
i=1

1

i2
. (9.5)

Using this he defined the test statistic

D =
θ̂π − θ̂S√

V̂ar[θ̂π − θ̂S]

. (9.6)

Tajima’s D statistic is probably the most widely used test of neutrality. It has the
appealing property that its mean is approximately 0 and its variance approximately 1.
Also, for large sample sizes it is approximately normally distributed under neutrality, and
more generally it is approximately β-distributed. However, it is still preferable not to use
the approximate distribution, but to get the real one by doing computer simulations.

What values of Tajima’s D do we expect when there is a deviation from the neutral
model? The statistic reflects the shape of the genealogy. Consider the genealogies shown
in Figure 9.5.

Keeping the total length constant means that E[θ̂S] is constant, because a mutation
anywhere on the tree causes a segregating site. We can transform between genealogies by
moving one node up and another node down, without changing the total length. Look
at Figure 9.6. By moving the root of the left tree down one unit increases the pairwise
distance by two units for 3 · 2 = 6 pairwise comparisons, but moving the other point up
by two units decreases the pairwise distance by four units for only 2 pairwise comparisons.
The net effect is that the total number of pairwise differences is larger in the right tree.
This illustrates why genealogies which have a deep bifurcation tend to have positive values
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Neutral
D = 0

Balancing selection
D > 0

Recent sweep
D < 0

Figure 9.5: Genealogies under different forms of selection.

Figure 9.6: Both trees have the same total length, but the right tree has longer internal branches.
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of Tajima’s D. For the same reasons, genealogies that are approximately star-like tend to
have negative values of Tajima’s D.

We expect a selective sweep to cause a star shaped genealogy and balancing selection
to cause a deeply bifurcated genealogy. Purifying selection against recurrent deleterious
mutations causes a small reduction in D because deleterious alleles are at low frequency
on short branches.

Exercise 9.4. The last paragraph gave a heuristic view about genealogical trees under
different selective forces. Explain in your own words why

• selective sweeps cause star like genealogies,

• balancing selection leads to deeply bifurcated trees.

Which kind of tree topologies from Figure 9.5 would you expect in a structured population?
2

Conditional Testing of Tajima’s D

Recall that for the denominator of D the variance of d was estimated using an estimator
of θ, θ̂. So when we calculate a p-value for Tajima’s D we use exactly this estimator.
Implicitly we assume here that the estimator gives us the correct value. So, when we want
to find out the distribution of Tajima’s D and p-values, that follow from the distribution,
we want to find

p = P[D < d|θ̂, neutrality]. (9.7)

With modern computers and fast coalescent simulations, there is really no reason to ap-
proximate the sampling distribution of D with a normal or beta distribution. Instead, the
exact sampling distribution should be estimated by simulation.

Exercise 9.5. DNASP can do these coalescent simulations for you. Open the file hla-b.nex.
Here you see 50 lines from the human hla region. This locus is supposed to be under
balancing selection, so Tajima’s D should be positive. Always use the complete dataset in
this exercise.

1. Does Tajima’s D-test give a significant result for the region as a whole?

2. Do a sliding window analysis to see how Tajima’s D behaves in the region of consid-
eration. Here DNASP uses a predefined distribution of Tajima’s D, probably a normal
distribution.

3. You will see that there is a region where Tajima’s D tends to be positive but not sig-
nificantly so (i.e. with a p-value above 5%). Use Tools->Coalescent Simulations

to compute the critical region of Tajima’s D test, given the overall level of polymor-
phism, e.g. given by θ̂S or θ̂π. Do your simulation results support the hypothesis of
balancing selection better than your results in 1?
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2

Some more recent papers have instead calculated p-values using the conditional sam-
pling distribution of D, obtained by conditioning on the observed number of segregating
sites, i.e. S = s. The reason for doing this is that no assumption has to be made that
an estimated θ-value is correct. The number of segregating sites is just as it is. So these
papers compute

p = P[D < d|S = s, neutrality]. (9.8)

These two ways of tests using Tajima’sD produce different p-values and different critical
regions. For example, suppose we know θ = 1 or we estimated θ̂ = 1 and assume this is
correct. Then by generating 105 random samples from the distribution of D, for n = 30,
we find that the 0.025 and 0.975 quantiles −1.585 and 1.969 respectively.

