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ERNST AUGUST VON HAMMERSTEIN†, EVA LÜTKEBOHMERT†,
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Abstract. In this paper, we determine the lowest cost strategy for a given
payoff in Lévy markets where the pricing is based on the Esscher martingale

measure. In particular, we consider Lévy models where prices are driven by a

normal inverse Gaussian (NIG)- or a variance Gamma (VG)-process. Explicit
solutions for cost-efficient strategies are derived for a variety of vanilla options,

spreads, and forwards. Applications to real financial market data show that

the cost savings associated with these strategies can be quite substantial. The
empirical findings are supplemented by a result that relates the magnitude of

these savings to the strength of the market trend. Moreover, we consider the

problem of hedging efficient claims, derive explicit formulas for the deltas of
efficient calls and puts and apply the results to German stock market data.

Using the time-varying payoff profile of efficient options, we further develop

alternative delta hedging strategies for vanilla calls and puts. We find that the
latter can provide a more accurate way of replicating the final payoff compared

to their classical counterparts.

1. Introduction

In this paper, we study optimal investment decisions in incomplete markets where
the prices of risky assets are driven by Lévy processes. In particular, we solve for
the investment strategy with minimal cost that achieves a given payoff distribu-
tion. This strategy is called cost-efficient with respect to the given distribution.
The problem of determining efficient strategies for a given payoff distribution was
introduced by Dybvig (1988a,b) in the case of a discrete arbitrage-free and com-
plete binomial model. Here the aim is to determine an investment strategy C that
achieves the same payoff distribution F as a given claim X but at the same time
minimizes the price. In a series of papers Bernard & Boyle (2010), Bernard et al.
(2014), and Vanduffel et al. (2009, 2012) give a solution of the efficient claim prob-
lem in a fairly general setting. They calculate in explicit form efficient strategies for
several options in Black–Scholes markets. Dana (2005), Föllmer & Schied (2004),
Jouini & Kallal (2001), and Rüschendorf (2012) consider the extended problem to
optimize the price under the condition that C ≤cx X, i.e., C is smaller in convex
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2 OPTIMALITY OF PAYOFFS IN LÉVY MODELS

order than X. The solution of this extended problem turns out to be identical to the
solution of the efficient claim problem as formulated above. In general Lévy markets
where the arbitrage-free pricing is based on the Esscher transform, Vanduffel et al.
(2009) prove that path-dependent payoffs are inefficient w.r.t. the convex order ≤cx

and can be improved by conditioning on the price density process. The enhanced
payoffs then are path-independent.

In this paper, we apply the above results on efficient payoffs to certain classes of
exponential Lévy models. In particular, we consider variance Gamma (VG) and nor-
mal inverse Gaussian (NIG) processes and contrast them with the classical Black–
Scholes model. We hypothesize that agents in the market agree on the Esscher
martingale measure for pricing and suppose there exists a constant risk-free interest
rate. For a variety of relevant financial derivatives we explicitly derive cost-efficient
strategies. Based on the inefficiency results for path-dependent options mentioned
above, we concentrate in this paper on path-independent payoffs. Further, we pro-
vide a cost-efficient version of the put-call parity stating that the cost-efficient
strategy corresponding to a portfolio of a long call and a short put agrees with the
cost-efficient strategy for a long forward.

Moreover, we investigate the impact of market behaviour on the level of cost
reduction that can be achieved by switching to the efficient strategies. Roughly
speaking, the overall market behaviour is characterized by the sign of the risk-
neutral Esscher parameter, whereas the size of its absolute value determines the
strength of the market trend. We show that the price differences between ineffi-
cient and optimal strategies are increasing when the market trend becomes more
pronounced.

Furthermore, we explicitly determine hedging strategies for cost-efficient pay-
offs. Specifically, we provide formulas for delta hedging of cost-efficient strategies
corresponding to European call and put options. This is particularly important for
practical applications as the pricing formulas for cost-efficient strategies themselves
are still unsatisfying if no hedging strategies exist. In a practical application using
German stock price data we demonstrate that all derived formulas are numerically
tractable and that cost-efficient puts can be hedged as accurately as the corre-
sponding vanilla puts. For the latter, as well as for vanilla calls, we further develop
alternative delta hedging strategies based on a series of efficient puts resp. calls with
decreasing times to maturity. We prove that the magnitude of the associated deltas
is in almost all cases smaller than that of the classical deltas. This suggests that also
the hedging errors arising in discrete delta hedging should be smaller for the alter-
native than for the standard hedging strategies. Using the aforementioned market
data, we demonstrate that this is indeed the case: The accumulated absolute hedge
errors obtained from the alternative delta hedging strategy for vanilla puts on two
German stocks are always smaller than those of the classical one. This shows that
cost-efficient options not only provide a cheaper way of realizing a certain payoff
distribution, but can also help to more accurately hedge related products.

