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Duality and martingale problems

Martingale problem: GX : DX ⊆ Cb(EX )→ B(EX );
X = (Xt)t≥0 solves the GX -martingale problem if(

f (Xt)−
∫ t

0
GX f (Xs)ds

)
t≥0

is a martingale for all f ∈ DX .

→ Uniqueness: by uniqueness of one-dimensional distributions

→ Existence: by approximation techniques

Duality: X and Y are dual with respect to some H if

Ex [H(Xt , y)] = Ey [H(x ,Yt)], t, x , y . (∗)

→ If Y exists and ΠX := {H(., y) : y ∈ EY } is separating, this
shows uniqueness of one-dimensional distributions for X .

Here: Use duality to show existence of GX -martingale problem

→ Origin of the idea: Evans (1997), Dynkin (1993).



Duality and martingale problems

Ex [H(Xt , y)] = Ey [H(x ,Yt)] (∗)

If GX is the generator for X and GY is the generator for Y , and

GXH(., y)(x) = GYH(x , .)(y),

then, (on a probability space where X and Y are independent),

d

ds
E(x ,y)[H(Xs ,Yt−s)] = E(x ,y)[GXH(.,Yt−s)(Xs)− GYH(Xs , .)(Yt−s)]

= 0,

and integrating gives (∗).



Existence and duality

Theorem: (Depperschmidt, Greven, P., 2020) Let H be such
that ΠX is separating, GX be given and Y a Markov process
which solves the GY -martingale problem.
Assume that for all x , y , t, there exists µt(x , .) such that (some
measurability condition holds and)

Ey [H(x ,Yt)] =

∫
µt(x , dx

′)H(x ′, y). (�)

Then, the GX martingale problem is well-posed, its solution X
satisfies Xt ∼ µt(x , .) and

Ex [H(Xt , y)] = Ey [H(x ,Yt)] (∗)

holds.
If ΠX is convergence determining and Y is Feller, then X is Feller
as well.

Proof: Chapman-Kolmogoroff for X follow from Y being Markov.



Example: Fleming-Viot process

For x ∈ P(I ) and y ∈ EY :=
⋃

n Cb(I n),

H(x , y) =

∫
x⊗(du)y(u) = 〈x⊗, y〉

Let Y = (Yt)t≥0 be EY -valued, with generator, for y ∈ Cb(I n),

GYH(x , y) =
∑
i 6=j

H(x , y ◦ θij)− H(x , y)

with
θij(u1, u2, ...) = (u1, ..., uj−1, ui , uj+1, ...).



Example: Fleming-Viot process

Is there some Xt ∼ µt(x , .) satisfying (�)?

Fix x . The map y 7→ Ey [〈x⊗,Yt〉] is a linear form, which can by
continuity extended to a linear form on the set Cb(IN).

By the Riesz-Markov Theorem, there is µ ∈ P(IN) such that∫
µ(du)y(u) = Ey [〈x⊗,Yt〉].

Since µ is invariant under coordinate permutations, by deFinetti’s
Theorem, there is an P(I )-valued random variable Xt such that

E[〈X⊗t , y〉] =

∫
µ(du)y(u).

So, (�) holds and well-posedness of the martingale problem for

GX 〈x⊗, y〉 =
∑
i 6=j

〈(θij)∗)x⊗, y〉 − 〈x⊗y〉.

The solution is called the Fleming-Viot process.



Extensions, conclusion and outlook

GX = G 1
X + G 2

X allows for existence by duality using Trotters
theorem;

Use of Riesz-Markov Theorem only works on compact spaces;
compactification might be required;

Application: Tree-valued Fleming-Viot process with
recombination

The manuscript Duality and the well-posedness of a martingale
problem at https://arxiv.org/abs/1904.01564 should be
updated soon.

https://arxiv.org/abs/1904.01564

