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Abstract. The goal of this paper is to clarify when a semilinear stochastic
partial differential equation driven by Lévy processes admits an affine real-
ization. Our results are accompanied by several examples arising in natural
sciences and economics.

1. Introduction

The goal of this paper is to clarify when a semilinear stochastic partial differential
equation (SPDE) of the form{

drt = (Art + α(rt))dt+ σ(rt−)dXt

r0 = h0

(1.1)

in the spirit of [18] driven by a Rm-valued Lévy process X (for some positive integer
m ∈ N) admits an affine realization. Affine realizations are particular types of finite
dimensional realizations (FDRs). Denoting by H the state space of (1.1), which we
assume to be a separable Hilbert space, the idea of a FDR is that for each starting
point h0 ∈ H we can express the weak solution r to (1.1) as

r = ϕ(Y )(1.2)

for some Rd-valued process Y (where d ∈ N is a positive integer) and a deterministic
mapping ϕ : Rd → H, which makes the infinite dimensional SPDE (1.1) more
tractable. If we have a representation of the form (1.2), then the mapping ϕ is the
parametrization of an invariant submanifoldM.

We speak about an affine realization if for each starting point h0 ∈ H we can
express the weak solution r to (1.1) as

r = ψ + Y(1.3)

with a deterministic curve ψ : R+ → H and a stochastic process Y having values in
a finite dimensional subspace V ⊂ H. In this case, we also say that the SPDE (1.1)
has an affine realization generated by V , and the invariant manifold (Mt)t∈R+ is a
collection of affine spacesMt = ψ(t) + V , also called a foliation.

Note that the existence of an affine realization makes the infinite dimensional
SPDE (1.1) very tractable, because then we have a simple structure of the invariant
manifolds, which might be more complicated for a general FDR. Surprisingly, in
many cases we can deduce the existence of an affine realization from the existence
of a FDR:

Date: April 17, 2015.
2010 Mathematics Subject Classification. 60H15, 91G80.
Key words and phrases. Stochastic partial differential equation, affine realization, invariant

foliation, quasi-exponential volatility.
I am grateful to Ozan Akdogan, Stefan Weber and two anonymous referees for valuable com-

ments and suggestions.
1



2 STEFAN TAPPE

• As shown in [11], the existence of a FDR for the Wiener process driven
HJMM equation implies the existence of an affine realization. Here we use
the name HJMM equation, as it is the Heath-Jarrow-Morton (HJM) model
from [13] with Musiela parametrization presented in [4].

• As shown in [24], for the general Lévy process driven SPDE (1.1) the flatness
of an invariant manifold is at least equal to the number of driving sources
with small jumps. Thus, if the SPDE (1.1) has driving Lévy processes with
small jumps, then every FDR up to a certain dimension must be an affine
realization.

There is a substantial literature about invariant manifolds and FDRs for SPDEs.
Stochastic invariance of a given finite dimensional submanifold has been studied in
[8], and – based on the support theorem presented in [15] – in [16] for SPDEs driven
by Wiener processes, in [10] for SPDEs driven by Wiener processes and Poisson
random measures, and in [24] for SPDEs driven by Lévy processes. The existence
of FDRs for the HJMM equation driven by Wiener processes has intensively been
studied in the literature, and we refer to [3, 2, 11, 12] and references therein, and
to [1] for a survey. Furthermore, the existence of affine realizations for the HJMM
equation has been studied in [21, 23] with a driving Wiener process, and in [22, 19]
with a driving Lévy process.

The goal of this paper is to clarify when the general SPDE (1.1) driven by Lévy
processes has an affine realization, which has not been treated in the literature
so far. Compared to the aforementioned papers [21, 23, 22, 19], we use a slightly
different concept of an affine realization:

• We demand that for every starting point h0 ∈ H the weak solution r to
(1.1) is of the form (1.3), whereas in the aforementioned papers this is only
demanded for every h0 ∈ D(A), which denotes the domain of the linear
operator A : D(A) ⊂ H → H appearing in (1.1).

• On the other hand, our definition is more relaxed, because we only demand
that the invariant foliations are C0-foliations, whereas in the aforemen-
tioned papers they have to be C1-foliations.

Now, let us outline the main results of this paper. Concerning the precise assump-
tions on the Lévy process X and the parameters (A,α, σ) of the SPDE (1.1) we
refer to the beginning of Section 2. We fix a finite dimensional subspace V ⊂ H
and agree on the following terminology. We say that the subspace V is

• A-semi-invariant if A(V ∩ D(A)) ⊂ V ;
• A-invariant if V ⊂ D(A) and A(V ) ⊂ V .

Our first main result presents necessary and sufficient conditions for the existence
of an affine realization generated by V in terms of the parameters (A,α, σ) of the
SPDE (1.1). We will provide the proof in Section 5.

1.1. Theorem. Suppose that the subspace V is A-semi-invariant. Then the SPDE
(1.1) has an affine realization generated by V if and only if the following three
conditions are fulfilled:

(1) V is A-invariant (or equivalently: V ⊂ D(A)).
(2) For each h ∈ H the projection Π(•,V )α is constant on h+ V .
(3) σk(H) ⊂ V for all k = 1, . . . ,m.

Concerning Theorem 1.1, let us remark the following two points:

• The assumption that the subspace V is A-semi-invariant does not mean a
restriction. Indeed, we will show that we can always rewrite the SPDE (1.1)
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equivalently as{
drt = (Brt + β(rt))dt+ σ(rt−)dXt

r0 = h0,
(1.4)

such that the subspace V is B-semi-invariant; see Lemmas 2.3 and 2.4
below.

• In condition (2), we denote by Π(•,V )α the projection of the drift α on the
first coordinate U according to some direct sum decomposition H = U ⊕V
of the Hilbert space. Condition (2) does not depend on the choice of the
subspace U appearing in H = U⊕V , which follows from Lemma 3.1 below.

Theorem 1.1 has the following immediate consequence:

1.2. Corollary. Suppose that the following three conditions are fulfilled:
(1) V is A-invariant.
(2) α(H) ⊂ V .
(3) σk(H) ⊂ V for all k = 1, . . . ,m.

Then the SPDE (1.1) has an affine realization generated by V .

In applications, one is often interested in linear SPDEs of the type (1.1), which
means that the drift α appearing in (1.1) is constant. We will see that for linear
SPDEs we can even skip the assumption that the subspace V is A-semi-invariant,
and obtain our second main result, which we will also prove in Section 5.