The paper is structured as follows: Section 2 restates the basic results on price
bounds and efficient claims for the case of Lévy models when pricing is based on
the Esscher martingale measure and explains how the efficiency loss is influenced by
market behaviour. Section 3 contains explicit calculations of cost-efficient strategies
for a variety of derivative contracts using estimated parameters from German stock
price data and discusses the put-call parity. Formulas for delta hedging of cost-
efficient and vanilla call and put options and applications to put options on two
German stocks are presented in Section 4 while Section 5 concludes. Proofs as well
as detailed derivations of the risk-neutral Esscher parameters for the different Lévy
models considered in the paper are provided in two appendices.



OPTIMALITY OF PAYOFFS IN LÉVY MODELS 3

2. Cost-efficient strategies

2.1. Cost-efficiency. Consider a financial market on a filtered probability space
(Ω,F , (Ft)t∈[0,T ], P ) satisfying the usual conditions with finite trading horizon [0, T ],
T ∈ R+. We use the simplifying notation (Yt)t≥0 := (Yt)t∈[0,T ] for an arbitrary
stochastic process Y on [0, T ]. Further, we assume that the financial market is in-
complete, but free of arbitrage, perfectly liquid and frictionless. Let (St)t≥0 denote
the price process of a risky asset and let r be the constant deterministic risk-free
interest rate. We assume that all agents in the market agree on the same state
price density (Zt)t≥0 for pricing, where the process (Zt)t≥0 is chosen such that the
discounted process (e−rtZtSt)t≥0 is a P -martingale. We assume this general setup
throughout the whole paper and indicate whenever we concretize it.

In this paper, we are interested in strategies of European type yielding a given
terminal payoff distribution, and among those, especially in the ones with minimal
and maximal cost. Here the cost of a strategy with a given terminal payoff XT ,
T > 0, is defined as the discounted expected payoff w.r.t. the state price density
ZT , i.e.,

c(XT ) = e−rTE
[
ZTXT

]
, (2.1)

provided that the expectation exists. Note that here and in the following the ex-
pectation E[·] = EP [·] is always calculated w.r.t. the real-world measure P if not
stated otherwise.

Definition 2.1 (Cost-efficient and most-expensive strategies).

(a) A strategy (or payoff) XT ∼ G is called cost-efficient w.r.t. the payoff-
distribution G if any other strategy XT that generates the same payoff-
distribution G costs at least as much, that is,

c(XT ) = e−rTE[ZTXT ] = min
{XT∼G}

e−rTE[ZTXT ]. (2.2)

(b) A strategy (or payoff) XT ∼ G is called most-expensive w.r.t. the payoff-
distribution G if any other strategy XT that generates the same payoff-
distribution G costs at most as much, that is,

c(XT ) = e−rTE[ZTXT ] = max
{XT∼G}

e−rTE[ZTXT ]. (2.3)

(c) The efficiency loss of a strategy with payoff XT ∼ G at maturity T is
defined as

c(XT )− c(XT ).

As a consequence of the definition one obtains (see Bernard et al. (2014)) that
the net profit from investing into the cost-efficient strategy XT is greater than that
of XT in the stochastic order ≤st, i.e.,

XT − c(XT )erT ≤st XT − c(XT )erT . (2.4)

Thus, investors who only care about the distribution of terminal wealth will always
prefer the cost-efficient strategies as the latter yield higher outcomes with greater
probabilities.

From Eq. (2.2) we observe that the cost of a strategy with a given payoff distri-
bution G is minimized when the expectation of the product of payoff XT and the
state price density ZT is minimized. Since the marginal distributions G and FZT
have to be kept fixed, the problem of minimizing the cost is equivalent to finding a
strategy XT ∼ G such that the covariance Cov(XT , ZT ) is minimized (we implic-
itly assume here that E[XT ] and E[XTZT ] are finite such that all expressions are
well-defined). Then it is an immediate consequence of the Hoeffding formula (see
Lehman (1966), Lemma 2) that the minimal covariance is obtained by setting the
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joint distribution of XT and ZT equal to the lower Fréchet bound, i.e., XT and ZT
have to be countermonotonic. If at least one of the marginal distributions is contin-
uous, this is equivalent to the fact that XT a.s. is a non-increasing function of ZT .
Analogously, the most-expensive payoff is obtained by choosing the payoff XT to
be comonotonic with ZT , i.e., XT is a.s non-decreasing in ZT . More precisely, the
following result holds (see Bernard et al. (2014), Proposition 3, and the literature
mentioned in the introduction).