Thus R = {D ≤ −1.585 or D ≥ 1.969} is a rejection region for a size 0.05 test, i.e. a
test that guarantees to make false rejection errors with a frequency at worst 5% in a long
series of trials. However, we conditioned here on having found the correct θ. When we
condition on the number of segregating sites s, the frequency of making a type I error by
rejecting neutrality using rejection region R is not 5%, as shown in Figure 9.7.

Exercise 9.6. In Tools->Coalescent Simulations DNASP offers a coalescent simulation
interface. Let us use this to see the differences between conditioning on θ̂ = θ and on
S = s.

1. Make 10000 coalescent simulations to check whether you also obtain the critical region
R. However it is possible that the values DNASP gives you a deviate from the above
ones though . How do you interpret this?

2. DNASP offers you to simulate Given Theta and Given Segregating Sites which is
exactly the distinction we also draw here. Using the coalescent interface can you also
obtain the values given in Figure 9.7?

2

9.3 Fu and Li’s D

Another test that is directly based on the coalescent was proposed by Fu and Li (1993).
Their test statistic is based on the fact that singletons, i.e. polymorphisms that only affect
one individual in a sample, play a special role for different population histories. From the
frequency spectrum (see Chapter 5) we know that

E[Si] =
θ

i
,
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s P[D ∈ R] bias

1 0% less type I

4 6.22% more type I

7 6.93% more type I

Figure 9.7: Assume a critical region R = {D ≤ −1.585 or D ≥ 1.969}. This should fit to a test
of site 5% where n = 30 and θ = 1. Conditioning on the number of segregating
sites the frequencies of type I errors change. A total of 105 unconditional trials were
simulated.

where Si is the number of segregating sites that affect i individuals in the sample. Using
this, we can e.g. conclude that

E[S] =
n−1∑
i=1

E[Si] = θ
n−1∑
i=1

1

i
,

which gives a better understanding of the estimator θ̂S. We can also use it to predict the
number of singletons: E[S1] = θ, this gives us a new unbiased estimator of θ:

θ̂S1 = S1

With their test statistic, Fu and Li (1993) compared the level of polymorphism on external
branches, which are the singleton mutations, with the level of polymorphism on internal
branches, i.e. all other mutations. As

n−1∑
i=2

E[Si] = θ

n−1∑
i=2

1

i
,

another unbiased estimator of θ is

θ̂S>1 =
S>1∑n−1
i=2

1
i

where S>1 are all segregating sites that affect more than one individual. In the same spirit
as Tajima (1989), Fu and Li (1993) proposed the statistic

d = θ̂S>1 − θ̂S1 .

Exercise 9.7. Again use data from Exercise 5.1 (plus the outgroup of Exercise 5.3).
Compute d in this case either by hand or using R. 2
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Again - in order to make it a better test statistic - they calculated the variance of d
and found out that a good estimator of this is

V̂ar[θ̂S>1 − θ̂S1 ] = c1S + c2S
2

with

c1 = 1 +
a2

1

a2 + a2
1

(
b− n+ 1

n− 1

)
,

c2 = an − 1− c1,

b =
2nan − 4(n− 1)

(n− 1)(n− 2)
,

and a1, a2 from (9.3).
Analogously to Tajima’s D statistic Fu and Li (1993) proposed the test statistic

D =
θ̂S>1 − θ̂S1√
V̂ar[θ̂i − θ̂e]

.

The interpretation for selective models can again be read from Figure 9.5. When the tree
looks like the one in the middle θi will be small and D in this case negative. When the
genealogical tree looks like the right side then θ̂S>1 will be far too small and so D will
positive.

Exercise 9.8. Use the same dataset as in Exercise 9.5. Does Fu and Li’s D suggest that
balancing selection is going on at the human HLA locus? Again answer this question using
the dataset as a whole, for a sliding window analysis and using coalescent simulations. 2

Exercise 9.9. Obviously Fu and Li’s D and Tajima’s D use different information of the
data. Can you draw a genealogical tree (with mutations on the tree) for the case that

• Tajima’s D is negative and Fu and Li’s D is approximately 0?

