Intro 00000	Results 00	Trees 00000000	Proofs 000000

Recombination as a tree-valued process along the genome

Peter Pfaffelhuber joint with Andrej Depperschmidt, Etienne Pardoux

Mainz, June 12, 2015

Intro ●0000	Results 00	Trees 000000000	Proofs 000000

The Ancestral Recombination Graph (ARG)

...along a genome $\mathbb{G} := [a, b], u_1 \leq u_2$

Goal

- ► The ARG A from a population of size N gives rise to a tree-valued process (T^N_u)_{u∈G}.
- Goal 1: Check if

$$(\mathcal{T}_u^N)_{u\in\mathbb{G}} \xrightarrow{N\to\infty} \mathcal{T} = (\mathcal{T}_u)_{u\in\mathbb{G}}$$

for some tree-valued process ${\mathcal T}$

• Goal 2: Study some properties of \mathcal{T} (for $\mathbb{G} = (-\infty, \infty)$)

Intro	Results	Trees	Proofs
00000	••	00000000	000000

Convergence of N-ARGs

Theorem 1: It holds that

$$\mathcal{T}^N \stackrel{N \to \infty}{\Longrightarrow} \mathcal{T}$$

on $\mathcal{D}_{\mathbb{M}}(\mathbb{G})$ for some process $\mathcal{T}.$ The finite-dimensional distributions of \mathcal{T} are given through the ARG. The process \mathcal{T} has almost surely finite variation with respect to

- Gromov-Prohorov,
- Gromov total variation and
- Gromov-Hausdorff metrics.

Intro 00000	Results ○●	Trees 00000000	Proofs 000000

Mixing properties

Theorem 2: Let (*T_u*)_{*u*∈(-∞,∞)} be as above and Φ, Ψ be polynomials. Then, there is *C* = *C*_{Φ,Ψ} > 0 such that for all *u* > 0

$$\left|\mathbb{E}[\Psi(\mathcal{T}_0)\Phi(\mathcal{T}_u)] - \mathbb{E}[\Psi(\mathcal{T}_0)]\mathbb{E}[\Phi(\mathcal{T}_u)]\right| \leq \frac{C}{u^2}.$$

 Surprise: From Jenkins et al, one would have guessed a lower order term

$$\mathbb{E}[\Psi(\mathcal{T}_0)\Phi(\mathcal{T}_u)] = \mathbb{E}[\Psi(\mathcal{T}_0)]\mathbb{E}[\Phi(\mathcal{T}_u)] + \mathcal{O}\Big(\frac{1}{u}\Big).$$

Intro	Results	Trees	Proofs
00000	00	•00000000	000000

Formalizing genealogical trees

- Leaves in genealogical trees form a metric space
- A tree is given by:

- (X, r) complete and separable **metric** space
- r(x₁, x₂) defines the genealogical distance of individuals x₁ and x₂

Intro	Results	Trees	Proofs
00000	00	○●○○○○○○○	000000

Formalizing genealogical trees

• Leaves in genealogical trees form a metric space

A tree is given by:

- (X, r) complete and separable **metric** space, $\mu \in \mathcal{P}(X)$
- r(x₁, x₂) defines the genealogical distance of individuals x₁ and x₂
- μ marks currently living individuals

Intro	Results	Trees	Proofs
00000	00	00000000	000000

Formalizing genealogical trees

• Leaves in genealogical trees form a metric space

State space of \mathcal{T} :

- $$\begin{split} \mathbb{M} := & \{ \text{isometry class of } (X, r, \mu) : \\ & (X, r) \text{ complete and separable metric space}, \ \mu \in \mathcal{P}(X) \} \end{split}$$
- r(x₁, x₂) defines the genealogical distance of individuals x₁ and x₂
- μ marks currently living individuals

Intro	Results	Trees	Proofs
00000	00	00000000	000000

Gromov-Prohorov topology

 \blacktriangleright Polynpomials: Functions on $\mathbb M$ of the form

$$\Phi(X, r, \mu) := \int \phi(r(\underline{x}, \underline{x})) \mu^{\mathbb{N}}(d(\underline{x}))$$

for $\underline{x} = (x_1, x_2, ...), \phi \in \mathcal{C}_b(\mathbb{R}^{\binom{\mathbb{N}}{2}})$ depending on finitely many coordinates