Theorem 2.1 (Cost-efficient payoffs and price bounds). For any given payoff
XT with distribution G it holds:

(a)

inf
{XT∼G}

c(XT ) = e−rT
∫ 1

0

F−1
ZT

(y)G−1(1− y) dy

sup
{XT∼G}

c(XT ) = e−rT
∫ 1

0

F−1
ZT

(y)G−1(y) dy

(2.5)

(b) A random payoff XT ∼ G is cost-efficient if and only if XT and ZT are coun-
termonotonic. XT ∼ G is most-expensive iff XT and ZT are comonotonic.

(c) If the distribution FZT of the state price density ZT is continuous, then

XT = G−1(1− FZT (ZT )) is cost-efficient and

XT = G−1(FZT (ZT )) is most-expensive.

Explicit formulas for cost-efficient and for most-expensive payoffs can also be
given in explicit form without assuming continuity of FZT by means of the distri-
butional transform (see Rüschendorf (2012, 2013)).

2.2. Cost-efficiency in Lévy markets. Suppose now that the asset price pro-
cess (St)t≥0 = (S0e

Lt)t≥0 is driven by a Lévy process (Lt)t≥0. Apart from the
cases where (Lt)t≥0 either is a Brownian motion or a Poisson process, such a Lévy
market setting is incomplete and there exist infinitely many risk-neutral martin-
gale measures. Thus, one has to rely on additional optimality criteria, preference
assumptions, or calibration results to real data from option markets to choose a
specific martingale measure for pricing. Throughout this paper we will use the Es-
scher martingale measure for this purpose which was introduced to option pricing
by Gerber & Shiu (1994). Apart from the fact that the Esscher transform provides
a transparent, unambigious, and numerically very tractable way to obtain a risk-
neutral measure, this choice can also be motivated from a theoretical point of view.
The Esscher approach can be obtained in a natural way from the assumption of
the existence of a competitive equilibrium with respect to a power utility function
(see e.g. Keller (1997), Chapter 1.4.3). Moreover, Chan (1997), Esche & Schweizer
(2005), Goll & Rüschendorf (2002), and Miyahara (1999) prove that the Esscher
martingale measure of the exponential transform of (Lt)t≥0 coincides with the min-
imal entropy martingale measure. An extension of this result and a discussion on
Esscher transforms of exponential Lévy models can be found in Hubalek & Sgarra
(2006). Another useful feature of Esscher transforms is the preservation of the Lévy
property: (Lt)t≥0 remains a Lévy process under any Esscher measure Qθ to be de-
fined below. To properly define the Esscher martingale measure, the following basic
assumption on the driving Lévy process (Lt)t≥0 is made for the remainder of the
paper.

Assumption 2.1. The random variable L1 is nondegenerate and possesses a mo-
ment generating function (mgf) ML1

(u) = E[euL1 ] on some open interval (a, b) with
a < 0 < b and b− a > 1.
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This condition turns out to be necessary (but not always sufficient) for the ex-
istence of the risk-neutral Esscher measure.

Definition 2.2. We call an Esscher transform any change of P to a locally equiv-

alent measure Qθ with a density process Zθt = dQθ

dP |Ft of the form

Zθt =
eθLt

MLt(θ)
, (2.6)

where MLt is the mgf of Lt as before, and θ ∈ (a, b).

To emphasize the dependence of the Esscher measure Qθ and its density process
(Zθt )t≥0 on the parameter θ, we shall always add the latter as superscript. Similarly,
we will indicate by Eθ[·] that the expectation is calculated with respect to Qθ. Using
the stationarity and independence of the increments of every Lévy process (Lt)t≥0,
which also imply the relation

MLt(u) = ML1(u)t for all u ∈ R and t ≥ 0,

it is not hard to show that (Zθt )t≥0 indeed is a density process for all θ ∈ (a, b) and
(Lt)t≥0 also is a Lévy process under Qθ for all these θ. However, the discounted
stock price process (e−rtSt)t≥0 will not be a martingale under all Qθ. The parameter

θ̄ of the risk-neutral Esscher measure Qθ̄, for which this property holds, has to fulfill
the equation S0 = Eθ̄[e

−rtSt], i.e., θ̄ has to solve the equation

er =
ML1(θ̄ + 1)

ML1
(θ̄)

. (2.7)

This also explains why it is necessary to require ML1 to be defined on an interval
with length greater than one. But, as mentioned before, Assumption 2.1 alone does
not guarantee the existence of a solution θ̄. The next lemma, taken from Raible
(2000, Proposition 2.8), provides a sufficient condition for this and further shows
that the solution, if existent, is unique such that we can define the risk-neutral
Esscher measure or Esscher martingale measure without any ambiguity.