1.3. Theorem. Suppose that the SPDE (1.1) is linear. Then it has an affine real-
ization generated by V if and only if the following two conditions are fulfilled:

(1) V is A-invariant.
(2) σk(H) ⊂ V for all k = 1, . . . ,m.

So far, we have specified a finite dimensional subspace V in advance, and asked
for an affine realization generated by V . If the SPDE (1.1) is linear, then there are
two approaches in order to analyze the existence of an affine realization without
specifying a subspace in advance:

• We will present a result (see Theorem 5.6 below) which states that the
linear SPDE (1.1) has an affine realization if and only if the volatility is
quasi-exponential.

• Another approach is to determine all finite dimensional A-invariant sub-
spaces, and to apply Theorem 1.3. This leads to a generalized eigenvalue
problem, which we will illustrate in Section 7 by means of several examples.

The remainder of this paper is organized as follows. In Section 2 we provide the
required preliminaries about SPDEs driven by Lévy processes, and in Section 3 we
provide the required results about direct sum decompositions of Hilbert spaces. In
Section 4 we present our results about C0-foliations, and in Section 5 we provide
the proofs of our main results concerning the existence of affine realizations. In
Section 6, we study the HJMM equation as an example of a nonlinear SPDE, and
in Section 7 we present several examples of linear SPDEs arising in natural sciences
and economics.

2. SPDEs driven by Lévy processes

In this section, we provide the required preliminaries about SPDEs driven by
Lévy processes. Let (Ω,F , (Ft)t∈R+

,P) be a filtered probability space satisfying
the usual conditions. Let X be a Rm-valued Lévy process for some positive inte-
ger m ∈ N such that its components X1, . . . , Xm are nontrivial square-integrable
martingales. Let H be a separable Hilbert space and let A : D(A) ⊂ H → H be
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the infinitesimal generator of a C0-semigroup on H. We assume that the generated
semigroup (St)t≥0 is pseudo-contractive; that is, there exists a constant β ∈ R such
that

‖St‖ ≤ eβt for all t ≥ 0.

Furthermore, let α : H → H and σ : H → Hm be Lipschitz continuous mappings.

2.1. Remark. Under the above conditions, for each h0 ∈ H the SPDE (1.1) has
a unique weak solution; that is, a H-valued càdlàg adapted process r, unique up to
indistinguishability, such that for each ξ ∈ D(A∗) we have

〈ξ, rt〉 = 〈ξ, h0〉+

∫ t

0

(
〈A∗ξ, rs〉+ 〈ξ, α(rs)〉

)
ds+

∫ t

0

〈ξ, σ(rs−)〉dXs, t ∈ R+,

where we use the notation∫ t

0

〈ξ, σ(rs−)〉dXs :=

m∑
k=1

∫ t

0

〈ξ, σk(rs−)〉dXk
s , t ∈ R+

for the vector Itô integral. We refer the reader, e.g., to [18] for further details.

2.2. Definition. Let B : D(B) ⊂ H → H be the infinitesimal generator of a C0-
semigroup on H, and let β : H → H be a Lipschitz continuous mapping. Then the
SPDEs (1.1) and (1.4) are called equivalent if for each h0 ∈ H the weak solution
to (1.1) with r0 = h0 coincides with the weak solution to (1.4) with r0 = h0.

Let V ⊂ H be a finite dimensional subspace. The following two auxiliary results
show that the assumption from Theorem 1.1 that V is A-semi-invariant does not
mean a restriction.

2.3. Lemma. There exists a linear operator T ∈ L(H) such that V is B-semi-
invariant, where the linear operator B : D(B) ⊂ H → H is given by D(B) := D(A)
and B := A+ T .

Proof. Let H = U⊕V be a direct sum decomposition of the Hilbert space H with a
closed subspace U . We denote by ΠU : H → U and ΠV : H → V the corresponding
projections. There exists a subspace E ⊂ V such that V = (V ∩ D(A)) ⊕ E. Let
Ã ∈ L(V,H) be the linear operator given by Ã|V ∩D(A) = A|V ∩D(A) and Ã|E = 0. We
define the linear operator T ∈ L(H) as T := −ΠU ÃΠV . Then, for each v ∈ V ∩D(A)
we have

Bv = Av −ΠUAv = ΠVAv ∈ V,

showing that V is B-semi-invariant. �

2.4. Lemma. Let T ∈ L(H) be a linear operator, let the linear operator B : D(B) ⊂
H → H be given by D(B) := D(A) and B := A + T , and let β : H → H be given
by β := α− T . Then the following statements are true:

(1) B is the generator of a C0-semigroup on H.
(2) β is Lipschitz continuous.
(3) The SPDEs (1.1) and (1.4) are equivalent.

Proof. The first statement is a consequence of [17, Thm. 3.1.1], and the second
statement follows from the Lipschitz continuity of α and T . For the proof of the
third statement, let h0 ∈ H be arbitrary, and let r be the weak solution to (1.4)
with r0 = h0. Noting that D(A∗) = D(B∗) and B∗ = A∗ + T ∗, for each ξ ∈ D(B∗)
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we obtain

〈ξ, rt〉 = 〈ξ, h0〉+

∫ t

0

(
〈B∗ξ, rs〉+ 〈ξ, β(rs)〉

)
ds+

∫ t

0

σ(rs−)dXs

= 〈ξ, h0〉+

∫ t

0

(
〈A∗ξ + T ∗ξ, rs〉+ 〈ξ, α(rs)− Trs〉

)
ds+

∫ t

0

σ(rs−)dXs

= 〈ξ, h0〉+

∫ t

0

(
〈A∗ξ, rs〉+ 〈ξ, α(rs)〉

)
ds+

∫ t

0

σ(rs−)dXs, t ∈ R+,

showing that r is also a weak solution to (1.1) with r0 = h0. An analogous calcula-
tion shows that the weak solution to (1.1) with r0 = h0 is also a weak solution to
(1.4) with r0 = h0. �

3. Direct sum decompositions of Hilbert spaces

In this section, we will provide the required results about direct sum decom-
positions of Hilbert spaces. In particular, we will show that condition (2) from
Theorem 1.1 does not depend on the choice of the decomposition. For what follows,
let H be a Hilbert space.

3.1. Lemma. Let V ⊂ H be a finite dimensional subspace, let E ⊂ H be a subset,
and let β : E → H be a mapping. Then the following statements are equivalent:

(i) There exists a closed subspace U such that H = U ⊕ V and the mapping
ΠUβ is constant on E.

(ii) For every closed subspace U with H = U ⊕V the mapping ΠUβ is constant
on E.