• Fu and Li’s D is positive and Tajima’s D is approximately 0?

2

9.4 Fay and Wu’s H

Tests based on polymorphism data only, are easily confounded by demography and by
selection at linked sites. These problems can be addressed to some extent by combining
divergence and polymorphism data, and by combining data from several loci at once.

As we know from Chapter 8, the genealogy at loci closely but not completely linked to
a site at which a selective sweep has occurred, there is a tendency for the genealogies to
resemble the one in Figure 8.3.
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Figure 9.8: Sliding window analysis of the accessory gland protein gene by Fay and Wu (2000).

Especially, we saw in Exercise Ex:hitchSFS that hitchhiking give rise to high frequency
derived alleles. The statistic

θ̂H =
n−1∑
i=1

2Sii
2

n(n− 1)
(9.9)

is particularly sensitive to the presence of such variants, and therefore suggests the test
statistic

H = θ̂T − θ̂H (9.10)

Fay and Wu did not provide an analytical calculation of the variance for this statistic and
therefore p-values have to be estimated by simulation. In both simulated and real data for
which divergence data have indicated positive selection, Fay and Wu (2000) found smaller
p-values for H-tests than for Tajima’s D-tests.

Particularly spectacular are the large peaks in θ̂H for the Drosophila accessory gland
protein gene (Figure 9.8); perhaps two regions where there could have been incomplete
hitchhiking, one on either side of a ∼ 350bp region where almost all variability has been
eliminated.

9.5 The HKA Test

The HKA test that was introduced by Hudson et al. (1987), uses polymorphism and di-
vergence data from two or more loci, and tests for loci that have an unusual pattern of
molecular variation. Here we will consider the case of L loci and polymorphism data from
two species A and B.
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The idea and the model

The main idea of the HKA test is that under neutrality you would expect the same ratio
between polymorphism within and divergence between species in the L loci under obser-
vation.

The test assumes that the polymorphism data is taken from two species with a fixed
effective population size of 2Ne and 2Nef haploids. These species are assumed to have
diverged from each other some time T ago, where T is measured in units of 1/2Ne gener-
ations. The ancestral species is assumed to have had a fixed effective population size of
2Ne

1+f
2

diploids. Further assumptions are:

1. at each locus an infinite sites model with selectively neutral mutations holds

2. the mutation rate at locus i is µi (i = 1, . . . , L)

3. there is no recombination within the loci

4. there is free recombination between the loci, i.e. loci are unlinked

Parameters and data

On the data side we have

SA1 , . . . , S
A
L number of segregating sites in species A at loci 1, . . . , L

SB1 , . . . , S
B
L number of segregating sites in species B at loci 1, . . . , L

D1, . . . , DL divergence between two randomly picked lines from species A
and B at loci 1, . . . , L.

So there are 3L numbers that we observe. On the parameter side we have:

T time since the split of the two species

f ratio of the two population sizes of species B and A

θ1, . . . , θL scaled mutation rate at loci 1, . . . , L

So there are L+ 2 model parameters. As long as L ≥ 2, i.e. when data of two or more loci
is available there are more observations than parameters. This means that we can test the
model.

Exercise 9.10. Why does it only make sense to test the model if the data consists of more
numbers than the number of model parameters? 2
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Estimation of model parameters

First of all we have to estimate the model parameters. This can be done by different means.
As the estimator θ̂S is unbiased for one locus, we can calculate that

L∑
i=1

SAi = anA

L∑
i=1

θ̂i, (9.11)

L∑
i=1

SBi = anB
f

L∑
i=1

θ̂i, (9.12)

where

an :=
n−1∑
i=1

1

i
,

and nA is the number of sequences we have for species A. Divergence of two randomly
picked lines from the two populations is on average 2Ne(T + 1+f

2
) generations. So, we can

estimate
L∑
i=1

Di =
(
T̂ + 1+ bf

2

)
θ̂i. (9.13)

For each single locus i = 1, . . . , L we have polymorphism in A, polymorphism in B and
divergence which adds up to

