The partial duplication random graph

Peter Pfaffelhuber
with Felix Hermann

Munich, July 2014

Yeast protein-protein interaction network

Nature Reviews | Genetics
from Barabsi \& Oltvai, Network biology: understanding the cell's functional organization, 2004

The model from Pastor-Sartorras, Chung, Bebek,...

- Protein-protein interactions: key for biological functions of cells
- Evolution: proteins are copied, their function partially retained, new interactions can emerge
- Model: copy vertex with all edges, keep each edge with probability p, insert additional r edges at random
- With the right selection of parameters q and r, the general duplication model well approximates the degree distribution of the yeast proteome network. (Bebek et al 2006)
- In the following, we analyse the model for $q=0$

The partial duplication random graph

Start with some graph

The partial duplication random graph

Pick a vertex purely at random

The partial duplication random graph

Copy the vertex together with all edges

The partial duplication random graph

Keep every edge with probability p

The partial duplication random graph

This was one step in the partial duplication random graph

Example with 50 vertices and $p=0.6$

Theorem 1

Let $E^{\circ}(n)$ be the average degree when there are n vertices. Then,

$$
E^{\circ}(n) \xrightarrow{n \rightarrow \infty} \begin{cases}\infty, & p>1 / 2 \\ 0, & p<1 / 2\end{cases}
$$

Theorem 2

Let $F_{0}^{\circ}(n)$ be the frequency of singletons and $p^{*}+\log p^{*}=0$. (Note $p^{*} \approx 0.56$.) Then,

$$
F_{0}^{\circ}(n) \xrightarrow{n \rightarrow \infty} 1 \quad \text { iff } \quad p \leq p^{*} .
$$

The average degree

- Let $E(n)$ be the number of edges when there are n vertices

$$
\begin{aligned}
\mathbf{E}\left[E(n+1) \mid \mathcal{F}_{n}\right] & =E(n)\left(1+\frac{2 p}{n}\right), \\
\mathbf{E}[\left.E(n+1) \underbrace{\frac{n_{0} \cdots n}{\left(n_{0}\right)}}_{\xrightarrow[n \rightarrow \infty]{\frac{n_{0}}{\left(n_{0}+2 p\right) \cdots(n+2 p)} \Gamma\left(n_{0}\right)} n^{-2 p}} \right\rvert\, \mathcal{F}_{n}] & =\underbrace{E(n) \frac{n_{0} \cdots(n-1)}{\left(n_{0}+2 p\right) \cdots(n-1+2 p)}}_{\text {non-negative martingale }}
\end{aligned}
$$

- This implies

$$
n^{-2 p} E(n) \xrightarrow{n \rightarrow \infty} \text { a.s. } E(\infty) .
$$

- $E^{\circ}(n):=\frac{E(n)}{n}$ is the average degree of a vertex. So,

$$
E^{\circ}(n) \xrightarrow{n \rightarrow \infty} \begin{cases}\infty, & p>1 / 2 \\ 0, & p<1 / 2\end{cases}
$$

The frequency of singletons

- Let $F_{0}^{\circ}(n)$ be the frequency of singletons

$$
p<1 / 2: \quad E^{\circ}(n) \xrightarrow{n \rightarrow \infty} 0 \quad \Longrightarrow \quad F_{0}^{\circ}(n) \xrightarrow{n \rightarrow \infty} 0
$$

The frequency of singletons

- $F_{k}(n)$: number of vertices of degree $k, F_{k}^{\circ}(n)=\frac{F_{k}(n)}{n}$,

$$
H_{x}^{\circ}(n):=\sum_{k=0}^{\infty} F_{k}^{\circ}(n)(1-x)^{k} \quad \Longrightarrow \quad F_{0}^{\circ}(n)=H_{1}^{\circ}(n)
$$

- Using recursions,
$\mathrm{E}\left[H_{x}^{\circ}(n+1)-H_{x}^{\circ}(n) \mid \mathcal{F}_{n}\right]$

$$
=\frac{1}{n+1}\left(p x(1-x) \frac{d}{d x} H_{x}^{\circ}(n)+H_{p x}^{\circ}(n)-H_{x}^{\circ}(n)\right)
$$

The frequency of singletons

- Time continuous partial duplication graph \mathcal{G} : Every vertex splits at rate $1+\frac{1}{\left|G_{s}\right|}$. Then,

$$
\frac{d}{d s} \mathbf{E}\left[H_{x}^{\circ}(s) \mid \mathcal{F}_{s}\right]=p x(1-x) \frac{d}{d x} H_{x}^{\circ}(s)+H_{p x}^{\circ}(s)-H_{x}^{\circ}(s)
$$

- Let \mathcal{X} be a Markov process which jumps from x to $p x$ at rate 1 , and increases at rate $x(1-x)$ between jumps

$$
\Rightarrow \frac{d}{d s} \mathbf{E}\left[f\left(X_{s}\right) \mid \mathcal{F}_{s}\right]=p X_{s}\left(1-X_{s}\right) f^{\prime}\left(X_{s}\right)+f\left(p X_{s}\right)-f\left(X_{s}\right)
$$

- Let \mathcal{G}, \mathcal{X} be independent. Then,

$$
\frac{d}{d s} \mathbf{E}\left[H_{X_{t-s}}^{\circ}(s)\right]=0
$$

The frequency of singletons

$$
\frac{d}{d s} \mathbf{E}\left[H_{X_{t-s}}^{\circ}(s)\right]=0 \quad \Longrightarrow \quad \mathbf{E}\left[H_{X_{0}}^{\circ}(t)\right]=\mathbf{E}\left[H_{X_{t}}^{\circ}(0)\right]
$$

- The process \mathcal{X} satisfies, for $p^{*}+\log p^{*}=0$

$$
X_{t} \stackrel{t \rightarrow \infty}{\longrightarrow} \begin{cases}0, & p \leq p^{*} \\ X_{\infty} \neq 1, & p>p^{*}\end{cases}
$$

- Hence,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbf{E}\left[F_{0}^{\circ}(n)\right] & =\lim _{t \rightarrow \infty} \mathbf{E}\left[F_{0}^{\circ}(t)\right] \\
& =\lim _{t \rightarrow \infty} \mathbf{E}\left[H_{1}^{\circ}(t)\right]=\mathbf{E}\left[H_{X_{\infty}}^{\circ}(0)\right] \begin{cases}=1, & p \leq p^{*} \\
<1, & p>p^{*}\end{cases}
\end{aligned}
$$

What next?

- Study connected component (power law?)
- Include additional r edges as in the original model.
- Parameter estimation using protein-protein-interaction network.