Proof. (i) ⇒ (ii): Let Ũ be an arbitrary closed subspace such that H = Ũ ⊕ V . By
assumption there exists u ∈ U such that ΠUβ(h) = u for all h ∈ E. There exist
unique ũ ∈ Ũ and v ∈ V such that u = ũ+ v. Therefore, we have

β(h) = ũ+ v + ΠV β(h) for all h ∈ E,

and hence ΠŨβ(h) = ũ for all h ∈ E, showing that ΠŨβ is constant on E.
(ii) ⇒ (i): This implication follows by choosing U = V ⊥. �

We use the following definition for the formulation of condition (2) from Theo-
rem 1.1.

3.2. Definition. Let V ⊂ H be a finite dimensional subspace, let E ⊂ H be a
subset, and let β : E → H be a mapping. We say that Π(•,V )β is constant on E
if there exists a closed subspace U such that H = U ⊕ V and the mapping ΠUβ is
constant on E.

3.3. Remark. By virtue of Lemma 3.1, the Definition 3.2 does not depend on the
choice of the subspace U .

4. Invariant foliations

In this section, we will present the required results about C0-foliations. The gen-
eral mathematical framework is that of Section 2. Let V ⊂ H be a finite dimensional
subspace. Throughout this section, we assume that V is A-semi-invariant. Recall
that, according to Lemmas 2.3 and 2.4, this does not mean a restriction.

4.1.Definition. Let k ∈ N0 be a nonnegative integer. A family (Mt)t∈R+
of subsets

Mt ⊂ H, t ∈ R+ is called a Ck-foliation generated by V if there exists a mapping
ψ ∈ Ck(R+;H) such that

Mt = ψ(t) + V for all t ∈ R+.

In this case, the mapping ψ is called a parametrization of the foliation (Mt)t∈R+ .
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For what follows, let (Mt)t∈R+
be a C0-foliation generated by V . Here is the

formal definition of invariance of the foliation.

4.2. Definition. The foliation (Mt)t∈R+ is called invariant for the SPDE (1.1) if
for all t0 ∈ R+ and h0 ∈Mt0 we have r• ∈Mt0+• up to an evanescent set1, where
r denotes the weak solution to (1.1) with r0 = h0.

In order to prepare the notation for our next result, we define the union M :=⋃
t∈R+

Mt. Furthermore, we fix a direct sum decomposition H = U ⊕ V of the
Hilbert space H with a closed subspace U , and denote by ΠU : H → U and
ΠV : H → V the corresponding projections.

4.3. Theorem. The following statements are equivalent:

(i) The foliation (Mt)t∈R+
is invariant for the SPDE (1.1).

(ii) The following conditions are satisfied:

V is A-invariant (or equivalently: V ⊂ D(A)),(4.1)
ΠUα is constant onMt, for each t ∈ R+,(4.2)

σk(M) ⊂ V, k = 1, . . . ,m,(4.3)

and the weak solution ψ : R+ → H to the H-valued PDE{
dψ(t)
dt = Aψ(t) + ΠUα(ψ(t))

ψ(0) = u0,
(4.4)

where u0 ∈ U denotes the unique element such that M0 ∩ U = {u0}, is a
parametrization of the foliation (Mt)t∈R+

.

Before we provide the proof, we prepare an auxiliary result.

4.4. Lemma. Suppose that conditions (4.1)–(4.3) are fulfilled, and let ψ : R+ → H
be the weak solution to the PDE (4.4). Then, for all t0 ∈ R+ and all v0 ∈ V the
following statements are true:

(1) The SDE{
dYt = (AYt + ΠV α(ψ(t0 + t) + Yt))dt+ σ(ψ(t0 + t) + Yt−)dXt

Y0 = v0

(4.5)

has a unique V -valued strong solution.
(2) The process r := ψ(t0 + •) +Y is the weak solution to the SPDE (1.1) with

r0 = h0, where h0 := ψ(t0) + v0.

Proof. The first statement follows from (4.1) and (4.3). For the proof of the second
statement, let ξ ∈ D(A∗) be arbitrary. Then, by (4.4) and (4.2) we have

〈ξ, ψ(t0 + t)〉 = 〈ξ, ψ(t0)〉+ 〈ξ, ψ(t0 + t)− ψ(t0)〉

= 〈ξ, ψ(t0)〉+

∫ t0+t

t0

(
〈A∗ξ, ψ(s)〉+ 〈ξ,ΠUα(ψ(s))

)
ds

= 〈ξ, ψ(t0)〉+

∫ t

0

(
〈A∗ξ, ψ(t0 + s)〉+ 〈ξ,ΠUα(ψ(t0 + s) + Ys)

)
ds, t ∈ R+.

1A random set A ⊂ Ω×R+ is called evanescent if the set {ω ∈ Ω : (ω, t) ∈ A for some t ∈ R+}
is a P-nullset, cf. [14, 1.1.10].
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Furthermore, by (4.5) we have

〈ξ, Yt〉 = 〈ξ, v0〉+

∫ t

0

(
〈A∗ξ, Ys〉+ 〈ξ,ΠV α(ψ(t0 + s) + Ys)〉

)
ds

+

∫ t

0

〈ξ, σ(ψ(t0 + s) + Ys−)〉dXs, t ∈ R+.

Therefore, we arrive at

〈ξ, rt〉 = 〈ξ, h0〉+

∫ t

0

(
〈A∗ξ, rs〉+ 〈ξ, α(rs)〉

)
ds+

∫ t

0

〈ξ, σ(rs−)〉dXs, t ∈ R+,

showing that r is the weak solution to (1.1) with r0 = h0. �

Proof of Theorem 4.3. (i) ⇒ (ii): Let d := dimV and let φ : R+ → M be a
parametrization of the foliation (Mt)t∈R+

. According to [21, Lemma 2.10] there
exist ζ1, . . . , ζd ∈ D(A∗) and an isomorphism T : Rd → V such that T−1 = 〈ζ, •〉,
where we use the notation

〈ζ, h〉 := (〈ζ1, h〉, . . . , 〈ζd, h〉) ∈ Rd for h ∈ V .

We define the continuous mappings α̃ : R+ × Rd → Rd and σ̃ : R+ × Rd → (Rd)n
as

α̃(t, z) := 〈A∗ζ, φ(t) + Tz〉+ 〈ζ, α(φ(t) + Tz)〉,
σ̃(t, z) := 〈ζ, σ(φ(t) + Tz)〉.

