The Brownian ratchet for protein translocation

joint with Andrej Depperschmidt

University of Freiburg

A. Depperschmidt and P. Pfaffelhuber, 2010. Asymptotics of a Brownian ratchet for Protein Translocation, Stoch. Proc. Appl., 120, 901-925

Protein translocation

- Protein diffuses through a nanopore
- Ratcheting molecules bind to it

The Brownian ratchet

- The dynamics of the γ-Brownian $\left(X_{t}, R_{t}\right)_{t \geq 0}$ is as follows:
- X_{t} is Brownian motion, reflected at R_{t}
- \mathbf{R}_{t} jumps to $x \in\left[R_{t-}, X_{t}\right]$ at rate $\gamma\left(\mathbf{X}_{\mathrm{t}}-\mathbf{R}_{\mathrm{t}-}\right) \mathrm{d} \mathrm{x}$

The law of large numbers

- Theorem

$$
\frac{X_{t}}{t} \xrightarrow{t \rightarrow \infty} \frac{\Gamma(2 / 3)}{\Gamma(1 / 3)}\left(\frac{3 \gamma}{4}\right)^{1 / 3} \text { almost surely }
$$

- Interpretation
- Assume the protein is very long
- γ proportional to concentration of ratcheting molecules
- Speed of translocation into the ER lumen is $\sim \gamma^{1 / 3}$
- Double speed requires eight-fold increase in number of ratcheting molecules

The graphical construction

- $\left(B_{t}\right)_{t \geq 0}$: Brownian motion
- Add rate- γ Poisson process

The graphical construction

- Some Poisson-points are active for some time
- New active Poisson-point is between B_{t} and old active point

The graphical construction

- A_{t} : active point at time $t ; \Delta_{t}$: jump in active point at time t
- $R_{t} \stackrel{d}{=} \sum_{s \leq t}\left|\Delta_{s}\right| ; \quad \mathbf{X}_{\mathrm{t}} \stackrel{\mathrm{d}}{=} \sum_{\mathrm{s} \leq \mathrm{t}}\left|\Delta_{\mathrm{s}}\right|+\left|\mathrm{B}_{\mathrm{t}}-\mathrm{A}_{\mathrm{t}}\right|$

The graphical construction

- A_{t} : active point at time $t ; \Delta_{t}$: jump in active point at time t
- $R_{t} \stackrel{d}{=} \sum_{s \leq t}\left|\Delta_{s}\right| ; \quad \mathbf{X}_{\mathrm{t}} \stackrel{\mathrm{d}}{=} \sum_{\mathrm{s} \leq \mathrm{t}}\left|\boldsymbol{\Delta}_{\mathrm{s}}\right|+\left|\mathbf{B}_{\mathrm{t}}-\mathbf{A}_{\mathrm{t}}\right|$

Why $\gamma^{1 / 3}$?

- in rectangle of size $\gamma^{-2 / 3} \times \gamma^{-1 / 3}$ expect 1 Poisson point
- Brownian motion in rectangle is again a Brownian motion

Why $\gamma^{1 / 3}$?

- in rectangle of size $a \gamma^{-2 / 3} \times a \gamma^{-1 / 3}$ expect a Poisson points
- Brownian motion in rectangle is again a Brownian motion

Why $\gamma^{1 / 3}$?

- We have just shown that

$$
\begin{aligned}
& \left(X_{t}^{1}\right)_{t \geq 0} \text { is } 1 \text {-Brownian ratchet } \\
& \quad \Longrightarrow\left(\gamma^{-1 / 3} X_{\gamma^{2 / 3}}^{1}\right)_{t \geq 0} \text { is } \gamma \text {-Brownian ratchet }
\end{aligned}
$$

- So,

$$
\frac{\mathbf{X}_{\mathrm{t}}^{\gamma}}{\mathbf{t}} \stackrel{d}{=} \frac{\gamma^{-1 / 3} X_{\gamma^{2 / 3} t}^{1}}{t}=\gamma^{1 / 3} \frac{X_{\gamma^{2 / 3} t}^{1}}{\gamma^{2 / 3} t} \stackrel{\sim}{\approx} \gamma^{1 / 3} \frac{\mathbf{X}_{\mathrm{t}}^{1}}{\mathbf{t}}
$$

\Longrightarrow Speed scales with $\gamma^{1 / 3}$.

A single jump of the Brownian ratchet

- B_{x} : Brownian motion, started in x, killed at rate $\frac{1}{2}\left|B_{x}\right|$, τ : killing time
- Lemma:

$$
\begin{aligned}
\mathbf{E}\left[B_{x}(\tau-)\right] & =x+\frac{2 \pi A i(x)}{3^{1 / 6} \Gamma(2 / 3)} \\
\mathbf{E}[\tau] & =2 \pi\left(G i(x)+3^{-1 / 2} A i(x)\right)
\end{aligned}
$$

- Proof: For B_{x}, Green function

$$
G(x, y) d y:=\text { average time spent in } d y \text { before being killed }
$$ satisfies

$$
u^{\prime \prime}(x)-x u(x)=0
$$

which is solved by Airy functions.

A single jump of the Brownian ratchet

- B_{x} : Brownian motion, started in x, killed at rate $\frac{1}{2}\left|B_{x}\right|$, τ : killing time, U : uniform on $[0,1]$
- Proposition: The random variable Y with

$$
\begin{equation*}
Y \stackrel{d}{=} U B_{Y}(\tau-) . \tag{*}
\end{equation*}
$$

satisfies

$$
\mathbf{P}(Y \in d y)=3 A i(y) d y
$$

- Proof: use (*) to derive

$$
\mathbf{P}(Y \in d y)=\int_{0}^{\infty} \mathbf{P}(Y \in d x) \int_{y}^{\infty} G(x, u) d u d y
$$

and do some calculations.

Outlook

- Brownian ratchet can be seen as a regenerative process
- Central limit theorem shown as well
- Current project: Brownian ratchet with negative drift

