Genomic data 000	The infinitely many genes model	Model analysis 000000000	Data: Prochlorococcus 00	Outlook 0

The infinitely many genes model for genomic diversity in bacteria

Peter Pfaffelhuber

joint with Franz Baumdicker, Wolfgang Hess

University of Freiburg

Gothenburg, August 2010

Genomic data	The infinitely many genes model	Model analysis	Data: Prochlorococcus	Outlook
000	000000	00000000	00	0

Genomic bacterial data

Observation

Not all bacteria of one population carry the same genes

▶ **Difference** in number of genes: up to 25%

Individual 1
$$-$$

Individual 2 $\sqrt{\sqrt{\sqrt{\sqrt{-----}}}}$
Individual 3 $\sqrt{\sqrt{\sqrt{\sqrt{----}}}}$

√ gene present - gene absent

Genomic data ○●○	The infinitely many genes model	Model analysis 000000000	Data: Prochlorococcus	Outlook o

The pangenome

Pangenome

total set of genes of a population

Core genome

genes carried by all individuals (selective constraints?)

 Data from 12 Prochlorococcus strains (Kettler et al 2007)

Genomic data ○○●	The infinitely many genes model	Model analysis	Data: Prochlorococcus 00	Outlook 0

The supragenome

- Supragenome = Gene frequency spectrum
- Predicted using a test dataset of 8 individuals

 Data from 13 Haemophilus influenzae strains (Hogg et al 2007)

Genomic data	The infinitely many genes model	Model analysis	Data: Prochlorococcus	Outlook
000	00000	000000000	00	0

Modelling genomic diversity

- Goal: describe diversity of genes in a bacterial population
- Genealogy: given by Kingman's coalescent

Genomic data	The infinitely many genes model	Model analysis	Data: Prochlorococcus	Outlook
000		00000000	00	0

Phylogenetic trees based on gene content

Daniel H. Huson^{1,*} and Mike Steel²

• New genes taken from the environment at rate $\frac{\theta}{2}$

• Present genes lost at rate $\frac{\rho}{2}$

A set of core genes must not be lost

Genomic data	The infinitely many genes model	Model analysis	Data: Prochlorococcus	Outlook
000	00000	00000000	00	0

The infinitely many genes model

- イロト (部) (注) (注) () () ()

Genomic data	The infinitely many genes model	Model analysis	Data: Prochlorococcus	Outlook
000	000000	000000000	00	0

The infinitely many genes model

Gene gain at rate $\frac{\theta}{2}$ along ancestral lines

Genomic data	The infinitely many genes model	Model analysis	Data: Prochlorococcus	Outlook
000		000000000	00	0

The infinitely many genes model

Present genes lost at rate $\frac{\rho}{2}$

Genomic data	The infinitely many genes model	Model analysis	Data: Prochlorococcus	Outlook
000	00000	000000000	00	0

Model

Data, Genealogies and Mutations

Data

Genomic data	The infinitely many genes model	Model analysis	Data: Prochlorococcus	Outlook
000		●00000000	00	0

Questions (on the dispensable genome)

- How many genes does a single individual carry?
- How many different genes are there in the sample?
- How many new genes are there in the nth individual?

What does the gene frequency spectrum look like?

Genomic data	The infinitely many genes model	Model analysis	Data: Prochlorococcus	Outlook
000		○●○○○○○○○	00	0

Questions (on the dispensable genome)

Let G_i be the set of genes carried by individual i

- How many genes does a single individual carry? What is |G_i|?
- ► How many different genes are there in the sample? What is |G| for G = Uⁿ_{i=1}G_i?
- ► How many **new genes** are there in the *n*th individual? What is $\left| \mathcal{G}_n \setminus \left(\bigcup_{i=1}^{n-1} \mathcal{G}_i \right) \right|$
- What does the gene frequency spectrum look like? What is G_i := |{u ∈ G : u ∈ G_i for exactly k different G_i}|?

Genomic data	The infinitely many genes model	Model analysis	Data: Prochlorococcus	Outlook
000		00000000	00	0

Single individual

- $|G_i|$: **number of genes** in individual *i*
- Lemma

$$|\mathcal{G}_i| \sim \mathsf{Poi}\Big(rac{ heta}{
ho}\Big)$$

Reason:

 $\frac{\theta}{2}dt$: average number of genes gained a time t in the past $e^{-\frac{\theta}{2}t}$: probability that a gene gained at time t not lost Summing up all t,

$$\int_0^\infty \frac{\theta}{2} e^{-\frac{\rho}{2}t} dt = \frac{\theta}{\rho}.$$

- イロト イヨト イヨト イヨー わえの

Genomic data	The infinitely many genes model	Model analysis	Data: Prochlorococcus	Outlook
000		000●00000	00	0

Size of the pangenome

▶ |G|: number of genes in a sample of size n
 Theorem

$$\mathbb{E}[|\mathcal{G}|] = \theta \sum_{k=0}^{n-1} \frac{1}{k+\rho}$$

Corollary

 \mathbb{E} [new genes in (n+1)st individual]

$$=\mathbb{E}\Big[\Big|\mathcal{G}_n\setminus\Big(\bigcup_{i=1}^{n-1}\mathcal{G}_i\Big)\Big|\Big]=\frac{\theta}{n+\rho}.$$

- ▲日 > ▲ 圖 > ▲ 圖 > ▲ 圖 - シッペー

Genomic data The infinitely many genes model Model analysis	s Data: Prochlorococcus Outlook
---	---------------------------------