Furthermore, for t0 ∈ R+ and h0 ∈Mt0 we define the process

Zh0 := 〈ζ, rh0 − φ(t0 + •)〉,

where rh0 denotes the weak solution to (1.1) with r0 = h0. Now, let t0 ∈ R+,
h0 ∈Mt0 and v ∈ V be arbitrary. Then we have
(4.6)

Zh0+v
t − Zh0

t = 〈ζ, rh0+v
t − φ(t0 + t)〉 − 〈ζ, rh0

t − φ(t0 + t)〉 = 〈ζ, rh0+v
t − rh0

t 〉

= 〈ζ, h0 + v〉+

∫ t

0

(
〈A∗ζ, rh0+v

s 〉+ 〈ζ, α(rh0+v
s )〉

)
ds+

∫ t

0

〈ζ, σ(rh0+v
s− )〉dXs

− 〈ζ, h0〉 −
∫ t

0

(
〈A∗ζ, rh0

s 〉+ 〈ζ, α(rh0
s )〉

)
ds−

∫ t

0

〈ζ, σ(rh0
s−)〉dXs

= 〈ζ, v〉+

∫ t

0

(
α̃(t0 + s, Zh0+v

s− )− α̃(t0 + s, Zh0
s−)
)
ds

+

∫ t

0

(
σ̃(t0 + s, Zh0+v

s− )− σ̃(t0 + s, Zh0
s−)
)
dXs, t ∈ R+.

Furthermore, since the foliation (Mt)t∈R+
is invariant for (1.1), we have rh0

• , r
h0+v
• ∈

Mt0+• up to an evanescent set, and hence rh0+v − rh0 ∈ V up to an evanescent
set. Together with (4.6) we obtain

rh0+v − rh0 = T (Zh0+v − Zh0)

= v +

∫ t

0

T (α̃(t0 + s, Zh0+v
s− )− α̃(t0 + s, Zh0

s−))ds

+

∫ t

0

T (σ̃(t0 + s, Zh0+v
s− )− σ̃(t0 + s, Zh0

s−))dXs, t ∈ R+.
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Now, let ξ ∈ D(A∗) be arbitrary. Then we have
(4.7)

〈ξ, rh0+v
t − rh0

t 〉 = 〈ξ, v〉+

∫ t

0

〈ξ, T (α̃(t0 + s, Zh0+v
s )− α̃(t0 + s, Zh0

s−))〉ds

+

∫ t

0

〈ξ, T (σ̃(t0 + s, Zh0+v
s− )− σ̃(t0 + s, Zh0

s−))〉dXs, t ∈ R+.

On the other hand, since rh0 and rh0+v are weak solutions to (1.1) with r0 = h0

and r0 = h0 + v, we have
(4.8)

〈ξ, rh0+v
t − rh0

t 〉 = 〈ξ, v〉+

∫ t

0

(
〈A∗ξ, rh0+v

s − rh0
s 〉+ 〈ξ, α(rh0+v

s )− α(rh0
s )〉

)
ds

+

∫ t

0

〈ξ, σ(rh0+v
s− )− σ(rh0

s−)〉dXs, t ∈ R+.

Combining (4.7) and (4.8), we obtain

〈A∗ξ, v〉 =
〈
ξ, T

(
α̃(t0 + s, 〈ζ, h0 − φ(t0) + v〉)− α̃(t0 + s, 〈ζ, h0 − φ(t0)〉)

)〉
− 〈ξ, α(h0 + v)− α(h0)〉.

This identity shows that ξ 7→ 〈A∗ξ, v〉 is continuous on D(A∗), proving v ∈ D(A∗∗).
Since A = A∗∗, see [20, Thm. 13.12], we obtain v ∈ D(A), which yields (4.1).
Therefore, we obtain

α(h0 + v)− α(h0)

= Av − T
(
α̃(t0 + s, 〈ζ, h0 − φ(t0) + v〉)− α̃(t0 + s, 〈ζ, h0 − φ(t0)〉)

)
∈ V,

which shows that

ΠUα(h0 + v)−ΠUα(h0) = 0,

proving (4.2). A similar calculation as in (4.6) and (4.7) shows that

(4.9)
〈ξ, rh0

t − φ(t0 + t)〉 = 〈ξ, h0 − φ(t0 + t)〉+

∫ t

0

〈ξ, T (α̃(t0 + s, Zh0
s−))〉ds

+

∫ t

0

〈ξ, T (σ̃(t0 + s, Zh0
s−))〉dXs, t ∈ R+.

On the other hand, since rh0 is a weak solution to (1.1), we have

(4.10)
〈ξ, rh0

t − φ(t0 + t)〉 = 〈ξ, h0 − φ(t0 + t)〉+

∫ t

0

(
〈A∗ξ, rh0

s 〉+ 〈ξ, α(rh0
s )〉

)
ds

+

∫ t

0

〈ξ, σ(rh0
s−)〉dXs, t ∈ R+.

Therefore, we obtain

σ(h0) = T
(
σ̃(t0, 〈ζ, h0 − φ(t0)〉)

)
∈ V m,

showing (4.3). The remaining statement is a consequence of Lemma 4.4 (applied
with t0 = 0 and v0 = 0) and the uniqueness of weak solutions to (1.1).
(ii) ⇒ (i): This implication follows from Lemma 4.4 and the uniqueness of weak
solutions to (1.1). �

4.5. Remark. Suppose that the mappings α : H → H and σ : H → Hm are only
continuous instead of being Lipschitz continuous. If we modify Definition 4.2 by
demanding the existence of an invariant solution for all t0 ∈ R+ and h0 ∈ Mt0 ,
then we can establish an analogous version of Theorem 4.3:

• The implication (i) ⇒ (ii) remains true.
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• For the implication (ii) ⇒ (i) we additionally assume the existence of weak
solutions to (4.4) and (4.5).

Consequently, analogous versions of Theorem 1.1 and its subsequent results also
hold true without Lipschitz conditions – provided that we have existence of weak
solutions to equations of the types (4.4) and (4.5).

The invariance of C1-foliations has been studied in [21] and [22]. We recall that
for a C1-foliation (Mt)t∈R+

and t ∈ R+ the tangent space is defined as TMt :=
d
dtψ(t) + V , where ψ denotes a parametrization of (Mt)t∈R+ .

4.6. Theorem. Suppose that (Mt)t∈R+ is a C1-foliation. Then the following state-
ments are equivalent:

(i) The foliation (Mt)t∈R+
is invariant for the SPDE (1.1).

