## On the rate of Muller's ratchet facts, heuristics, asymptotics

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

-

(日) (同) (三) (三)

On the rate of Muller's ratchet

#### Asexual versus sexual reproduction

- Difference between asexually and sexually reproduction: recombination
- Most mutations slightly deleterious



Recombination: production of fit genotypes

On the rate of Muller's ratchet

## Muller's ratchet

- Asexually reproducing organism
- ► Y<sub>k</sub>: frequency of individuals carrying k mutations
- ▶ Individual has k mutations: fitness =  $(1 s)^k$
- Poisson(\u03c6) new mutations for each individual
- If Y<sub>0</sub> = 0 there will never again be an individual with 0 mutations
- $\rightarrow$  the ratchet has clicked

(4月) (4月) (4月)

| The ratchet effect<br>○○●○ | Multi-dimensional diffusion | One-dimensional diffusion | Conclusion<br>00 |
|----------------------------|-----------------------------|---------------------------|------------------|
|                            |                             |                           |                  |
|                            |                             |                           |                  |

## Muller's ratchet

Frequent and rare clicks depending on parameters



On the rate of Muller's ratchet

| The ratchet effect | Multi-dimensional diffusion | One-dimensional diffusion | Conclusion |
|--------------------|-----------------------------|---------------------------|------------|
| 0000               | 000000                      | 000000000                 | 00         |
|                    |                             |                           |            |

#### Muller's ratchet

- ▶ Simple model: parameters *N*, *s*, *λ*
- Simple question: average time between clicks
- No exact answer until today!

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

・ 同 ト ・ ヨ ト ・ ヨ ト

| The ratchet effect | Multi-dimensional diffusion | One-dimensional diffusion | Conclusion |
|--------------------|-----------------------------|---------------------------|------------|
| 0000               | ●00000                      | 000000000                 | 00         |
|                    |                             |                           |            |
|                    |                             |                           |            |

## Haigh (1978)

- $Y_k(t)$ : frequency of individuals with k mutations at time t
- Selection:  $\rightarrow Y_k(t)(1-s)^k$
- Mutation:  $\rightarrow Y_k(t)(1-s)^k + H$ ,  $H \sim \text{Poisson}(\lambda)$
- ►  $Y_k(t) = \text{Poisson}(\theta)$ : Selection and mutation:  $\rightarrow \text{Poisson}(\theta(1-s) + \lambda)$

• Fixed point: 
$$\theta = \frac{\lambda}{s}$$

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

ロト (得) (手) (手)

| The ratchet effect | Multi-dimensional diffusion | One-dimensional diffusion | Conclusion |
|--------------------|-----------------------------|---------------------------|------------|
| 0000               | 00000                       | 0000000000                | 00         |
|                    |                             |                           |            |
|                    |                             |                           |            |

#### Diffusion approximation

For large N, small  $s, \lambda$ , approximately:

$$dY_k = \left(\sum_j s(j-k)Y_jY_k + \lambda(Y_{k-1} - Y_k)\right)dt$$
  
 $+ \sum_{j \neq k} \sqrt{\frac{1}{N}Y_jY_k} \, dW_{jk}$ 

where  $Y_{-1} := 0$ , and  $(W_{jk})_{j>k}$ ,  $W_{jk} = -W_{kj}$  are independent Brownian motions

• Especially, with  $M_1 = \sum j Y_j$ ,

$$\mathbf{dY}_0 = \mathbf{Y}_0(\mathbf{sM}_1 - \lambda) + \sqrt{\frac{1}{N}Y_0(1 - Y_0)}dW$$

On the rate of Muller's ratchet

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

・ロト ・ 同ト ・ ヨト ・ ヨト

| The ratchet effect | Multi-dimensional diffusion | One-dimensional diffusion | Conclusion |
|--------------------|-----------------------------|---------------------------|------------|
| 0000               | 00000                       | 0000000000                | 00         |
|                    |                             |                           |            |
|                    |                             |                           |            |

#### Moment equations

- Rate of the ratchet = speed of  $M_1$
- $\rightarrow\,$  find equation for  $dM_1$ 
  - Speed of  $M_1$  determined by variance:

• With 
$$M_2 = \sum_j (j - M_1)^2 Y_j$$
,

$$\mathrm{d}\mathsf{M}_1 = (\lambda - \mathsf{s}\mathsf{M}_2)\mathrm{d}\mathsf{t} + \sqrt{\frac{1}{N}M_2}\mathrm{d}W$$