Size of the pangenome

- \mathcal{T} : coalescent
- $\frac{\theta}{2}dt$: average number of genes gained at $x \in \mathcal{T}$
- $p_{\mathcal{T}}(x)$: probability that a gene gained at $x \in \mathcal{T}$ is **not lost**

$$\mathbb{E}[|\mathcal{G}|] = \mathbb{E}\left[\frac{\theta}{2} \int_{\mathcal{T}} p_{\mathcal{T}}(x) dx\right]$$

= $\mathbb{E}\left[\frac{\theta}{2} \int_{\mathcal{T}} \mathbb{1}(\text{gene gained at } x \text{ not lost}) dx\right]$
= $\frac{\theta}{2} \mathbb{E}[\text{length of unlost lines in } \mathcal{T}]$
= $\frac{\theta}{2} \sum_{k=1}^{n} \frac{k}{\binom{k}{2} + \frac{\theta}{2}k} = \theta \sum_{k=1}^{n} \frac{1}{k-1+\rho} = \theta \sum_{k=0}^{n-1} \frac{1}{k+\rho}$

The infinitely many genes model	Model analysis 00000€000	Data: Prochlorococcus 00	Outlook 0
	The infinitely many genes model	The infinitely many genes model Model analysis	The infinitely many genes model Model analysis Data: Prochlorococcus 000000 000000000000000000000000000000000000

Size of the pangenome

▶ |G|: number of genes in a sample of size n
 Theorem

$$\mathbb{V}[|\mathcal{G}|] = \theta \sum_{k=0}^{n-1} \frac{1}{\rho+i} - \theta^2 \Big(\sum_{k=0}^{n-1} \frac{1}{\rho+i}\Big)^2 + \frac{\theta^2}{4} g_{(n,0,0)}$$

where $g_{(k_1,k_2,k_3)}$ can be defined recursively. In particular,

$$\begin{aligned} \mathbb{V}_{n=2}[|\mathcal{G}|] &= \theta \frac{1+2\rho}{\rho(1+\rho)} + \theta^2 \frac{1}{(1+\rho)^2(1+2\rho)}, \\ \mathbb{V}_{n=3}[|\mathcal{G}|] &= \frac{\theta}{\rho} + \frac{\theta}{1+\rho} + \frac{\theta}{2+\rho} + \theta^2 \frac{90+249\rho+275\rho^2+145\rho^3+30\rho^4}{(1+\rho)^2(2+\rho)^2(1+2\rho)(3+2\rho)(6+5\rho)}. \end{aligned}$$

▲ロ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ →

Genomic data	The infinitely many genes model	Model analysis	Data: Prochlorococcus	Outlook
000		000000●00	00	0

The gene frequency spectrum

- ► G_i: Number of genes present in *i* individuals
- Theorem For the gene frequency spectrum

$$\mathbf{E}[G_i] = \frac{\theta}{i} \frac{n \cdots (n-i+1)}{(n-1+\rho) \cdots (n-i+\rho)}$$

Corollary

$$\mathbf{E}[G_n] = \frac{\theta}{\rho} \frac{(n-1)!}{(n-1+\rho)\cdots(1+\rho)}$$

Genomic data	The infinitely many genes model	Model analysis	Data: Prochlorococcus	Outlook
000		0000000●0	00	0

The random core genome

L: length of genealogy

E[no of genes present in *n* individuals]

 $= \mathbf{E} [\mathbf{E} [\text{number of genes present in } n \text{ individuals} | L]]$ $= \frac{\theta}{\rho} \mathbf{P} [\text{genealogy of length } L \text{ not hit by a gene loss}]$ $= \frac{\theta}{\rho} \mathbf{E} [e^{-\frac{\rho}{2}L}]$ $= \frac{\theta}{\rho} \frac{(n-1)!}{(n-1+\rho)\cdots(1+\rho)}$

Genomic data 000	The infinitely many genes model	Model analysis 00000000●	Data: Prochlorococcus 00	Outlook 0

Incongruent pairs

A pair of genes is incongruent, if

Theorem

Let P be the number of pairs of incongruent genes

$$\mathbb{E}[P] = \frac{\theta^2 \rho}{4} \frac{18 + 117\frac{\rho}{2} + 203\frac{\rho^2}{4} + 105\frac{\rho^3}{8}}{(1 + \frac{\rho}{2})^2(1 + 2\frac{\rho}{2})(1 + 4\frac{\rho}{2})(3 + 4\frac{\rho}{2})(3 + 5\frac{\rho}{2})(6 + 5\frac{\rho}{2})(6 + 7\frac{\rho}{2})}.$$

Genomic data 000	The infinitely many genes model	Model analysis	Data: Prochlorococcus •0	Outlook 0

Prochlorococcus

- Tiny: length $\sim 0.6 \mu$ m, Genome size 2Mbp
- smallest known photosynthetic bacterium
- Abundant: $\sim 10^5$ cells per ml (in the ocean)
- Structure: by water depth
- Recently discovered: first isolated in 1988

Genomic data The infinitely many genes model Model analysis Data: Prochlorococcus 000 000000 00000000 0	Outlook O

Fit of model and data

Estimates

$$\widehat{ heta}=1135.27,\qquad \widehat{
ho}=1.94,\qquad$$
 number of core genes $=1268.$

Genomic data 000	The infinitely many genes model	Model analysis 000000000	Data: Prochlorococcus 00	Outlook •

Outlook

- All quantities of interest can be computed (different genes in the sample, incongruent pairs of genes, new genes in next individual,...)
- Biologically interesting: how many genes are out there?

Current project:

understand the effect of horizontal gene transfer