► The Gromov-Prohorov topology on M is given as the coarsest topology making all polynomials continuous

Intro	Results	Trees	Proofs
00000	00	00000000	000000

Example: Kingman measure tree

- Single locus: genealogical tree T^N
- ► Theorem 4 in Greven, P, Winter (2009): There exists an M-valued random variable T such that

$$\mathcal{T}^{\mathsf{N}} \stackrel{\mathsf{N} \to \infty}{\Longrightarrow} \mathcal{T}.$$

Proof: Tightness by coming down from infinity; uniqueness since polynomials form a separating algebra of functions.

Intro 00000	Results 00	Trees 00000●000	Proofs 000000

Gromov-Prohorov metric

- Recall the Prohorov metric of two probability measures μ, ν

$$d_P(\mu,
u) := \inf\{ \varepsilon > 0 : \mu(A) \le
u(A^{\varepsilon}) + \varepsilon, A \text{ closed } \}$$

- Let (X_i, r_i, μ_i) be mm-spaces, φ₁ : X₁ → Z for i = 1, 2 be isometric embeddings into a common complete and separable metric space (Z, d).
- The Gromov-Prohorov metric is defined by

 $d_{\rm GP}((X_1, r_1, \mu_1), (X_2, r_2, \mu_2)) := \inf_{\varphi_1, \varphi_2, Z} d_{\rm P}((\varphi_1)_* \mu_1, (\varphi_2)_* \mu_2).$

Theorem (Gromov; Greven, P, Winter, 2009): The Gromov-Prohorov metric is complete and metrizes the Gromov-Prohorov topology.

Intro	Results	Trees	Proofs
00000	00	000000000	000000

Example: $d_{\mathrm{GP}}(\mathcal{T}_1,\mathcal{T}_2) \leq 1/5$

Intro 00000	Results 00	Trees 0000000●0	Proofs 000000

Total variation distance

 If Z is countable, the total variation distance of probability measures μ, ν on Z is given by

$$d_{\rm TV}(\mu,\nu) = \frac{1}{2} \sum_{z \in Z} |\mu(z) - \nu(z)|.$$
 (1)

Recall that

$$d_{\mathrm{P}}(\mu,\nu) \leq d_{\mathrm{TV}}(\mu,\nu).$$

The Gromov total variation distance is defined by

$$d_{\mathrm{GTV}}((X_1,r_1,\mu_1),(X_2,r_2,\mu_2)) \coloneqq \inf_{\varphi_1,\varphi_2,Z} d_{\mathrm{TV}}((\varphi_1)_*\mu_1,(\varphi_2)_*\mu_2).$$

Intro	Results	Trees	Proofs
00000	00	0000000	000000

Example: $d_{ ext{GTV}}(\mathcal{T}_1, \mathcal{T}_2) \leq 1/5$

Intro	Results	Trees	Proofs
00000	00	00000000	●00000

Proof of Theorem 1: Main steps

- Fdd-convergence: similar to convergence of Kingman measure tree.
- ▶ Tightness: Find *C* > 0 such that

 $\limsup_{N\to\infty} \mathbb{E}[d_{\mathrm{GTV}}(\mathcal{T}^N_{-h},\mathcal{T}^N_0)\cdot d_{\mathrm{GTV}}(\mathcal{T}^N_0,\mathcal{T}^N_h)] \leq Ch^2.$

00000 00 000	000000 000000

Auxiliary distance

Within the ARG, define

$$d^{u,v}(\mathcal{T}_u^N, \mathcal{T}_v^N) := \frac{\#\left\{\begin{array}{l} i \text{ leaf in } \mathcal{T}_u^N, \text{ hit by a splitting event} \\ \max ed \text{ with } U \in [u, v] \text{ before reach-} \\ ing \text{ the root of } \mathcal{T}_u^N \end{array}\right\}}{N}$$

Then,

$$d_{\mathsf{GTV}}(\mathcal{T}^N_u, \mathcal{T}^N_v) \leq d^{u,v}(\mathcal{T}^N_u, \mathcal{T}^N_v)$$

and

$$d^{0,-h}(\mathcal{T}_0^N,\mathcal{T}_{-h}^N), d^{0,h}(\mathcal{T}_0^N,\mathcal{T}_{h}^N)$$

conditionally independent given \mathcal{T}_0^N .