SAi + SBi +Di = θ̂i
(
T̂ + 1+ bf

2
+ ana + anB

)
. (9.14)

Using these equations we would have L + 3 equations for L + 2 unknowns, which are the
model parameters. So it is not guaranteed that we find a solution. But we can try to find
them by a least squares approach. Assume you take some combination of t̂, f̂ , θ̂1, . . . , θ̂L.
When you plug them into the right sides of (9.11)-(9.14) these numbers produce some
numbers for the left sides for these equations. They are least squares estimators if and
only if the sum of squares of differences of those produced left sides to the real ones, given
by the left sides of (9.11)-(9.14), is minimal.

The test statistic

Ultimately we want to test if our model fits the observations. So far we have estimated
the model parameters. The HKA test now makes the assumption that

• the random numbers SA1 , . . . , S
A
L , S

B
1 , . . . , S

B
L , D1, . . . , DL are independent and nor-

mally distributed.

While for large data sets it is possible that approximately the normal distribution holds
true. The independence is certainly false, e.g. because the divergence uses the same
segregating sites as the polymorphism. The HKA test has been criticised for this. Let us
see what happens under this assumption.

Next we need two properties of probability distributions.
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Maths 9.1. When X is normally distributed, then

Y :=
X − E[X]

Var[X]

is also normally distributed with E[Y ] = 0,Var[Y ] = 1.

Maths 9.2. Let X1, . . . , Xn be independent, normally distributed random variables with
E[Xi] = 0,Var[Xi] = 1 (i = 1, . . . , n). Then the distribution of

Z = X2
1 + . . .+X2

n (9.15)

is χ2(n) distributed. Here n denotes the number of degrees of freedom.

When the above assumption holds at least approximately we now see that

SAi − E[SAi ]√
Var[SAi ]

is approximately normally distributed and

L∑
i=1

SAi − E[SAi ]

Var[SAi ]
+

L∑
i=1

SBi − E[SBi ]

Var[SBi ]
+

L∑
i=1

Di − E[Di]

Var[Di]

is approximately χ2 distributed. But as we do not know E[SAi ] and Var[SAi ] we have to
estimate them before we can use this. This is easy for the expectation, but for the variance
we have to compute something.

Assume a coalescent tree for n individuals with mutation rate µ. Let L be the length
of the whole tree and Ti be the time the tree spends with i lines. As usual S is the number
of segregating sites. Then

E[S(S − 1)] =

∫ ∞
0

E[S(S − 1)|L = `]P[L ∈ d`]

=

∫ ∞
0

∞∑
s=0

s(s− 1)e−`µ
(`µ)s

s!
P[L ∈ d`]

=

∫ ∞
0

(`µ)2

∞∑
s=2

e−`µ
(`µ)s

s!
P[L ∈ d`]

= µ2

∫ ∞
0

`2P[L ∈ d`] = µ2E[L2] = µ2
(
Var[L] + (E[L])2

)
.

So we have to compute the variance of L. As we calculated in Maths 1.3 the variance of
an exponentially distributed variable we can continue

Var[L] = Var
[ n∑
i=2

iTi

]
=

n∑
i=2

i2Var[Ti] =
n∑
i=2

i2
(2N(

i
2

))2

= (2N)2

n−1∑
i=1

1

i2
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i locus si di
1 Adh 20 16
2 5’ flanking region 30 78
3 Adh-dup 13 50

Figure 9.9: Data from 11 D. melanogaster and 1 D. simulans sequences

and so

Var[S] = E[S] + E[S(S − 1)]− (E[S])2 = θa1 + θ2(a2 + a2
1 − a2

1) = θa1 + θ2a2. (9.16)

Using this we can estimate, for the ith locus in species A

V̂ar[SAi ] = θ̂ia1 + θ̂2
i a2

and in species B
V̂ar[SBi ] = θ̂if̂a1 + (θ̂if̂)2a2.

The same calculation also works for divergence and in this case

V̂ar[Di] = θ̂i
(
T̂ +

1 + f̂

2

)
+
(
θ̂i
(
T̂ +

1 + f̂

2

))2
.

