Intro 0000	Model 0000	Genealogies 000000000000000	Heterozygosity 000	Summary 00

Approximating genealogies under genetic hitchhiking with recurrent mutation

Peter Pfaffelhuber (joint with Joachim Hermisson)

La Londe, September 2008

Intro	Model	Genealogies	Heterozygosity	Summary
●000	0000	000000000000000	000	00

Goal

- ► Goal: detect selection in a genome
- Use sample variation data to find candidate genes
- Needed: prediction of sequence diversity under various forms of selection
- (Classical) selective Sweep: Variation around a stronlgy beneficial allele is strongly reduced
- Here: selection starts acting at t = 0 beneficial allele arises recurrently during fixation
- Soft sweep: beneficial allele has multiple origins

Intro	Model	Genealogies	Heterozygosity	Summary
0●00	0000	000000000000000	000	00

Soft Sweep Patterns

 Recurrent mutation in a Wright-Fisher model (Pennings, Hermisson, 2006)

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	000000000000000	000	00

Soft Sweep Patterns

- Classical selective sweep: neutral variation dragged to high frequency together with beneficial allele
- Soft sweps: Multiple mutants introduce different patterns of neutral variation
- Consequence: Different haplotype blocks around the selected site

Intel Construction Construction	Intro Model Genealogies Heterozygosity Sui	nmary
---	--	-------

Lactose gene (from Tishkoff et al (2007))

- Not all adults can digest milk (\rightarrow lactase persistence LP)
- Probably connection to cattle domestication
- Europe: Swedes 90% LP, Spanish 50% LP; SNP C/T-13910 associated with LP
- Asia: Chinese 1% LP
- Africa: West-African agriculturalists 5-20% LP; G/C-14010 most significantly associated SNP with LP

$\blacktriangleright \Rightarrow: \text{ Different origins of LP}$

Intro	Model	Genealogies	Heterozygosity	Summary
0000	●000	00000000000000	000	00

The Wright-Fisher diffusion

Frequency path of beneficial allele is

$$dX = \left(\frac{\theta}{2}(1-X) + \alpha X(1-X)\right) dt + \sqrt{X(1-X)} dW, \qquad X_0 = 0$$

- s selective advantage
- u mutation rate
- N population size
- α := $sN \gg 1$
- θ := 2uN
- $dt \equiv Ndt$ generations
- T fixation time

Intro	Model	Genealogies	Heterozygosity	Summary
0000	⊙●⊙⊙	00000000000000	000	00

The Wright-Fisher diffusion

Frequency path of beneficial allele is

$$dX = \left(\frac{\theta}{2}(1-X) + \alpha X(1-X)\right) dt + \sqrt{X(1-X)} dW, \qquad X_0 = 0$$

- s selective advantage
- u mutation rate
- N population size
- α := $sN \gg 1$
- θ := 2uN
- $dt \equiv Ndt$ generations
- T fixation time

Intro	Model	Genealogies	Heterozygosity	Summary
0000	○○●○	00000000000000	000	00

The Wright-Fisher diffusion

Frequency path of beneficial allele is

$$dX = \left(\frac{\theta}{2}(1-X) + \alpha X(1-X)\right) dt + \sqrt{X(1-X)} dW, \qquad X_0 = 0$$

- s selective advantage
- u mutation rate
- N population size
- α := $sN \gg 1$
- θ := 2uN
- $dt \equiv Ndt$ generations
- T fixation time

Intro	Model	Genealogies	Heterozygosity	Summary
0000	000●	00000000000000	000	00

Fixation times

• Let $T_0 := \sup\{t \ge 0 : X_t = 0\}, \qquad T^* := T - T_0.$

Fixation times

► For $\theta > 0$,

$$\begin{split} \mathbb{E}[\mathcal{T}] &= \frac{1}{\alpha\theta} + \frac{2\log\alpha}{\alpha} + \mathcal{O}\Big(\frac{1}{\alpha}\Big) + \frac{1}{\theta}\mathcal{O}\big(\alpha e^{-\alpha}\big),\\ \mathbb{E}[\mathcal{T}^*] &= \frac{2\log\alpha}{\alpha} + \mathcal{O}\Big(\frac{1}{\alpha}\Big),\\ \mathbb{V}[\mathcal{T}^*] &= \mathcal{O}\Big(\frac{1}{\alpha^2}\Big). \end{split}$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

• For
$$\theta \ge 1$$
, almost surely, $T = T^*$.

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	●00000000000000	000	00

- Sample n individuals at time T
- Genealogy at selected/linked neutral site given by structured coalescent

向下 イヨト イヨト

- Kaplan, Hudson, Langley (1989); extension by Barton, Etheridge, Sturm (2004)
- time T_0 : random partition ξ of $\{1, ..., n\}$.
- Goal: describe/approximate ξ

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	○●○○○○○○○○○○○○	000	00

Discrete model: given X_t = x, birth events of beneficial alleles:

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ …

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	○○●○○○○○○○○○○○○	000	00

 Discrete model: given X_t = x, probability of following a mutant is

u(1-x).