Intro	Results	Trees	Proofs
00000	00	000000000	00●000

Main step

Lemma:

$$\mathbb{E}[d^{0,h}(\mathcal{T}_0^N,\mathcal{T}_h^N)|\mathcal{T}_0^N] \leq h \sum_{k=2}^N S_k.$$

• Corollary: There is C > 0 such that

$$\begin{split} \mathbb{E}[d_{\mathrm{GTV}}(\mathcal{T}_{-h}^{N},\mathcal{T}_{0}^{N})\cdot d_{\mathrm{GTV}}(\mathcal{T}_{0}^{N},\mathcal{T}_{h}^{N})] \\ & \leq \mathbb{E}\big[\mathbb{E}[d^{0,-h}(\mathcal{T}_{0}^{N},\mathcal{T}_{-h}^{N})|\mathcal{T}_{0}^{N}]\cdot\mathbb{E}[d^{0,h}(\mathcal{T}_{0}^{N},\mathcal{T}_{h}^{N})|\mathcal{T}_{0}^{N}]\big] \\ & \leq Ch^{2} \end{split}$$

Intro	Results	Trees	Proofs
00000	00	000000000	000●00

Bounding the Gromov-Hausdorff distance

• Recall the Hausdorff metric of two sets $A, B \subseteq Z$

$$d_{H}(A,B) := \inf \{ \varepsilon > 0 : A \subseteq B^{\varepsilon}, B \subseteq A^{\varepsilon} \}$$

- Let (X_i, r_i, μ_i) be mm-spaces, φ₁ : X₁ → Z for i = 1, 2 be isometric embeddings into a common complete and separable metric space (Z, d).
- The Gromov-Hausdorff metric is defined by

$$d_{\mathrm{GH}}((X_1, r_1, \mu_1), (X_2, r_2, \mu_2)) := \inf_{\varphi_1, \varphi_2, Z} d_{\mathrm{P}}(\varphi_1(X_1), \varphi_2(X_2)).$$

Bound the time when a recombinant line coalesces back into the tree leads to a C > 0 such that

$$\mathbb{E}[d_{\mathrm{GH}}(\mathcal{T}_0^N,\mathcal{T}_h^N)] \leq Ch.$$

This implies finite variation in Gromov-Hausdorff sense.

Intro 00000	Results 00	Trees 00000000	Proofs 0000●0

Mixing properties

Theorem 2: For n ∈ N let Φ, Ψ be polynomials and (T_u)_{u∈(-∞,∞)} be as above. Then, there is C = C_{Ψ,Φ} > 0 such that for all u > 0

$$\left|\mathbb{E}[\Psi(\mathcal{T}_0)\Phi(\mathcal{T}_u)] - \mathbb{E}[\Psi(\mathcal{T}_0)]\mathbb{E}[\Phi(\mathcal{T}_u)]\right| \leq rac{C}{u^2}.$$

Intro	Results	Trees	Proofs
00000	00	00000000	00000●

Proof of Theorem 2: Main idea

Let Φ, Ψ be polynomials of degree 2, i.e. only depend on a single genealogical distance. Then, for an ARG A⁴, and distances R₀, R_u,

 $\mathbb{E}[\Psi(\mathcal{T}_0)\Phi(\mathcal{T}_u)] = \mathbb{E}[\phi(R_0(1,2))\psi(R_u(3,4))].$

► $R_0(1,2), R_u(3,4)$ are independent unless $R_0(1,2) = R_u(3,4)$. But

$$\mathbb{P}(R_0(1,2)=R_u(3,4))=\mathcal{O}\left(\frac{1}{u^2}\right)$$

(whereas

$$\mathbb{P}(R_0(1,2)=R_u(1,2))=\mathcal{O}\Big(\frac{1}{u}\Big).)$$