Lemma 2.1. If Assumption 2.1 is in force, we have:

(a) For each c > 0, there is at most one θ ∈ R such that

ML1
(θ + 1)

ML1(θ)
= c.

(b) If limu↓aML1
(u) = limu↑bML1

(u) =∞, then the previous equation has exactly
one solution θ ∈ (a, b− 1) for each c > 0.

Remark 2.1. Note that within this framework one cannot assume the state price
density to be square integrable in general. The interval (a, b) on which the mgf ML1

is well defined and finite, can be fairly small. Thus, it might happen that a solution
θ̄ ∈ (a, b − 1) of (2.7) exists, but 2θ̄ 6∈ (a, b), implying that E[e2θ̄Lt ] is infinite and

hence Z θ̄t is not square integrable for any t > 0.

Now we can reformulate Theorem 2.1 in terms of the driving Lévy process instead
of the state price process.

Proposition 2.1 (Cost-efficient payoffs in Lévy models). Let (Lt)t≥0 be a
Lévy process with continuous distribution function FLT at maturity T > 0, and
assume that a solution θ̄ of (2.7) exists.

(a) If θ̄ < 0, then the cost-efficient payoff XT and the most-expensive payoff XT

with distribution function G are a.s. unique and are given by

XT = G−1(FLT (LT )) and XT = G−1(1− FLT (LT )). (2.8)
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Further, the following bounds for the cost of any strategy with terminal payoff
XT ∼ G hold:

c(XT ) ≥ E
[
e−rTZ θ̄TXT

]
=

1

MLT (θ̄)

∫ 1

0

e
θ̄F−1
LT

(1−y)−rT
G−1(1− y) dy,

c(XT ) ≤ E
[
e−rTZ θ̄TXT

]
=

1

MLT (θ̄)

∫ 1

0

e
θ̄F−1
LT

(1−y)−rT
G−1(y) dy.

(b) If θ̄ > 0, then the cost-efficient and the most-expensive payoffs are a.s. unique
and are given by

XT = G−1(1− FLT (LT )) and XT = G−1(FLT (LT )). (2.9)

The bounds in (a) hold true with F−1
LT

(1− y) replaced by F−1
LT

(y).

From this we directly obtain the following corollary where the notions increasing
and decreasing are understood in the weak sense. The continuity assumption is only
needed for the converse direction.

Corollary 2.1 (Characterization of cost-efficiency in Lévy models). Let
(Lt)t≥0 be a Lévy process with continuous distribution FLT at maturity T > 0, and
assume that a solution θ̄ of (2.7) exists.

(a) If θ̄ < 0, a payoff XT ∼ G is cost-efficient if and only if it is increasing in LT .
(b) If θ̄ > 0, a payoff XT ∼ G is cost-efficient if and only if it is decreasing in LT .

For the most-expensive strategy, the reverse holds true.

Example 2.1.

(a) Applying Corollary 2.1 to the special payoff XT = ST = S0e
LT one obtains

that buying one stock for S0 at time t = 0 is a cost-efficient way to achieve a
payoff with distribution G = FST at time T if and only if θ̄ < 0.

(b) Assume again the setting of Corollary 2.1 and consider the payoff of a put option
at time T > 0 with strike K > 0, i.e., XP

T = (K − ST )+ = (K − S0e
LT )+. XP

T

is a decreasing function of LT and hence is cost-efficient if and only if θ̄ > 0.
For θ̄ < 0, however, the classical put is the most-expensive way to realize a
payoff with distribution G = FXPT . Similarly, the payoff XC

T = (S0e
LT −K)+

of a call option with strike K and maturity T is cost-efficient if θ̄ < 0 and
most-expensive if θ̄ > 0.

The corollary also implies the inefficiency of path-dependent payoffs. Here we
call a payoff XT path-dependent if XT does not solely depend on the asset price ST
at maturity time T (or equivalently on LT ), but at least on one more value St, resp.
Lt, with 0 < t < T . Consequently, a path-dependent payoff never is an increasing
or decreasing function of LT alone, and therefore, cannot be cost-efficient either.
The only exception is the case θ̄ = 0 which implies Z θ̄t ≡ 1 for all 0 ≤ t ≤ T ,
thus P = Q0 already is a risk-neutral measure. As is immediately obvious from
the definition, the possible price range [c(XT ), c(XT )] of any payoff XT ∼ G then
shrinks to a singleton or, in other words, for θ̄ = 0 every payoff XT already is
cost-efficient and cannot be improved further. This yields the following generalized
version of Bernard et al. (2014, Corollary 3) in the Lévy market setting. For a
related result, see also Cox & Leland (2000).

