Introduction 0000000	One neutral locus	Two neutral loci 0000000	Soft Sweeps 00000000000000	Conclusion O

Approximate Genealogies under Genetic Hitchhiking

Peter Pfaffelhuber

Oxford, November 2008

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
●000000	00000000	000000	00000000000000	0

Selective Sweeps

- ► Goal: detect selection in a genome
- Use variation data to find candidate genes
- Maynard Smith, Haigh (1974):
 Variation around a strongly beneficial allele reduced
- This talk: approximations of genealogies
 - ▶ at (one or more) neutral loci linked to the selected site
 - with or without recurrent occurrence of the beneficial allele
- Useful for
 - analytical predictions
 - simulation of selective sweeps

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
000000	000000000	0000000		O

Example

 The wapl-region in a European sample of Drosophila melanogaster (Beisswanger et al. 2006)

Condition on fixation; frequency path of beneficial allele is

$$dX = \alpha X(1-X) \operatorname{coth}(\alpha X) dt + \sqrt{X(1-X)} dW, \qquad X_0 = 0$$

- s selective advantage
- N population size

$$\alpha$$
 := $sN \gg 1$

 $dt \equiv Ndt$ generations

$$\mathbb{E}[T] \approx \frac{2\log\alpha}{\alpha}$$

.

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
0000000	00000000	000000	00000000000000	0

- ► **Goal:** describe common ancestry of sample at time *T*
- Idea: Kaplan, Hudson, Langley (1989), using deterministic frequency path
- refined by Barton, Etheridge, Sturm (2004)
- Genealogy given by structured coalescent

- 4 同 6 4 日 6 4 日 6

 Discrete model: given X_t = x, Frequency of recombinants of beneficial allele with wild-type is ^t

$$rx(1-x)$$

Probability of picking a beneficial allele is x.

 \Rightarrow scaled recombination rate

 $\rho := rN, \quad \rho(1-x)$

- * ロ > * @ > * 注 > * 注 > … 注 … つ 9

The star-like approximation

- MRCA: founder of the sweep
- Recombination events on each line with probability

$$p = 1 - \exp\left(\rho \cdot \mathbb{E}[T]/2\right)$$

► *H_t*: Expected heterozygosity:

$$H_T = \left(1 - (1 - p)^2\right) H_0$$

医下子 医下

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
0000000	•00000000	0000000	00000000000000	O

- Goal: finer description of the genealogy
- Goal: error bounds for the approximation

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
0000000	00000000	0000000	0000000000000	0

<ロ> <四> <四> <四> <三</p>

The structured coalescent

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
000000	00000000	000000	00000000000000	0

イロン 不同 とくほう イロン

э

Introduction 0000000	One neutral locus	Two neutral loci 0000000	Soft Sweeps	Conclusion 0

• Time transform $d\tau = (1 - X)dt$ gives

$$dY = \alpha Y \coth(\alpha Y) d\tau + \sqrt{Y} dW$$

Y: supercritical branching process

Introduction 0000000	One neutral locus	Two neutral loci 0000000	Soft Sweeps	Conclusion O

- Coalescence rate 1/Y
- Recombination rate ρ

Approximate Genealogies under Genetic Hitchhiking

Introduction 0000000	One neutral locus	Two neutral loci 0000000	Soft Sweeps	Conclusion O

- Durrett, Schweinsberg; Etheridge, Haubold, P, Wakolbinger
- Genealogy of Y: Yule process, stopped at 2α lines
- recombinations: rate ρ along Yule tree

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
0000000	000000●00	0000000		O

- Durrett, Schweinsberg; Etheridge, Haubold, P, Wakolbinger
- Genealogy of Y: Yule process, stopped at 2α lines
- recombinations: rate ρ along Yule tree

Introduction 0000000	One neutral locus	Two neutral loci 0000000	Soft Sweeps	Conclusion O

- Durrett, Schweinsberg; Etheridge, Haubold, P, Wakolbinger
- Genealogy of Y: Yule process, stopped at 2α lines
- recombinations: rate ρ along Yule tree

Introduction One 0000000 000	e neutral locus T D00000● 0	wo neutral loci S	oft Sweeps	Conclusion 0

Accuracy

- Star-like approximation error: $\mathcal{O}(\rho/\alpha)$
- Yule approximation error: $\mathcal{O}(\rho^2/\alpha^2)$
- Difference: with probability O(ρ/α), coalesced lines recombine
- Both approximations best for large α
- Durrett, Schweinsberg: Yule approximation holds for finite Moran models

伺 と く ヨ と く ヨ と

Introduction 0000000	One neutral locus	Two neutral loci ●000000	Soft Sweeps	Conclusion O

Association between neutral loci

Simplest case: Three-locus model:

- What is the joint distribution of families for all loci?
- Stephan, Song, Langley (2006) and McVean (2007) describe approximate DNA pattern during the sweep

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
0000000	000000000	0●00000		0

Ancestral recombination graph

Lines may split in beneficial and wild-type background

(4月) (4日) (4日)

-

The structured ancestral recombination graph

- ▲ ロ ト ▲ 圖 ト ▲ 圖 ト ▲ 圖 - りへぐ

Introduction 0000000	One neutral locus	Two neutral loci 000€000	Soft Sweeps	Conclusion O

The structured ancestral recombination graph

- * ロ > * @ > * 注 > * 注 > うへで

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
000000	00000000	0000000	0000000000000	0

- P, Studeny (2007)
- Splits in beneficial background generated first
- Other recombination events at constant rate

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
000000	00000000	0000000	0000000000000	0

- P, Studeny (2007)
- Splits in beneficial background generated first
- Other recombination events at constant rate

Application: Linkage Disequilibrium For $\mathbb{E}[D(0)] = 0.0242$, $N = 10^5$, S = 0.01 we find a good fit to simulations.