Without noise, this is seen from:

$$\frac{d\sum_{k}kY_{k}}{dt} = \sum_{k,j}sk(j-k)Y_{j}Y_{k} + \lambda\sum_{k}k(Y_{k-1}-Y_{k})$$
$$= \lambda - sM_{2}$$

On the rate of Muller's ratchet

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

4 B K 4 B K

#### Including stochastic effects

$$d\mathsf{M}_2 = \left(-\frac{1}{\mathsf{N}}\mathsf{M}_2 + (\lambda - \mathsf{s}\mathsf{M}_3)\right)d\mathsf{t} + \sqrt{\frac{1}{\mathsf{N}}\mathsf{M}_3}dW$$
$$d\mathsf{M}_3 = \left(-\frac{3}{\mathsf{N}}\mathsf{M}_3 + (\lambda - \mathsf{s}(\mathsf{M}_4 - 3\mathsf{M}_{2,2}))d\mathsf{t} + \sqrt{\frac{1}{\mathsf{N}}\mathsf{M}_6 + \dots}dW$$

etc.

No closed system of equations!

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

(日) (同) (三) (三)

| The ratchet effect | Multi-dimensional diffusion | One-dimensional diffusion | Conclusion |
|--------------------|-----------------------------|---------------------------|------------|
| 0000               | 000000                      | 0000000000                | 00         |
|                    |                             |                           |            |
|                    |                             |                           |            |

## Cumulants

- Recall: Equilibrium is Poisson
  Only the Poisson distributions has all cumulants equal
- **Cumulants**  $\kappa_1, \kappa_2, \ldots$  satisfy

$$\log \sum_{k=0}^{\infty} x_k e^{-\xi k} = \sum_{k=1}^{\infty} \kappa_k \frac{(-\xi)^k}{k!}.$$

- $\kappa_1, \kappa_2, \kappa_3$  are the first three centered moments
- Ignore random effects and compute

$$\frac{d\kappa_k}{dt} = \lambda - s\kappa_{k+1}.$$

#### ⇒ Linear System!

On the rate of Muller's ratchet

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

同 と く ヨ と く ヨ と

| The ratchet effect | Multi-dimensional diffusion | One-dimensional diffusion | Conclusion |
|--------------------|-----------------------------|---------------------------|------------|
| 0000               | 00000                       | 000000000                 | 00         |
|                    |                             |                           |            |
|                    |                             |                           |            |

#### Cumulants

- The solution can be computed.
- Especially,

$$x_0(t) = e^{-\kappa_0(t)} = x_0(0) \frac{\exp\left(-\frac{\lambda}{s}(1-e^{-st})\right)}{\left(\sum_{k=0}^{\infty} x_k(0)e^{-stk}\right)}$$

and

$$\kappa_1(t) = -rac{\partial}{\partial\xi} \log \sum_{k=0}^{\infty} x_k(0) e^{-\xi k} \Big|_{\xi=st} + rac{\lambda}{s} (1-e^{-st}).$$

Still no solution including random effects...

On the rate of Muller's ratchet

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

・ロト ・同ト ・ヨト ・ヨト

| The ratchet effect | Multi-dimensional diffusion | One-dimensional diffusion<br>•000000000 | Conclusion |
|--------------------|-----------------------------|-----------------------------------------|------------|
|                    |                             |                                         |            |
|                    |                             |                                         |            |

- Equation for Y<sub>0</sub>: prediction of M<sub>1</sub> given Y<sub>0</sub> necessary
- Simulations show correlation between  $M_1$  and  $Y_0$ :



On the rate of Muller's ratchet

Idea from Haigh (1978):

By random effects,  $\textbf{Y}_0-\pi_0$  is distributed on all classes

 $\blacktriangleright$   $\Rightarrow$  observed states are of the form

$$\Pi(Y_0) = (Y_0, \frac{1-Y_0}{1-\pi_0}(\pi_1, \pi_2, \ldots))$$

 $\pi_k$  Poisson weight for parameter  $\theta := \frac{\lambda}{s}$ Poisson profile approximation

▶ In particular  $M_1(Y_0) = M_1(\Pi(Y_0))$  can be computed

- 4 回 ト 4 戸 ト 4 戸 ト

- Haigh: observed states are of the form  $\Pi(Y_0)$
- ► However: Random effects and dynamical system interact

Our idea: observed states are of the form

### $\Pi(Y_0)S_{\tau}$

for some  $\tau$  (S: semigroup of dynamical system)