Corollary 2.2 (Inefficiency of path-dependent payoffs). If (Lt)t≥0 is a Lévy
process with continuous distribution FLT at maturity T > 0 and a solution θ̄ of
(2.7) exists, then path-dependent payoffs are not cost-efficient unless θ̄ = 0.

Remark 2.2. In some settings, path-dependent payoffs XT can be improved by
conditioning on ST resp. LT . Vanduffel et al. (2008) and Vanduffel et al. (2009)
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proved that risk-averse investors with fixed investment horizon will always prefer
the payoff X ′T = E[XT |ST ] to XT in a Lévy market model where the real-world
and risk-neutral measures P and Q are related by an Esscher transformation. More
generally, path-dependent payoffs are suboptimal for risk-averse investors in any
setting where the state price density is a function of ST , see Kassberger & Lieb-
mann (2011). Observe that the improved payoff X ′T is no longer path-dependent
due to the conditioning on ST , hence it fits into the present framework and may
be enhanced further by applying Proposition 2.1. In Vanduffel et al. (2012), this
approach is applied to Dollar cost averaging which is shown to be outperformed by
a static strategy of investing in a suitable portfolio of path-independent options.
Some general comparison results for prices of path-dependent options like Asian or
lookback options are given in Bergenthum & Rüschendorf (2008).

The above results indicate that the sign of the risk-neutral Esscher parameter θ̄ in
Lévy markets plays an essential role for the construction of cost-efficient strategies.
Our next result states that in a bullish Lévy market scenario, i.e., a market where
the expected return E[St/S0] = E[eLt ] is greater than the risk-free return ert,
the Esscher parameter θ̄ solving Eq. (2.7) must be negative to shrink the rate of
return to the risk-free rate r. Similarly, in bearish markets where the expected
return E[eLt ] is smaller than ert for all t > 0, we must have θ̄ > 0 to adjust
the rate of return accordingly. Observe that this line of argumentation requires
E[St] = S0E[eLt ] = S0E[eL1 ]t <∞ which is, of course, a quite natural condition.

Proposition 2.2 (Characterization of bullish and bearish markets). As-
sume that the risk-neutral Esscher parameter θ̄ exists and E[eL1 ] < ∞. Then the
market is bullish if and only if θ̄ < 0, and it is bearish if and only if θ̄ > 0.

While the sign of the risk-neutral Esscher parameter θ̄ characterizes the market
behaviour, the size of |θ̄| reflects the magnitude of the drift of the price process and
thus can be regarded as a measure for the strength of the market trend. Our next
result implies that the efficiency loss c(XT ) − c(XT ) associated with the strategy
XT is increasing in the absolute value of the Esscher parameter |θ̄|. To clarify this,
let us first define the function

l(θ, η) = e−rTEθ[XT −XT ],

where XT is defined by Eqs. (2.8) or (2.9) as before, dependent on the sign of θ,
and observe that the Esscher parameter θ̄ = θ̄(η) is a function of the parameters
η = (η1, . . . , ηk) of the driving Lévy process (see Eqs. (2.7), (2.12), and (2.13)).
Then l(θ̄(η), η) = c(XT )− c(XT ) is the efficiency loss of the strategy XT .

Proposition 2.3. Suppose that Eθ
[
(XT −XT )2

]
<∞, then ∂l(θ,η)

∂θ < 0 for θ < 0

and ∂l(θ,η)
∂θ > 0 for θ > 0.

Hence, if the risk-neutral Esscher parameter θ̄ exists, then Eθ̄
[
(XT −XT )2

]
<∞

ensures that the signs of ∂l(θ̄,η)
∂θ and θ̄ coincide, or, in other words, that the efficiency

loss l(θ̄, η) is increasing in |θ̄|. Note that this only allows to analyze the influence of
the absolute value |θ̄| on the efficiency loss for fixed η. To determine the influence
of the parameter ηi on the latter, one has to consider

dl(θ̄, η)

dηi
=
∂l(θ̄, η)

∂θ

∂θ̄

∂ηi
+
∂l(θ̄, η)

∂ηi
(2.10)

(recall that θ̄ = θ̄(η)). The derivative ∂θ̄
∂ηi

is typically simple to calculate. As a

consequence we obtain that e.g. the conditions ∂l(θ̄,η)
∂ηi

> 0 and ∂θ̄
∂ηi

> 0 imply that

for θ̄ > 0 the efficiency loss l(θ̄, η) is increasing in ηi. The functional dependence of
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l(θ̄, η) on the Lévy parameters η, when θ̄ is fixed, is illustrated in Figure 1 in the
upcoming subsection for the case of the normal inverse Gaussian model.