Approximate Genealogies under Genetic Hitchhiking

Introduction 0000000	One neutral locus	Two neutral loci 0000000	Soft Sweeps	Conclusion O

Soft Sweep Patterns

- Classical sweep: neutral variation dragged to high frequency together with beneficial allele
- Soft sweps: Multiple mutants introduce different patterns of neutral variation
- Consequence: Different haplotype blocks around the selected site

Lactose gene (from Tishkoff et al (2007))

- Not all adults can digest milk (\rightarrow lactase persistence LP)
- Probably connection to cattle domestication
- Europe: Swedes 90% LP, Spanish 50% LP; SNP C/T-13910 associated with LP
- Asia: Chinese 1% LP
- Africa: West-African agriculturalists 5-20% LP; G/C-14010 most significantly associated SNP with LP

► ⇒: Different origins of LP

Introduction 0000000	One neutral locus	Two neutral loci 0000000	Soft Sweeps	Conclusion O

Frequency path of beneficial allele is

$$dX = \left(\frac{\theta}{2}(1-X) + \alpha X(1-X)\right) dt + \sqrt{X(1-X)} dW, \qquad X_0 = 0$$

.

$$\theta$$
 := 2 uN

Frequency path of beneficial allele is

$$dX = \left(\frac{\theta}{2}(1-X) + \alpha X(1-X)\right) dt + \sqrt{X(1-X)} dW, \qquad X_0 = 0$$

Introduction 0000000	One neutral locus	Two neutral loci 0000000	Soft Sweeps	Conclusion O

Frequency path of beneficial allele is

$$dX = \left(\frac{\theta}{2}(1-X) + \alpha X(1-X)\right) dt + \sqrt{X(1-X)} dW, \qquad X_0 = 0$$

- ▲日 > ▲国 > ▲国 > ▲国 > ▲日 > ●

Introduction 0000000	One neutral locus	Two neutral loci 0000000	Soft Sweeps	Conclusion 0

Fixation times

• Let
$$T_0 := \sup\{t \ge 0 : X_t = 0\}, \qquad T^* := T - T_0.$$

• Fixation times for
$$\theta > 0$$
,

$$\mathbb{E}[\mathcal{T}] \approx \frac{1}{\alpha \theta} + \frac{2 \log \alpha}{\alpha}$$
$$\mathbb{E}[\mathcal{T}^*] \approx \frac{2 \log \alpha}{\alpha}$$

・ロト ・回ト ・ヨト ・ヨト

æ

 Discrete model: given X_t = x, probability of following a mutant is

u(1-x).

Probability of picking a beneficial allele is x.

 $\Rightarrow \text{ unscaled mutation rate}$ $\frac{u(1-x)}{x}$

- 4 同 6 4 日 6 4 日 6

-

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
0000000	000000000	0000000	○○○○○○●○○○○○○	0

<ロ> <部> < 部> < き> < き> < き</p>

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
0000000	000000000	0000000	00000000●00000	O

イロン 不同 とくほう イロン

э

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
				·

伺 ト イ ヨ ト イ ヨ ト

 ⇒ marked (rate ρ) genealogy of supercritical branching process with immigration (rate θ)

Introduction 0000000	One neutral locus	Two neutral loci 0000000	Soft Sweeps	Conclusion 0

- Hermisson, P (2008)
- mutation: immigration rate θ
- recombinations: rate ρ

One neutral locus	Two neutral loci	Soft Sweeps	Conclusion O
	One neutral locus 000000000	One neutral locus Two neutral loci 00000000 0000000	One neutral locus Two neutral loci Soft Sweeps 000000000 000000000 000000000000000000000000000000000000

- Hermisson, P (2008)
- mutation: immigration rate θ
- recombinations: rate ρ

One neutral locus	Two neutral loci	Soft Sweeps	Conclusion O
	One neutral locus 000000000	One neutral locus Two neutral loci 000000000 0000000	One neutral locus Two neutral loci Soft Sweeps 000000000 000000000000000000000000000000000000

- Hermisson, P (2008)
- mutation: immigration rate θ
- \blacktriangleright recombinations: rate ρ

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
0000000		0000000	0000000000000●	O

Application: expected heterozygosity

Introduction	One neutral locus	Two neutral loci	Soft Sweeps	Conclusion
000000	00000000	000000	000000000000000	•

Conclusion

- Yule approximation refines star-like approximation
- Yule approximation analytically tractable
- Soft selective sweeps show a pattern different from classical sweeps
- Future application of Yule approximation: sweeps in structured populations