Now we can use the test statistic

χ2 =
L∑
i=1

SAi − Ê[SAi ]

V̂ar[SAi ]
+

L∑
i=1

SBi − Ê[SBi ]

V̂ar[SBi ]
+

L∑
i=1

Di − Ê[Di]

V̂ar[Di]
. (9.17)

Each estimated parameter reduces the degree of freedom of this test statistic by 1 and so
χ2 has a χ2-distribution with 3L − (L + 2) = 2L − 2 degrees of freedom. Now we have
a test statistic and also know approximately its distribution, so we can calculate critical
regions and p-values.

Example

We can apply the HKA test to data for the Adh gene, its 5’ flanking region and an ancient
duplicate gene Adh-dup, shown in Figure 9.9. The data are from the paper in which the
HKA test was introduced Hudson et al. (1987).

Here we have 11 lines from D. melanogaster but only one from D. simulans. The
consequence is the for simulans we do not have polymorphism data. As our data is less
we need also less model parameters. We do this by assuming that f = 0. This means that
we assume that D. simulans and D. Melanogaster have emerged from one species that had
the size of D. melanogaster today. The D. simulans has split as a small fraction of this
ancestral species. This is illustrated in Figure 9.10.
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2Ne 2Ne

t

Locus 1, µ1 Locus 2, µ2

Figure 9.10: Model assumed by the HKA test in the special case f = 0 and polymorphism data
only from one species.

The only significant pairwise comparison is between Adh and Adh-dup, which has χ2 =
4.574 and p = 0.0325 assuming the χ2 approximation. For this test the expected quantities
were (Ê[S1] = 12.0, Ê[S3] = 21.0, Ê[D1] = 24.0, Ê[D3] = 42.0). Comparing these with
the observed values suggests that the Adh gene has unusually high level of polymorphism
or an unusually low divergence, or vice versa for Adh-dup. This has been interpreted as
evidence of balancing selection acting on the Adh fast—slow polymorphism.

Exercise 9.11. Two versions of the HKA test are implemented in DNASP. However it
can only deal with two loci and always sets f = 0 in the above analysis. For the first
(Analysis->HKA, Hudson, Kreitman, Aguade Test) you have to define the two loci in
your data set. The second version (Tools->HKA Test (Direct Mode)) only needs num-
bers of segregating sites and divergence between two species as input. Here, it is assumed
that only one line from species B is available, so we find ourselves in the regime of the
above example.

1. Can you reproduce the numbers of the above example, e.g. χ2 = 4.574?

2. Is the comparison Adh and Adh-dup really the only one that gives a significant result?

2

Note that the parameter estimates obtained using equations (9.11)-(9.14) are not the
values that minimize the test statistic. The least squares procedure minimises the sum
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s1 s2 d1 d2
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Figure 9.11: Data (×) for HKA test for Adh locus versus its 5’ flanking region. Expectations ±
1 s.d. are shown for each quantity, calculated using either the parameter estimates
obtained by equations (9.11)-(9.14) (closed symbols) or the estimates that minimize
the test statistic of equation (9.17) (open symbols).

of the numerators in equations (9.11)-(9.14) without regard to differences in the expected
variance of each quantity. This is illustrated in Figure 9.11 for the comparison between
Adh and its 5’ flanking region (table 9.9). Parameter estimates obtained by equations
(9.11)(9.14) are t = 4.5, θ1 = 4.3, θ2 = 12.8 and give χ2 = 3.2. However, the minimum
χ2

Min = 1.79 is obtained when t = 2.4, θ1 = 5.6, θ2 = 20.3.
Estimating parameters by minimising χ2 produces smaller values of the test statisticX2,

and hence larger P -values if it is assumed that the null distribution of χ2 is χ2 distributed
with 1 degree of freedom. The HKA test is quite a robust test. Many deviations from the
model, for example linkage between the loci or a population bottleneck in the past, generate
correlations between the genealogies at the two loci and therefore reduce the variance of
the test statistic, making the test conservative.

Exercise 9.12. One property of an estimator is consistency. That means that it gets
better when more data is available. Assume an estimator •̂(n) of • is based on n data.
Consistency means that

Var[ •̂(n) ]
n→∞−−−→ 0.