2.3. Models for the Lévy process. In the last two decades more and more
researchers started to use jump-diffusions and, more generally, Lévy processes as a
valuable and flexible tool to model asset price processes as well as the term structure
of interest rates. These typically provide a much better fit to real market data
because the inherent jumps allow for a more realistic modeling and quantification of
the risk of large price movements within short time intervals which are often severly
underestimated in a pure diffusion framework. A comprehensive overview on the
most prominent Lévy processes that already have been applied to financial modeling
can be found in the books of Schoutens (2003) and Cont & Tankov (2004), for jump-
diffusion models we also refer to Kou (2002). In the following we concentrate on
the normal inverse Gaussian (NIG) and variance Gamma (VG) Lévy processes.
We include the Brownian motion as a benchmark model here which allows us to
compare the prices of cost-efficient strategies within the NIG and VG models with
those that can be achieved in the classical Black–Scholes framework.

2.3.1. Normal inverse Gaussian model. The normal inverse Gaussian process was
first applied to finance in Barndoff-Nielsen (1995), Barndorff-Nielsen (1998). Its
generating distributions can be obtained as a normal mean-variance mixture with
an inverse Gaussian mixing distribution. More specifically, if X ∼ NIG(α, β, δ, µ),
then the random variable X can be represented as follows:

X
d
= µ+ βZ +

√
ZW, (2.11)

where µ ∈ R, W ∼ N(0, 1), and Z ∼ IG
(
δ,
√
α2 − β2

)
is an inverse Gaussian

distributed random variable with δ > 0 and 0 ≤ |β| < α that is independent
of W . This representation also entails that the infinite divisibility of the mixing
inverse Gaussian distribution transfers to the NIG mixture distribution, thus there
exists a Lévy process (Lt)t≥0 with L(L1) = NIG(α, β, δ, µ). The parameter θ of the

risk-neutral Esscher measure Qθ, i.e., the solution of (2.7) (if it exists) is given by

θ̄NIG = −1

2
− β +

r − µ
δ

√
α2

1 + ( r−µδ )2
− 1

4
. (2.12)

Note that (Lt)t≥0 remains a NIG Lévy process under every Esscher measure Qθ,
but with parameter β replaced by β + θ. Further properties and a derivation of
these results are given in Appendix A.

Figure 1 illustrates the local behaviour of l(θ̄, η) around the actually estimated
Lévy parameters η̂ for a put option on Allianz in the NIG model, i.e., the graphs
show the efficiency loss l(θ̄, η) for a fixed Esscher parameter θ̄ ≡ θ̄(η̂) when we vary
individual parameters ηi of the Lévy model. The dotted lines always refer to the
actually estimated parameter values η̂i. Let us consider, for example, the parameter

η2 = β. From Eq. (2.12) we directly obtain ∂θ̄NIG

∂β = −1. Moreover, the risk-neutral

Esscher parameter θ̄NIG is negative in case of the Allianz stock (confer Table 1 in

the next section), so it follows from Proposition 2.3 that ∂l(θ̄NIG(η̂),η)

∂θ̄NIG
< 0. Figure 1

then indicates that the partial derivative ∂l(θ̄NIG(η̂),η)
∂β should be positive and thus

we can conclude from Eq. (2.10) that the efficiency loss should exhibit an increasing
behaviour in the skewness parameter β.

2.3.2. Variance Gamma model. The class of variance Gamma distributions was
introduced in Madan & Seneta (1990) and Madan & Milne (1991) as a more real-
istic model for stock return distributions. Similar to NIG distributions, a variance
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Figure 1. Dependence of l(θ̄, η) on the Lévy parameters for a put option on Allianz in the NIG

model when the Esscher parameter θ̄ = θ̄(η̂) is fixed. The dotted lines mark the actually estimated

Lévy parameters, i.e., the components of η̂ (see Table 1).

Gamma distributed random variable X ∼ V G(λ, α, β, µ) can be represented as a
normal mean-variance mixture as in Eq. (2.11), but in this case the mixing variable

Z ∼ G
(
λ, α

2−β2

2

)
is Gamma distributed with shape parameter λ > 0 and scale

parameter α2−β2

2 where 0 ≤ |β| < α. Again, the infinite divisibility of G
(
λ, α

2−β2

2

)
transfers to V G(λ, α, β, µ).

