Intro 00000000	Average degree O	Singletons 0000	Outlook 0

Peter Pfaffelhuber

with Felix Hermann

Munich, July 2014

▲日を▲聞を▲開を▲開を 通 めるの

Average degree O	Singletons 0000	Outlook 0
	Average degree O	Average degree Singletons 0 0000

Yeast protein-protein interaction network

Nature Reviews | Genetics

from Barabsi & Oltvai, Network biology: understanding the cell's functional organization, 2004

Intro	Average degree	Singletons	Outlook
0●0000000	O	0000	0

The model from Pastor-Sartorras, Chung, Bebek,...

- Protein-protein interactions: key for biological functions of cells
- Evolution: proteins are copied, their function partially retained, new interactions can emerge
- Model: copy vertex with all edges, keep each edge with probability p, insert additional r edges at random
- ▶ With the right selection of parameters q and r, the general duplication model well approximates the degree distribution of the yeast proteome network. (Bebek et al 2006)
- In the following, we analyse the model for q = 0

Intro	Average degree	Singletons	Outlook
00●000000	O	0000	0

Start with some graph

▲口 ▶ ▲ 聞 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶

Intro	Average degree	Singletons	Outlook
00000000	O	0000	0

Pick a vertex purely at random

Intro	Average degree	Singletons	Outlook
0000●0000	O		0

Copy the vertex together with all edges

- イロト (部・(語・(語・)) 語 - ののの

Intro	Average degree	Singletons	Outlook
00000●000	O		0

Keep every edge with probability p

Intro	Average degree	Singletons	Outlook
000000●00	O	0000	0

This was one step in the partial duplication random graph

- イロ・ イヨ・ イヨ・ イヨ・ クタの

Intro	Average degree	Singletons	Outlook
0000000●0	O	0000	0

Example with 50 vertices and p = 0.6

▲口 > ▲母 > ▲臣 > ▲臣 > ―臣 - 釣んで

Intro	Average degree	Singletons	Outlook
0000000●	O	0000	0

Theorem 1 Let $E^{\circ}(n)$ be the average degree when there are *n* vertices. Then, $E^{\circ}(n) \xrightarrow{n \to \infty} \begin{cases} \infty, & p > 1/2, \\ 0, & p < 1/2. \end{cases}$

Theorem 2 Let $F_0^{\circ}(n)$ be the frequency of singletons and $p^* + \log p^* = 0$. (Note $p^* \approx 0.56$.) Then, $F_0^{\circ}(n) \xrightarrow{n \to \infty} 1$ iff $p \le p^*$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ め�?

Intro 00000000	Average degree ●	Singletons	Outlook 0

The average degree

▶ Let *E*(*n*) be the number of edges when there are *n* vertices

$$\mathbf{E}[E(n+1)|\mathcal{F}_n] = E(n)\left(1 + \frac{2p}{n}\right),$$
$$\mathbf{E}\Big[E(n+1)\underbrace{\frac{n_0 \cdots n}{(n_0 + 2p) \cdots (n+2p)}}_{\xrightarrow{n \to \infty} \frac{\Gamma(n_0 + 2p)}{\Gamma(n_0)}n^{-2p}}\Big|\mathcal{F}_n\Big] = \underbrace{E(n)\frac{n_0 \cdots (n-1)}{(n_0 + 2p) \cdots (n-1+2p)}}_{\text{non-negative martingale}}$$

• This implies $n^{-2p}E(n) \xrightarrow{n \to \infty}_{a.s.} E(\infty).$

• $E^{\circ}(n) := \frac{E(n)}{n}$ is the average degree of a vertex. So,

$$E^{\circ}(n) \xrightarrow{n \to \infty} \begin{cases} \infty, & p > 1/2, \\ 0, & p < 1/2. \end{cases}$$

▲ロ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ →

Intro	Average degree	Singletons	Outlook
00000000	O	●000	0

• Let $F_0^{\circ}(n)$ be the frequency of singletons

$$p < 1/2: \qquad E^{\circ}(n) \xrightarrow{n \to \infty} 0 \implies F_0^{\circ}(n) \xrightarrow{n \to \infty} 0$$

Intro	Average degree	Singletons	Outlook
00000000	O	○●○○	0

► $F_k(n)$: number of vertices of degree k, $F_k^{\circ}(n) = \frac{F_k(n)}{n}$,

$$H_x^\circ(n) := \sum_{k=0}^\infty F_k^\circ(n)(1-x)^k \implies F_0^\circ(n) = H_1^\circ(n).$$

Using recursions,

$$\begin{split} \mathsf{E}[H_x^\circ(n+1) - H_x^\circ(n) | \mathcal{F}_n] \\ &= \frac{1}{n+1} \Big(p_X(1-x) \frac{d}{d_X} H_x^\circ(n) + H_{p_X}^\circ(n) - H_x^\circ(n) \Big) \end{split}$$

▲口▶ ▲□▶ ▲臣▶ ▲臣▶ ▲臣 ● つんの

Average degree O	Singletons 0000	Outlook O
	Average degree O	Average degree Singletons O OOOO

Time continuous partial duplication graph G:
Every vertex splits at rate 1 + ¹/_{|G_s|}. Then,

$$\frac{d}{ds}\mathsf{E}[H_x^\circ(s)|\mathcal{F}_s] = px(1-x)\frac{d}{dx}H_x^\circ(s) + H_{px}^\circ(s) - H_x^\circ(s)$$

► Let X be a Markov process which jumps from x to px at rate 1, and increases at rate x(1 - x) between jumps

$$\Rightarrow \frac{d}{ds}\mathbf{E}[f(X_s)|\mathcal{F}_s] = pX_s(1-X_s)f'(X_s) + f(pX_s) - f(X_s)$$

• Let \mathcal{G} , \mathcal{X} be independent. Then,

$$\frac{d}{ds}\mathbf{E}[H^{\circ}_{X_{t-s}}(s)]=0$$

Intro	Average degree	Singletons	Outlook
00000000	O	○○○●	O

$$\frac{d}{ds}\mathbf{E}[H^{\circ}_{X_{t-s}}(s)] = 0 \qquad \Longrightarrow \qquad \mathbf{E}[H^{\circ}_{X_0}(t)] = \mathbf{E}[H^{\circ}_{X_t}(0)]$$

▶ The process $\mathcal X$ satisfies, for $p^* + \log p^* = 0$

$$X_t \stackrel{t \to \infty}{\Longrightarrow} \begin{cases} 0, & p \leq p^* \\ X_\infty \neq 1, & p > p^* \end{cases}$$

Hence,

$$\lim_{n \to \infty} \mathbf{E}[F_0^{\circ}(n)] = \lim_{t \to \infty} \mathbf{E}[F_0^{\circ}(t)]$$
$$= \lim_{t \to \infty} \mathbf{E}[H_1^{\circ}(t)] = \mathbf{E}[H_{X_{\infty}}^{\circ}(0)] \begin{cases} = 1, \quad p \le p^* \\ < 1, \quad p > p^* \end{cases}$$

Intro	Average degree	Singletons	Outlook
00000000	0	0000	•

What next?

- Study connected component (power law?)
- ► Include additional *r* edges as in the original model.
- Parameter estimation using protein-protein-interaction network.