You know the estimator θ̂S which is only based on S. We could also call it θ̂
(n)
S when the

sequences of n individuals are available. Is this estimator consistent?
Hint: Use (9.16) 2

9.6 The McDonald–Kreitman Test

The McDonald and Kreitman (1991) test is similar to the HKA test in that it compares
the levels of polymorphism and divergence at two sets of sites. Whereas for the HKA test
the two sets of sites are two different loci, the McDonald-Kreitman test examines sites that
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are interspersed: synonymous and non-synonymous sites in the same locus. Because the
sites are interspersed, it is safe to assume that the genealogies for the two are the same.
The model therefore has four parameters; the synonymous mutation rate µs and non-
synonymous mutation rate µa, the total lengths of divergence and within species branches
in the genealogy, td and tw (see Figure 9.12).

Σ=tw

td

Figure 9.12: Model assumed for the McDonald-Kreitman test.

Assuming the infinite sites model, the numbers of segregating sites of each of the four
possible types (synonymous or non-synonymous, and diverged or polymorphic within a
species) are independently Poisson distributed with means given in Figure 9.13.

Here µ = µa + µs is the total mutation rate and t = td + tw is the total length of the
tree. The observations can therefore be arranged in the corresponding 2 × 2 contingency
table and tested for goodness of fit using a χ2 test, Fisher’s exact test or others (e.g. a
G-test).

The McDonald-Kreitman test is a very robust test, because no assumption about the

diverged polymorphic Total

synonymous µstd µstw µst

non-synonymous µatd µatw µat

Total µtd µtw µt

Figure 9.13: Expected means for the McDonald-Kreitman test under neutrality.
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diverged polymorphic Total

synonymous 17 42 59

non-synonymous 7 2 9

Total 24 44 68

Figure 9.14: Data from McDonald and Kreitman (1991) given in a 2× 2 contingency table.

shape of the genealogy is made. It is therefore insensitive to the demographic histories,
geographic structuring and non-equilibrium statuses of the populations sampled.

If synonymous mutations are considered neutral on an a priori basis, then a significant
departure from independence in the test is an indicator of selection at non-synonymous
sites. An excess of substitutions can be interpreted as evidence of adaptive evolution,
and an excess of polymorphism can be interpreted as evidence of purifying selection since
deleterious alleles contribute to polymorphism but rarely contribute to divergence.

McDonald and Kreitman (1991) studied the Adh gene using 12 sequences from D.
melanogaster, 6 from D. simulans and 12 from D. yakuba and obtained the data as given
in Figure 9.14. These show a significant departure from independence with p < 0.01. The
departure is in the direction of excess non-synonymous divergence, providing evidence of
adaptively driven substitutions.



150 CHAPTER 9. NEUTRALITY TESTS



Appendix A

R: a short introduction

R is a programming environment for statistical analysis. It is already widely-used in all
kinds of statistical analysis, as well as in bioinformatics. Importantly, it is free and works
on all major operating systems. The main advantages of R are threefold: First, it is easily
extendible, and can be used for both data analysis and as a scripting language. Second, it
is relatively easy to learn. Third, it has excellent capabilities for graphical output.

During our course we are using the (self-written) R-package labpopgen for several com-
putations and simulations. Since R is a command line program, we show you how to use it
here. R is free software, so you can find many introductions, manuals, etc. in the Internet;
you might e.g. look at www.r-project.org which is the homepage of the program.

Once you launched R you find yourself in front of the command prompt

>

To get started, let us use R as a calculator. So, you can add some numbers and hitting
return gives you the answer:

> 1+2+3+4

[1] 10

Within R you can define variables. E.g. you can say

> a=1

> b=2

> c=3

> d=4

> a+b+c+d

[1] 10

(Often, the sign <- is used instead of =, e.g. a<-1). R takes everything you give it as a
vector. In particular, the answer to your last computation was a vector of length 1, which
is indicated by the [1] in the last line. To define a vector of length greater than one, you
can use the c command, which stands for ’concatenate’. Moreover, you can compute with
these vectors, e.g.