Lemma 2.1 (b) and Eq. (A.6) in the appendix imply that the condition 2α > 1
is sufficient to guarantee a unique solution θ of Eq. (2.7) in the VG case which is
given by

θ̄V G =


− 1

2 − β, r = µ,

− 1

1−e−
r−µ
λ

− β + sign(r − µ)

√
e−

r−µ
λ(

1−e−
r−µ
λ

)2 + α2, r 6= µ.
(2.13)

Under Qθ the process (Lt)t≥0 remains a VG Lévy process with parameter β + θ
instead of β. For details see Appendix A.

Remark 2.3. In many papers dealing with VG distributions, especially the ones
of Madan and coauthors, a different parametrization V G(σ, ν, θ, µ̃) is used (the
VG parameter θ here should not be confused with the Esscher parameter). This is
related to ours as follows:

σ2 =
2λ

α2 − β2
, ν =

1

λ
, θ = βσ2 =

2βλ

α2 − β2
, µ̃ = µ.
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2.3.3. Samuelson model. The classical benchmark model, which also is the basis
of the Black–Scholes theory, is to assume that the stock price process (S0e

Lt)t≥0

follows a geometric Brownian motion. In this case, the driving Lévy process is given
by

Lt =

(
µ− σ2

2

)
t+ σBt, t ≥ 0,

where (Bt)t≥0 is a standard Brownian motion under the physical measure P, µ is

the drift and σ the volatility parameter. Here we have L(Lt) = N
(
(µ− σ2

2 )t, σ2t
)
,

and the mgf of L1 equals

M
N(µ−σ2

2 ,σ
2)

(u) = eu(µ−σ2

2 )+u2σ2

2 .

Apparently, it is defined for all u ∈ R and tends to infinity if u→ ±∞, thus Lem-
ma 2.1 (b) assures that a unique solution θ̄ of Eq. (2.7) exists which can easily be
computed as θ̄N = r−µ

σ2 .

Remark 2.4. Since this model is complete and thus the risk-neutral measure Q

is unique, the Esscher density process (Z θ̄Nt )t≥0 here must coincide with the state
price density process (Zt)t≥0 obtained from Girsanov’s theorem. This indeed is the
case, as the following equation shows:

Zt =
e
r−µ
σ Bt

e
(r−µ)2

2σ2 t
=

e
r−µ
σ Bt

E[e
r−µ
σ Bt ]

=
e
r−µ
σ2 (Lt−t(µ−σ

2

2 ))

E
[
e
r−µ
σ2 (Lt−t(µ−σ

2

2 ))
] =

eθ̄NLt

MLt(θ̄N )
= Z θ̄Nt .

3. Applications

In this section, we apply the results obtained so far to some common payoff
distributions. More specifically, we consider European put and call options, forwards
as well as spread trading strategies. Moreover, we provide some numerical results
for the Lévy market settings discussed in Section 2.3. These calculations are based
on estimated parameters from German stock price data for Allianz and Volkswagen
from May 28, 2010, to September 28, 2012, which are shown in Figure 2. The
estimated parameters from the daily log-returns of Allianz and Volkswagen are given
in Table 1 below. The interest rate used to calculate θ̄ is r = 4.2027 · 10−6 which
corresponds to the continuously compounded 1-Month-Euribor rate of October 1,
2012.

3.1. Put options (θ̄ < 0). Consider a long put option with strike K > 0 and
maturity T > 0 whose payoff is XP

T = (K − ST )+ = (K − S0e
LT )+. As already

remarked in Example 2.1 (b), XP
T is monotonically decreasing in LT , therefore the

put option is inefficient if θ̄ < 0 due to Corollary 2.1. The distribution function
GP = FXPT of the put payoff can easily be shown to equal

GP (x) = P
(
XP
T ≤ x

)
=


1, if x ≥ K,
1− FLT

(
ln
(
K−x
S0

))
, if 0 ≤ x < K,

0, if x < 0.

Its inverse is given by

G−1
P (y) =

(
K − S0e

F−1
LT

(1−y))
+
, y ∈ (0, 1), (3.1)

which follows from solving the equation

1− FLT
(

ln

(
K − x
S0

))
= y
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Figure 2. Daily closing prices of Allianz and Volkswagen used for parameter estimation.

λ α β δ µ θ̄

Allianz
NIG −0.5 35.020 −0.369 0.015 0.000376 −1.0127
VG 1.031 72.011 0.552 0.0 1.941 · 10−8 −1.0412
Normal µ = 4.2757 · 10−4, σ = 0.0203 −1.0314

Volkswagen
NIG −0.5 48.859 −0.842 0.0231 0.001451 −2.7087
VG 1.602 82.948 −2.165 0.0 0.00206 −2.7395
Normal µ = 0.00129, σ = 0.0216 −2.7447

Table 1. Estimated parameters from daily log-returns of Allianz and Volkswagen for the NIG-,

the VG-, and the Samuelson model.

for x and noting that x must be non-negative since the range of XP
T is [0,K].