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

イロト イポト イヨト イヨト

 Use explicit solution of dynamical system: observed states have

$$M_1(\tau) = heta + rac{\eta}{e^{\eta}-1}\Big(1-rac{y_0( au)}{\pi_0}\Big).$$

for  $\tau := \frac{A}{s} \log \theta$  and  $\eta := \theta^{1-A}$ 

On the rate of Muller's ratchet

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

| The ratchet effect<br>0000 | Multi-dimensional diffusion | One-dimensional diffusion | Conclusion |
|----------------------------|-----------------------------|---------------------------|------------|
|                            |                             |                           |            |
|                            |                             |                           |            |

#### Three parameter regimes:

$$\begin{array}{ll} A \text{ small}, & \eta \approx \theta, & M_1 \approx \frac{\theta}{1-\pi_0}(1-Y_0), \\ A = 1, & \eta = 1, & M_1 \approx \theta + 0.58 \Big(1 - \frac{Y_0}{\pi_0}\Big), \\ A \text{ big}, & \eta \approx 0, & M_1 \approx \theta + \Big(1 - \frac{Y_0}{\pi_0}\Big) \end{array}$$

Corresponding one-dimensional diffusions:

$$\begin{array}{ll} A \text{ small}, & dY_0 = \lambda (\pi_0 - Y_0) Y_0 dt + \sqrt{\frac{1}{N} Y_0} dW, \\ A = 1, & dY_0 = 0.58 s \Big( 1 - \frac{Y_0}{\pi_0} \Big) Y_0 dt + \sqrt{\frac{1}{N} Y_0} \, dW_0, \\ A \text{ big}, & dY_0 = s \Big( 1 - \frac{Y_0}{\pi_0} \Big) Y_0 dt + \sqrt{\frac{1}{N} Y_0} \, dW_0, \end{array}$$

On the rate of Muller's ratchet

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

(日) (同) (三) (三)

| The ratchet effect | Multi-dimensional diffusion | One-dimensional diffusion | Conclusion<br>00 |
|--------------------|-----------------------------|---------------------------|------------------|
|                    |                             |                           |                  |
|                    |                             |                           |                  |

► A small: no time for the dynamical system to relax to equilibrium ⇔ frequent clicks



On the rate of Muller's ratchet

| The ratchet effect | Multi-dimensional diffusion | One-dimensional diffusion | Conclusion |
|--------------------|-----------------------------|---------------------------|------------|
|                    |                             |                           |            |
|                    |                             |                           |            |

#### $\blacktriangleright$ A = 1 : speed for relaxation equal to speed of noise

See also by Stephan et al. and Gordo and Charlesworth



On the rate of Muller's ratchet

| The ratchet effect | Multi-dimensional diffusion | One-dimensional diffusion | Conclusion<br>00 |
|--------------------|-----------------------------|---------------------------|------------------|
|                    |                             |                           |                  |
|                    |                             |                           |                  |

► A big: system cannot exit equilibrium ⇔ rare clicks



On the rate of Muller's ratchet

# • Use rescaling $Z(t) = \frac{1}{\pi_0} Y_0 \left( \frac{t}{N\pi_0} \right)$

#### • Consider the intermediate regime A = 1

$$A = 1: dZ = 0.58 Ns \pi_0 (1 - Z) Z d\tau + \sqrt{Z} dW.$$

On the rate of Muller's ratchet

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

(日) (同) (三) (三)

| The ratchet effect | Multi-dimensional diffusion | One-dimensional diffusion | Conclusion |
|--------------------|-----------------------------|---------------------------|------------|
| 0000               | 000000                      | 0000000000                | 00         |
|                    |                             |                           |            |
|                    |                             |                           |            |

- Consider  $\lambda, s \rightarrow 0$ ,  $\mathbf{N} \rightarrow \infty$
- Clicks only for small  $Ns\pi_0$



On the rate of Muller's ratchet

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

| The ratchet effect<br>0000 | Multi-dimensional diffusion | One-dimensional diffusion | Conclusion<br>00 |
|----------------------------|-----------------------------|---------------------------|------------------|
|                            |                             |                           |                  |
|                            |                             |                           |                  |

- Consider  $\lambda, s \rightarrow 0$ ,  $\mathbf{N} \rightarrow \infty$
- ▶ In case of clicks, interclick time is of order  $N\pi_0$



On the rate of Muller's ratchet

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)

| 4 同 1 4 回 1 4 回 1

Conclusion

Exact rate of the ratchet still not obtained, but

#### Conjecture:

 $Ns\pi_0 = \mathcal{O}(1) \Longrightarrow$  Interclick time  $\mathcal{O}(N\pi_0)$  $Ns\pi_0 \gg 1 \Longrightarrow$  Interclick time  $\gg N\pi_0$ 

On the rate of Muller's ratchet

Joint with Alison Etheridge (Oxford) and Anton Wakolbinger (Frankfurt)