Probability of picking a beneficial allele is x.

 $\Rightarrow \text{ unscaled mutation rate}$ $\frac{u(1-x)}{x}$

伺 ト イ ヨ ト イ ヨ ト

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	000000000000000000000000000000000000	000	00

 Discrete model: given X_t = x, Frequency of recombinants of beneficial allele with wild-type is

$$rx(1-x)$$

Probability of picking a beneficial allele is x.

 \Rightarrow unscaled recombination rate r(1-x)

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	0000000000000	000	00

Discrete model: given X_t = x, birth events of wild-type alleles:

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	00000●000000000	000	00

 Discrete model: given X_t = x, Frequency of recombinants of beneficial allele with wild-type is

$$rx(1-x)$$

Probability of picking a wild-type allele is 1 - x.

 \Rightarrow unscaled recombination rate

rx

0000 0000 000000000 000 000 000 000	Intro	Model	Genealogies	Heterozygosity	Summary
	0000	0000	○○○○○●○○○○○○○	000	00

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	00000000000000	000	00

(4月) (4日) (4日)

э

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	000000000000000	000	00

Time rescaling $d\tau = (1 - X)dt$:

$$dY = \left(\frac{\theta}{2} + \alpha Y\right) d\tau + \sqrt{Y} dW, \qquad Y_0 = 0.$$

伺 ト イ ヨ ト イ ヨ ト

Supercritical Feller branching process with immigration Stop when hitting Y = 1

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	0000000000000000	000	00

Coalescent generates a marked (rate ρ) genealogy of a supercritical Feller branching process with immigration (rate $\theta/2$)

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	00000000000000000	000	00

 \blacktriangleright splitting rate α per line, immigration rate: θ

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	0000000000000000000	000	00

 \blacktriangleright splitting rate α per line, immigration rate: θ

伺 と く き と く き と

-

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	00000000000●00	000	00

- \blacktriangleright splitting rate α per line, immigration rate: θ
- recombinations: rate ρ along Yule tree

伺 ト イ ヨ ト イ ヨ ト

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	000000000000000000000000000000000000000	000	00

▶ Given: sample of size *n*

• Yule process approximation: random partition Υ of $\{1, ..., n\}$

• Let
$$\rho = \gamma \frac{\alpha}{\log \alpha}$$
.

Theorem

$$\sup_{A} \left| \mathbb{P}[\xi \in A] - \mathbb{P}[\Upsilon \in A] \right| = \mathcal{O}\left(\frac{1}{(\log \alpha)^2}\right)$$

where the error is uniform on compacta in γ, θ .

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	0000000000000●	000	00

Related work

- θ = 0: Durret, Schweinsberg (2004,...), Etheridge, P,
 Wakolbinger (2006): Yule approximation for classical sweeps
- ρ = 0: Pennings, Hermisson (2006): family sizes of origins of beneficial allele follow the Ewens sampling formula
- P, Studeny (2007): Yule approximation for genealogies of two neutral loci

く 戸 と く ヨ と く ヨ と ……

► Leocard (2008): Yule approximation for several neutral loci

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	000000000000000	●○○	00

Application: heterozygosity

- Heterozygosity H_t: probability that two randomly picked individuals carry different alleles
- Consider neutral locus linked to the selected one
- Assuming no mutations at neutral locus during the sweep,

 $H_T = \mathbb{P}[\text{no coalescence by } T_0] \cdot H_{T_0}.$

▲□ → ▲ 臣 → ▲ 臣 → ― 臣

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	000000000000000000	000	00

Application: expected heterozygosity

• Using Yule process approximation for $\rho = \gamma \frac{\alpha}{\log \alpha}$:

$$\frac{H_{T}}{H_{T_0}} = 1 - \frac{p_1^2}{\theta + 1} - \frac{2\gamma}{\log \alpha} \sum_{i=2}^{\lfloor 2\alpha \rfloor} \frac{2i + \theta}{(i + \theta)^2(i + 1 + \theta)} p_i^2 + \mathcal{O}\Big(\frac{1}{(\log \alpha)^2}\Big)$$

with

$$p_i := \exp\left(-\frac{\rho}{\alpha}\sum_{j=i+1}^{\lfloor 2\alpha \rfloor}\frac{1}{j}\right).$$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	00000000000000000	000	00

Application: expected heterozygosity

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	000000000000000	000	●0

Summary

- Soft sweeps from recurrent mutation generalize classical sweeps
- Ewens sampling formula gives family decomposition at selected site
- Yule process with immigration and marks approximates genealogy at linked neutral locus

伺 と く ヨ と く ヨ と

Intro	Model	Genealogies	Heterozygosity	Summary
0000	0000	000000000000000	000	○●

Outlook

- ► Lactase Persistence: partial sweep, structured population
- What is a good approximation to the genealogy under sweeps in structured populations?