151
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> v<-c(1,2,3,4)

> sum(v)

[1] 10

Assume you do not know what the function sum in the last example really does. Since R

comes with a lot of help files, you can just ask the program in typing

>?sum

and you get a detailed description. Type q to exit the help-mode.
R is a statistical package, so you can also perform statistical tests. Maybe you know the

t-test or the χ2-test or Fisher’s exact test from some statistics course. If you don’t know
the command for such a test you might find it out, e.g. by saying

>help.search("Fisher’s exact test")

which we will use in Chapter 9.
In the simulations we will do you will see that R can produce nice graphical output.

Assume that you measure the weight and height of all persons in class. You might get

>height=c(170,174,190,178,163,176,167,165,188,182)

>weight=c(60,67,87,60,51,63,64,59,80,75)

You can get a good overview of the data if you see it graphically, so type

>plot(weight,height)

We wrote some R-functions for the course. This package requires another package, odesolve,
which you should download and install first. (For installing a package, type

>R CMD ISNTALL package-name.tgz/zip

in a command line under Linux or by clicking under Windows.) Every time you launch R

type

>library(labpopgen)

which then loads all commands which are used in the exercises. You can e.g. find out the
details of the coalescent-simulator if you type ?coalator. To find out all commands in the
package type library(help=labpopgen).

Good luck!!!
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Adh, 145
admixture, 99
alignment, 11, 70
amino acid, 9
association, see linkage
assortative mating, 102

bottleneck, 45, 80, 92
budding, 10

cloning, 10
coalescent, 30, 40, 69, 75, 144

recombination, 88
codon, 9
correlation coefficient, 98
coupling gametes, 97
covariance, 43, 97
critical region, 129
crossing over, 86

D, see linkage disequilibrium
Darwin, 101
deletion, 10
demography, 69, 77, 140
diploid, 53, 85
distribution, 14

beta, 135
binomial, 18, 23, 42, 73, 106
χ2, 131, 144
exponential, 15, 33, 49, 88, 144
geometrical, 31, 33, 44
multinomial, 27
normal, 143
Poisson, 23, 42, 73, 121
stationary, 29

distribution function, 56

divergence, 13, 16, 40, 141, 149
DNA, 9, 35
DNASP, 11, 37, 58, 63, 76, 94, 98, 137, 138
dominance coefficient, 105, 117

epistasis, 103
estimator, 15

consistent, 147
unbiased, 15, 135, 139

exon, 10
expectation, 14

f , see inbreeding coefficient
F1, 87
false negative, 130
false positive, 130, 138
Fay and Wu’s H, 140
Fisher, 22, 118
fitness, 23, 101, 115, 119

increase, 123
multiplicative, 119

fixation index, 59
fixation probability, 50, 107
fixation time, 40, 51, 56
four-gamete-rule, 93
frequency spectrum, 73–138
FST , 59
Fu and Li’s D, 138

gene, 9
gene conversion, 86
gene flow, 64
gene-pool, 65
genealogical tree, 33, 69–83, 90, 93, 135, 140,

147
genetic code, 9
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genetic drift, 13, 26, 48, 56
genetic load, 116
genetic map, 85, 94

h, see dominance coefficient
Haldane, 22, 109
Haldane-Muller principle, 117
Hardy-Weinberg equilibrium, 53, 58
heterozygosity, 40, 41, 45, 48, 50, 54, 59, 65
heterozygote advantage, 111
hitchhiking, 123

identity by descent, 57
inbreeding, 53
inbreeding coefficient, 54
indel, 10, 12
independent inheritance, 86
infinite alleles model, 48, 66
infinite sites model, 35, 142
insertion, 10
intergenic region, 9
intron, 10
island model, 65

Kimura, 21, 101

linkage, 86
linkage disequilibrium, 93
linkage disequilibrium, 100

mainland-island model, 64
Markov chain, 27
Maynard Smith, 123
meiosis, 10, 85
meiotic drive, 102
Mendel, 86
microsatellite, 12
migration, 64
mismatch distribution, 82–83
mitochondria, 33, 85
molecular clock, 13
monkey, 17
Morgan, 85
MRCA, 13, 15, 31, 70, 91