(ii) We have

M ⊂ D(A),(4.11)
Ah+ α(h) ∈ TMt, h ∈Mt and t ∈ R+,(4.12)

σk(M) ⊂ V, k = 1, . . . ,m.(4.13)

If the previous conditions are fulfilled, then for each h0 ∈ M the weak solution to
(1.1) with r0 = h0 is also a strong solution.

Proof. The proof is analogous to that of [21, Thm. 2.11], and therefore omitted. �

4.7.Remark. Suppose that the foliation (Mt)t∈R+
is invariant for the SPDE (1.1).

According to Theorems 4.3 and 4.6 the following statements are true:
• If (Mt)t∈R+

is a C1-foliation, then we have M ⊂ D(A), and for each h0 ∈
M the weak solution to (1.1) with r0 = h0 is also a strong solution.

• If (Mt)t∈R+ is just a C0-foliation, then we only have V ⊂ D(A), and hence,
for h0 ∈ M the weak solution to (1.1) with r0 = h0 does not need to be a
strong solution.

The following result shows the relation between condition (4.2) and the tangential
condition (4.12).

4.8. Proposition. Suppose we have (4.1) and that the PDE (4.4) has a strong
solution ψ ∈ C1(R+;H) with ψ(R+) ⊂ D(A), which is a parametrization of the
foliation (Mt)t∈R+

. Then the following statements are true:
(1) We have (4.11).
(2) Conditions (4.2) and (4.12) are equivalent.

Proof. The first statement follows from (4.1) and the relation ψ(R+) ⊂ D(A). For
the proof of the second statement, let t ∈ R+ and v ∈ V be arbitrary, and set
h := ψ(t) + v ∈Mt. By the PDE (4.4) and condition (4.1) we obtain

Ah+ α(h) = Aψ(t) +Av + ΠUα(ψ(t) + v) + ΠV α(ψ(t) + v)

=
d

dt
ψ(t)−ΠUα(ψ(t)) +Av + ΠUα(ψ(t) + v) + ΠV α(ψ(t) + v)

=
d

dt
ψ(t) +Av + ΠV α(ψ(t) + v)︸ ︷︷ ︸

∈TMt

+
(
ΠUα(ψ(t) + v)−ΠUα(ψ(t))

)
,

showing that conditions (4.2) and (4.12) are equivalent. �

In order to exemplify our previous results, consider the abstract Cauchy problem{
drt = Artdt

r0 = h0.
(4.14)
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Fix an arbitrary h0 ∈ H and let the foliation (Mt)t∈R+
be given byMt := {Sth0}.

According to Theorem 4.3, the foliation (Mt)t∈R+
is invariant for the abstract

Cauchy problem (4.14), and we can remark the following points:
• If h0 ∈ D(A), then (Mt)t∈R+ is a C1-foliation, and hence M ⊂ D(A).
• If A is the generator of a differentiable semigroup (St)t≥0, then the mapping
t 7→ Sth0 is continuously differentiable on (0,∞) and we haveMt ⊂ D(A)
for all t > 0.

Finally, we present an example showing that the situation M∩D(A) = ∅ can occur.
For this purpose, we choose the space of forward curves from [9, Sec. 5], which we
will use later in Section 6. Let H be the space of all absolutely continuous functions
h : R+ → R such that

‖h‖ :=

(
|h(0)|2 +

∫
R+

|h′(x)|2w(x)dx

)1/2

<∞

for some nondecreasing C1-function w : R+ → [1,∞) such that w−1/3 ∈ L1(R+).
Then the translation semigroup (St)t≥0 is a C0-semigroup on H with generator
d/dx on the domain

D(d/dx) = {h ∈ C1(R+) ∩H : h′ ∈ H}.

4.9. Example. Let h0 : R+ → R be the unique absolutely continuous function with
weak derivative

h′0 =
∑
n∈N0

1[n,n+2−nw(n)−1].

Then we have h0 ∈ H, because ‖h0‖ < ∞, but for each t ∈ R+ we have Sth0 /∈
D(d/dx), because Sth0 /∈ C1(R+), showing that M ∩ D(d/dx) = ∅.

5. Existence of affine realizations

In this section, we provide the proofs of our main results concerning the existence
of affine realizations. The general mathematical framework is that of Section 2. We
start with the formal definition of an affine realization.

5.1. Definition.
(1) Let V ⊂ H be a finite dimensional subspace. We say that the SPDE (1.1)

has an affine realization generated by V if for all h0 ∈ H there is an
invariant foliation (Mt)t∈R+

generated by V such that h0 ∈M0.
(2) We say that the SPDE (1.1) has an affine realization if it has an affine

realization generated by some finite dimensional subspace V ⊂ H.

With our preparations from Section 4, we are now ready to provide the proofs
of Theorems 1.1 and 1.3.

Proof of Theorem 1.1. If the SPDE (1.1) has an affine realization, then conditions
(1)–(3) follow from Theorem 4.3.

Conversely, suppose that conditions (1)–(3) are fulfilled. Let H = U ⊕ V be
a direct sum decomposition of the Hilbert space H with a closed subspace U .
Furthermore, let h0 ∈ H be arbitrary, and let h0 = u0 + v0 be its decomposition
according to H = U ⊕ V . Let ψ be the weak solution to the PDE (4.4), and
let (Mt)t∈R+ be the foliation Mt := ψ(t) + V . Then we have h0 ∈ M0, and by
Theorem 4.3 the foliation (Mt)t∈R+

is invariant for (1.4). �

Proof of Theorem 1.3. If conditions (1) and (2) are fulfilled, then, according to
Theorem 1.1, the linear SPDE (1.1) has an affine realization.
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Conversely, suppose that the linear SPDE (1.1) has an affine realization. By
Lemmas 2.3 and 2.4 there exists a linear operator T ∈ L(H) such that with the
linear operator B : D(B) ⊂ H → H given by D(B) := D(A) and B := A+ T , and
the mapping β : H → H given by β := α−T , the following conditions are fulfilled:

• V is B-semi-invariant.
• B is the generator of a C0-semigroup on H.
• β is Lipschitz continuous.
• The SPDEs (1.1) and (1.4) are equivalent.