µ, 13, 35, 39, 73, 92
Muller’s Ratchet, 119
Muller’s ratchet, 123
mutation, 10, 35, 48, 69

deleterious, 119
high frequency variant, 79
neutral, 76
singletons, 70
size of a, 74
synonymous, 147

mutation rate, see µ
mutation-selection-balance, 115

neutral theory, 21–37, 48, 69, 101
null hypothesis, 129

offspring distribution, 23, 78
offspring variance, 42
outgroup, 70
overdominance, 110, 112, 118

p-value, 129
panmixia, 22, 39, 54, 58
parsimony, 17, 70
phase, 54
phylogenetic tree, 12
phylogeny, 70
π, 44
pleiotropy, 103
Polya urn, 74
polymorphism, 9, 21, 48, 115, 141
population

structured, 58
population size

census, 40
decline, 78
effective, 39–53, 56, 78
expansion, 78
fluctuating, 45

R, 19, 26, 29, 34, 50, 51, 56, 67, 73, 99, 109,
111, 117, 125, 128, 132, 135, 139, 151

r, see recombination rate
r2, 98, see linkage disequilibrium
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random mating, 22, 96
random variable, 14
ratchet, see Muller’s Ratchet
recombination, 13, 85–100

free, 98, 142
recombination rate, 54, 87, 88, 90, 92, 94, 98
relative rate test, see test
reproduction

asexual, 10, 119
sexual, 10

repulsion gametes, 97
ρ, see recombination rate
RNA, 9

S, see segregating sites
s, see selection coefficient
sample variance, 61
score, 11
segregating sites, 36, 44, 144
selection, 13, 101–123

balancing, 137
density dependent, 103
fecundity, 102
frequency dependent, 103
fundamental theorem, 118
gametic, 102
positive, 123
sexual, 102
viability, 102, 115

selection coefficient, 101, 105, 117, 123
selective sweep, 137
self-fertilisation, 54
self-incompatibility, 102
sequencer, 9, 54
simulation, 34, 137, 141
singleton, 139
site frequency spectrum, see frequency spec-

trum
SNP, 12, 40, 70, 93
species, 12
stationary distribution, see distribution
statistical testing, 129
subpopulation, 59, 61, 64, 67

Tajima’s D, 133
Taylor approximation, 107
test

χ2, 63
exact, 132
Fisher’s exact, 131
HKA, 141–147
McDonald-Kreitman, 147–149
neutrality, 129–149
relative rate, 17
size of a, 130

test statistic, 129
theta, 76
θ, 35, 69
θ̂π, 37, 39, 44, 81, 133
θ̂S, 37, 39, 81, 133, 143
transcription, 9
transition matrix, 29
translation, 9
tree length, 34
tree space, 72

underdominance, 110, 113, 118

variance, 14
VNTR, 12

W-chromosome, 46
Wahlund effect, 62
w̄, 106, 116
Wright, 22, 40, 110
Wright-Fisher model, 21–37, 41

fluctuating size, 77
inbreeding, 55
mutation, 35
recombination, 88
selection, 105, 116

X-chromosome, 39, 58, 69, 85

Y-chromosome, 33

Z-chromosome, 46
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GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not
allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document ”free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals provid-
ing the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The ”Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as ”you”. You
accept the license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A ”Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
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could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be
at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used
for any substantial amount of text. A copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifi-
cation. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, ”Title Page” means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as ”Acknowledgements”, ”Dedications”, ”Endorsements”, or ”History”.) To ”Preserve the
Title” of such a section when you modify the Document means that it remains a section
”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
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meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you distribute
a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.
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4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled ”History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
”History” section. You may omit a network location for a work that was published at
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least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their titles
to the list of Invariant Sections in the Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in
the combination all of the Invariant Sections of all of the original documents, unmodified,
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and list them all as Invariant Sections of your combined work in its license notice, and that
you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled ”History” in the various
original documents, forming one section Entitled ”History”; likewise combine any sections
Entitled ”Acknowledgements”, and any sections Entitled ”Dedications”. You must delete
all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
”aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.
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8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License ”or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.