Let H = U ⊕V be a direct sum decomposition of the Hilbert space H with a closed
subspace U . According to Theorem 1.1, the subspace V is B-invariant, we have that
ΠUβ is constant on V , and we have σk(H) ⊂ V for all k = 1, . . . ,m. Noting that
ΠUβ = ΠUα−ΠUT , and that α ∈ H is constant, we deduce that ΠUT is constant
on V , which implies V ⊂ ker(ΠUT ). Therefore, the subspace V is T -invariant, and
hence it is also A-invariant. �

5.2. Remark. Suppose that the SPDE (1.1) has an affine realization generated by
some finite dimensional subspace V .

• We can construct the curve ψ and the V -valued process Y appearing in (1.3)
as follows. We fix a direct sum decomposition H = U ⊕ V , and decompose
an arbitrary starting point h0 ∈ H as h0 = u0 +v0 according to H = U⊕V .
Inspecting the proofs of Theorems 1.1 and 4.3, we see that ψ : R+ → H is
the weak solution to the H-valued PDE (4.4) and and that Y is the strong
solution to the V -valued SDE (4.5) with t0 = 0.

• If α(H) ⊂ V (as in the situation of Corollary 1.2), then the curve ψ ap-
pearing in (1.3) is given by ψ(t) = Sth0 for t ∈ R+.

• In any case, we can decompose the weak solution to the H-valued SPDE
(1.1) into the weak solution to the H-valued PDE (4.4) and the strong
solution to the V -valued SDE (4.5).

• Even for h0 ∈ D(A) the invariant foliation is generally only a C0-foliation,
and hence, due to Remark 4.7, the weak solution to the SPDE (1.1) is
generally not a strong solution.

• If ΠUα(D(A)) ⊂ D(A) and ΠUα is Lipschitz continuous on D(A) with
respect to the graph norm

‖h‖D(A) =
√
‖h‖2 + ‖Ah‖2, h ∈ D(A)

(as, for example, in the situation of Corollary 1.2), then, according to [17,
Thm. 6.1.7], for each starting point h0 ∈ D(A) the PDE (4.4) admits a
classical solution, which implies that the invariant foliation is a C1-foliation
and that the weak solution to the SPDE (1.1) is also a strong solution.

Finally, we will derive a result concerning the existence of affine realizations for
linear SPDEs without specifying a finite dimensional subspace in advance. For this
purpose, we require the concept of quasi-exponential volatilities.

5.3. Definition. We introduce the following notions:
(1) If σk(H) ⊂ D(A∞) for all k = 1, . . . ,m, then we define the subspace Aσ ⊂

H as

Aσ :=

m∑
k=1

〈Anσk(h) : n ∈ N0 and h ∈ H〉.

(2) The volatility σ is called A-quasi-exponential, if we have σk(H) ⊂ D(A∞)
for all k = 1, . . . ,m and dimAσ <∞.

The following two auxiliary results are immediate consequences of Definition 5.3.
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5.4. Lemma. Let V be a finite dimensional A-invariant subspace such that σk(H) ⊂
V for all k = 1, . . . ,m. Then the volatility σ is A-quasi-exponential.

5.5. Lemma. Suppose that the volatility σ is A-quasi-exponential, and set V := Aσ.
Then V is a finite dimensional A-invariant subspace, and we have σk(H) ⊂ V for
all k = 1, . . . ,m.

Now, we are ready to formulate and prove the announced result.

5.6. Theorem. Suppose that the SPDE (1.1) is linear. Then it has an affine real-
ization if and only if the volatility σ is A-quasi-exponential.

Proof. Suppose that the linear SPDE (1.1) has an affine realization. By Theorem 1.3
there exists a finite dimensional subspace V ⊂ H such that V is A-invariant and
σk(H) ⊂ V for all k = 1, . . . ,m. According to Lemma 5.4, the volatility σ is A-
quasi-exponential.

Conversely, Suppose that the volatility σ is A-quasi-exponential, and set V :=
Aσ. By Lemma 5.5, the subspace V is a finite dimensional A-invariant subspace,
and we have σk(H) ⊂ V for all k = 1, . . . ,m. Therefore, by Theorem 1.3 the linear
SPDE (1.1) has an affine realization. �

6. The HJMM equation

In the section, we treat the HJMM equation as an example of a nonlinear SPDE.
More precisely, we consider the SPDE{

drt =
(
d
dxrt + αHJM(rt)

)
dt+ σ(rt)dWt

r0 = h0

(6.1)

driven by a Rm-valued Wiener processes W . The state space H of (6.1) is the space
used in Example 4.9. The weak solutions r to (6.1) are interest rate curves in a
market of zero coupon bonds. In order to ensure that this bond market is free of
arbitrage, we assume that the drift term in (6.1) is given by the HJM drift condition

αHJM(h) =

m∑
k=1

σk(h) · Tσk(h),(6.2)

where T : H → H denotes the integral operator given by Th :=
∫ •

0
h(η)dη for

h ∈ H. We refer, e.g., to [9] for further details concerning the derivation of the
HJMM equation (6.1) and the HJM drift condition (6.2).

Our goal of this section is to provide an alternative and rather short proof of a
well-known result concerning the existence of FDRs for the HJMM equation (6.1),
which can, e.g., be found in [3], [2] or [21]. For this purpose, we start with an
auxiliary result.

6.1. Lemma. Let V be a finite dimensional (d/dx)-invariant subspace. Then the
subspace V + P (V ), where

P (V ) := 〈h · g : h ∈ V and g ∈ TV 〉,(6.3)

is finite dimensional and (d/dx)-invariant, too.

Proof. The subspace V + P (V ) is finite dimensional, because we have

dim(V + P (V )) ≤ dimV + (dimV )2 <∞.
Let h ∈ V and g ∈ TV be arbitrary. Then there exists f ∈ V such that g = Tf .
Since V is (d/dx)-invariant, we obtain f ′ ∈ V , and hence
d

dx
g =

d

dx

∫ •
0

f(y)dy = f =
(
f − f(0)

)
+ f(0) =

∫ •
0

f ′(y)dy + f(0) ∈ TV + 〈1〉.
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Therefore, and since V is (d/dx)-invariant, we deduce

d

dx

(
h · g

)
=

d

dx
h · g + h · d

dx
g ∈ V + P (V ),

showing that V + P (V ) is (d/dx)-invariant. �

6.2. Proposition. Suppose that the volatility σ is (d/dx)-quasi-exponential. Then
the HJMM equation (6.1) has an affine realization.

Proof. For simplicity of notation, we set A := d/dx. By Lemma 5.5, the subspace
Aσ is a finite dimensional A-invariant subspace, and we have σk(H) ⊂ Aσ for all
k = 1, . . . ,m. By Lemma 6.1, the subspace V := Aσ + P (Aσ) is finite dimensional
and A-invariant, too. Moreover, we have σk(H) ⊂ Aσ ⊂ V for all k = 1, . . . ,m, and
by (6.2) and (6.3) we have αHJM(H) ⊂ V . Therefore, Corollary 1.2 concludes the
proof. �

6.3. Remark. Suppose that the volatility σ is (d/dx)-quasi-exponential.
• Note that the just presented result is more general than [21, Prop. 6.2],
because here we obtain a representation of the form (1.3) for every start-
ing point h0 ∈ H, whereas the aforementioned result only provides such a
representation for each starting point h0 ∈ D(d/dx).

• For each h0 ∈ H the curve ψ appearing in (1.3) is given by ψ(t) = Sth0

for t ∈ R+, which follows from Remark 5.2. Furthermore, for each h0 ∈
D(d/dx) the invariant foliation is a C1-foliation and the weak solution to
the HJMM equation (6.1) is also a strong solution.

• If we add driving Lévy processes with jumps in the HJMM equation (6.1),
then the statement of Proposition 6.2 is no longer true, because the drift
condition becomes more involved. We refer to [22] for details on this subject.

7. Examples of linear SPDEs

In this section, we present several examples of linear SPDEs arising in natural
sciences and economics. Our approach in these example is to determine all finite
dimensional invariant subspaces, and to apply Theorem 1.3 afterwards. For this pro-
cedure, we determine all eigenvalues λ of the generator A, and then we distinguish
two cases:

• For a general operator A, we determine all solutions of the generalized
eigenvalue problem. More precisely, let λ ∈ C be an eigenvalue of A and
let n ∈ N be arbitrary. If λ ∈ R, then we determine all solutions of the
generalized eigenvalue problem

(A− λ)n = 0,(7.1)

and in the case λ ∈ C \ R we determine all solutions of the generalized
eigenvalue problem

((A− λ)(A− λ))n = 0.(7.2)

• If A is symmetric2, then every eigenvalue is real, and for an eigenvalue λ ∈ R
it suffices to determine all solutions of the eigenvalue problem

A− λ = 0.(7.3)

2For our purposes, we do not need that the operator A is self-adjoint, because we merely
consider its restrictions on finite dimensional subspaces of H.
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Our general mathematical framework in this section is that of Section 2; in par-
ticular, throughout this section, the driving process X denotes a Rm-valued Lévy
process for some positive integer m ∈ N.

First, we deal with the HJMM equation, which we have already encountered in
Section 6. Here we consider the linear HJMM equation{

drt =
(
d
dxrt + αHJM

)
dt+ σdXt

r0 = h0.
(7.4)

In order to be consistent with the upcoming examples, we consider (7.4) on the
state space L2(R+, ρ) for some appropriate measure ρ. Moreover, in order to ensure
the absence of arbitrage, we assume that the drift term is given by

αHJM =
d

dx
Ψ(−Tσ),

where Ψ denotes the cumulant generating function of the Lévy process X. We refer,
e.g., to [7, Sec. 2.1] for further details.

7.1. Proposition. The following statements are equivalent:
(i) The linear HJMM equation (7.4) has an affine realization.
(ii) There are finite sets I ⊂ R, J ⊂ R × (0,∞), and an integer p ∈ N0 such

that

(7.5)

σk ∈
⊕
λ∈I

〈x 7→ xj exp(λx) : j = 0, . . . , p〉

⊕
⊕

(µ,ν)∈J

〈x 7→ xj exp(µx) cos(νx),

x 7→ xj exp(µx) sin(νx) : j = 0, . . . , p〉
for all k = 1, . . . ,m.

Proof. We set A := d/dx, and let n ∈ N be arbitrary. For λ ∈ R all solutions to the
ODE (7.1) are given by the linear space

〈x 7→ xj exp(λx) : j = 0, . . . , n− 1〉.

Furthermore, for λ = µ+ iν ∈ C \ R with ν > 0 all solutions to the ODE (7.2) are
given by the linear space

〈x 7→ xj exp(µx) cos(νx), x 7→ xj exp(µx) sin(νx) : j = 0, . . . , n− 1〉.
Therefore, applying Theorem 1.3 completes the proof. �

7.2. Remark. We refer to [26, Thm. 5] for a closely related result regarding the
linear HJMM equation driven by Wiener processes.

Next, we consider the stochastic transport equation{
dut =

(
〈v,∇〉ut + α

)
dt+ σ(ut−)dXt

u0 = h0,
(7.6)

which describes the contaminant of a fluid with velocity v ∈ Rd over time. Here the
state space is H = L2(C, ρ) with a closed set C ⊂ Rd and an appropriate measure
ρ. We assume that the closed set C has the property

C = ∂C + {tv : t ∈ R+},
and that for every y ∈ C there exist unique elements x ∈ ∂C and t ∈ R+ such
that y = x + tv. The first order differential operator 〈v,∇〉 appearing in (7.6) is
generated by the translation semigroup (Stu)(x) = u(x+ tv) for t ≥ 0 and x ∈ C.
Here are two examples which are covered by this framework:
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• The HJMM equation (7.4), where we have C = R+, ∂C = {0} and v = 1.
• The SPDE presented in [25], which describes the mortality rates of demo-

graphic evolutions. Here the sets C, ∂C ⊂ R2 are given by

C = {(s, y) ∈ R+ × R : y ≥ −s},
∂C = {t(0, 1) : t ∈ R+} ∪ {t(1,−1) : t ∈ R+},

and we have the velocity v = (1,−1).

7.3. Proposition. We suppose there exist functions ξ : ∂C → Rm and h : R+ →
Rm such that

σk(x+ tv) = ξk(x) · hk(t) for all (x, t) ∈ ∂C × R+ and all k = 1, . . . ,m,

and hk is of the form (7.5) for all k = 1, . . . ,m. Then the stochastic transport
equation (7.6) has an affine realization.

Proof. Setting A := 〈v,∇〉, for all x ∈ ∂C and all t ∈ R+ we have

Aσk(x+ tv) = ξk(x) · (hk)′(t), k = 1, . . . ,m,

and hence, combining Theorem 1.3 and Proposition 7.1 concludes the proof. �

Now, we consider examples of second order operators, with corresponding appli-
cations typically arising in natural sciences. Our first such example is the stochastic
cable equation (cf. [6, Ex. 0.8]){

dvt = 1
τ

(
λ2 d2

dx2 vt − vt
)
dt+ σdXt

v0 = h0,
(7.7)

which describes the voltage of an electric cable over time. The constants λ, τ > 0
are physical constants of the electric cable; λ is the length constant and τ is the time
constant. Here the state space is H = L2((0, π)) and we can choose the generator
A = − d2

dx2 on the domain D(A) = H2((0, π)) ∩H1
0 ((0, π)). Thus, the electric cable

is modeled by the interval [0, π] and we consider Dirichlet boundary conditions,
which means that there is no voltage at the end points of the cable.

7.4. Proposition. The following statements are equivalent:
(i) The stochastic cable equation (7.7) has an affine realization.
(ii) There is a finite index set I ⊂ N such that

σk ∈
⊕
n∈I
〈x 7→ sin(nx)〉, k = 1, . . . ,m.

Proof. The eigenvalues of the Sturm-Liouville eigenvalue problem

u′′ + λu = 0, u(0) = u(π) = 0

are given by λn = n2, n ∈ N, and the corresponding eigenfunctions are given by

un(x) = sin(nx), n ∈ N.
Therefore, Theorem 1.3 completes the proof. �

Next, we consider the stochastic heat equation{
dut = a∆utdt+ σdXt

u0 = h0,
(7.8)

which describes the heat of a medium in a region over time. The constant a > 0
is the heat conductivity. Here we have the state space H = L2(O), where O ⊂ R2

denotes the open unit ball

O = {x ∈ R2 : x2
1 + x2

2 < 1},
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and we can choose the generator A = −∆ on the domain D(A) = H2(O)∩H1
0 (O).

Therefore, the region, in which we measure the temperature, is the closed unit ball
O and we consider Dirichlet boundary conditions, which means that the tempera-
ture is zero at the boundary ∂O of the ball. In the upcoming result, we use polar
coordinates, and we agree on the following notation:

• For p ∈ N0 we denote by Jp : R+ → R the Bessel function of the first kind.
• For (p, q) ∈ N0×N we denote by λpq > 0 the q-th positive zero of the Bessel

function Jp.

7.5. Proposition. The following statements are equivalent:
(i) The stochastic heat equation (7.8) has an affine realization.
(ii) There is a finite index set I ⊂ N0 × N such that

σk ∈
⊕

(p,q)∈I

〈(r, ϕ) 7→ cos(pϕ)Jp(λpqr), (r, ϕ) 7→ sin(pϕ)Jp(λpqr)〉

for all k = 1, . . . ,m.

Proof. The eigenvalues of the Laplace eigenvalue problem

∆u+ λu = 0, u = 0 on ∂O

are given by λ2
pq, (p, q) ∈ N0 × N, and the corresponding eigenfunctions are, by

using polar coordinates, given by

upq(r, ϕ) = cos(pϕ)Jp(λpqr) and vpq(r, ϕ) = sin(pϕ)Jp(λpqr).

Therefore, Theorem 1.3 completes the proof. �

Both, the Hermite semigroup (also called Dunkl-Hermite semigroup or Ornstein-
Uhlenbeck semigroup) and the Laguerre semigroup play a central role in quantum
mechanics and mathematical physics. First, we consider the stochastic Hermite
equation {

dut =
(
− ∆

2 + 〈x,∇〉
)
utdt+ σ(ut−)dXt

u0 = h0

(7.9)

on the state space H = L2(Rd, exp(−‖x‖22)dx) for some d ∈ N. If d ≥ 2, then for
β ∈ Nd0 we define the generalized Hermite polynomial Hβ as

Hβ(x) :=

d∏
i=1

Hβi(xi), x ∈ Rd,

where the (Hn)n∈N0 denote the usual Hermite polynomials.

7.6. Proposition. The following statements are equivalent:
(1) The stochastic Hermite equation (7.9) has an affine realization.
(2) There is a finite index set I ⊂ N0 such that

σk(H) ⊂
⊕
n∈I
〈Hβ : β ∈ Nd0 with |β| = n〉

for all k = 1, . . . ,m.

Proof. The eigenvalue problem

−∆u

2
+ 〈x,∇u〉 = λu

has the eigenvalues λn = n, n ∈ N0 with corresponding eigenfunctions

{Hβ : β ∈ Nd0 with |β| = n}.
Therefore, Theorem 1.3 completes the proof. �
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Next, we consider the stochastic Laguerre equation{
dut = −

(
〈x, ∂2〉+ 〈1− x,∇〉

)
utdt+ σ(ut−)dXt

u0 = h0

(7.10)

on the state space H = L2(Rd+,B(Rd+), exp(−‖x‖1)) for some d ∈ N. If d ≥ 2, then
for β ∈ Nd0 we define the generalized Laguerre polynomial Lβ as

Lβ(x) :=

d∏
i=1

Lβi
(xi), x ∈ Rd,

where the (Ln)n∈N0 denote the usual Laguerre polynomials.

7.7. Proposition. The following statements are equivalent:
(1) The stochastic Laguerre equation (7.10) has an affine realization.
(2) There is a finite index set I ⊂ N0 such that

σk(H) ⊂
⊕
n∈I
〈Lβ : β ∈ Nd0 with |β| = n〉

for all k = 1, . . . ,m.

Proof. The eigenvalue problem

〈x, ∂2u〉+ 〈1− x,∇u〉+ λu = 0

has the eigenvalues λn = n, n ∈ N0 with corresponding eigenfunctions

{Lβ : β ∈ Nd0 with |β| = n}.
Therefore, Theorem 1.3 completes the proof. �

In [5], a model for the term structure of interest rates, which is different from the
HJMM equation (7.4), was proposed. Namely, it was assumed that the fluctuation
process satisfies a second order SPDE of the form{

dYt =
(
κ
2
d2

dx2Yt + d
dxYt

)
dt+ σdXt

Y0 = h0

(7.11)

with a positive constant κ > 0 and Dirichlet boundary conditions. Here the state
space is H = L2((0, 1), exp(x/κ)dx), and we can choose the generator

A = −κ
2

d2

dx2
− d

dx

on the domain D(A) = H2((0, 1)) ∩H1
0 ((0, 1)).

7.8. Proposition. The following statements are equivalent:
(1) The second order term structure equation (7.11) has an affine realization.
(2) There is a finite index set I ⊂ N such that

σk ∈
⊕
n∈I
〈x 7→ exp(−x/κ) sin(nπx)〉

for all k = 1, . . . ,m.

Proof. The eigenvalue problem
κ

2
u′′ + u′ + λu = 0, u(0) = u(1) = 0

has the eigenvalues

λn =
1

2κ

(
1 + n2π2κ2

)
, n ∈ N,
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with corresponding eigenfunctions

un(x) = exp(−x/κ) sin(nπx), n ∈ N.

Therefore, Theorem 1.3 completes the proof. �

7.9. Remark. We refer to [26, Thm. 6] for a closely related result regarding the
second order term structure equation (7.11) driven by Wiener processes.
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