Applying Proposition 2.1, for θ̄ < 0 the cost-efficient payoff that generates the
same distribution GP as the long put is

XP
T = G−1

P (FLT (LT )) =
(
K − S0e

F−1
LT

(1−FLT (LT )))
+
. (3.2)

Figure 3 displays the payoff XP
T of a long put option on one Allianz stock with

strike K = 98 and maturity T = 23 days, and its cost-efficient counterparts XP
T for

the three Lévy models under consideration. Although the latter payoff profiles look
quite similar, a closer look reveals that the optimal payoff is model-dependent and
varies slightly between the different models, in particular for large ST .

Remark 3.1. Observe that the distribution function GP and its inverse G−1
P de-

pend on the time to maturity. If the present time t is greater than zero, one has to
replace T by T − t and S0 by St. This also implies that, in contrast to the vanilla
put, the efficient put payoff is not static but a time-varying function. This is quite
a natural feature which results from the fact that the efficient payoff has to take
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Figure 3. Left: Payoff functions of a classical put and its cost-efficient counterparts for Allianz.

The initial stock price is S0 = 93.42, the closing price of Allianz at October 1, 2012. Right: Cost-
efficient put payoffs for different times to maturity within the VG model for Volkswagen. The

initial stock price is always assumed to be St = 130.55.

the price movements of the underlying into account to ensure that its payoff distri-
bution always coincides with that of its classical counterpart. The variation of the
cost-efficient put payoff subject to different times to maturity is also illustrated in
Figure 3 above.

However, one has to be aware that if an investor buys an efficient put, its payoff
profile is fixed at the purchase date and will not be altered afterwards. Once bought
or sold, the payoff distribution of a cost-efficient contract only equals that of its
classical counterpart at the (initial) trading date, but no longer in the remaining

time to maturity. To calculate the price c(XP
T,t) of an efficient put with a payoff

fixed at time 0 at some later point in time t > 0, one has to resort to the fact that

ST = S0e
LT d

= S0e
Lt+LT−t = Ste

LT−t and thus replace LT = ln(ST /S0) in (3.2) by
ln(Ste

LT−t/S0), that is,

XP
T,t =

(
K − S0e

F−1
LT

(1−FLT (ln(Ste
LT−t/S0))))

+
. (3.3)

The time t-price of an efficient put fixed at 0 then is c(XP
T,t) = e−r(T−t)E[Z θ̄T−tX

P
T,t].

We will use these facts later in Section 4 to derive the hedge deltas for efficient puts
and calls. Observe that in contrast to the above notations, c(XP

T−t) and XP
T−t de-

note the price resp. payoff of an efficient put with maturity T that is initiated at
time t. For vanilla puts, this distinction is not necessary because XP

T,t = XP
T−t and

c(XP
T,t) = c(XP

T−t).

Recall that Figure 3 corresponds to a bullish market situation where θ̄ < 0
(see Table 1) such that the classical put with payoff XP

T is the most-expensive
way to realize the payoff distribution GP . However, if the market behaviour should
suddenly switch at time ts from bullish to bearish, that is, if the risk-neutral Esscher
parameter θ̄ derived from market data should change its sign during the lifetime
of the contract, then the roles of the payoffs are reversed: XP

T−ts becomes cost-

efficient, and the previously efficient payoffs XP
T,ts

resp. XP
T−ts are most-expensive

from that “switching time” ts onwards. In other words, an initially optimal strategy
may turn into the worst case if the market scenario significantly changes in between.
This suggests that the present definition and construction of cost-efficient strategies
might be extended to a more dynamic version that allows to accordingly react to
reverse market movements. We do not exploit this idea further here, but leave it to
future research.

Since the payoff function X−PT = −(K − S0e
LT )+ of a short put with strike K

and maturity T is monotonically increasing in LT , a short put is cost-efficient if
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θ̄ < 0 and most-expensive if θ̄ > 0. Analogously to the calculations for the long
put, the inverse of the distribution G−P of a short put is given by

G−1
−P (y) =

(
S0e

F−1
LT

(y) −K
)
−, y ∈ (0, 1), (3.4)

where (x − y)− := −(y − x)+. Applying Proposition 2.1, the cost-efficient payoff
that generates the same distribution G−P as the short put option for θ̄ > 0 thus is

X−PT = G−1
−P (1− FLT (LT )) =

(
S0e

F−1
LT

(1−FLT (LT )) −K
)
−. (3.5)

It can easily be seen that

XP
T = −X −PT and c

(
XP
T

)
= −c

(
X
−P
T

)
as investors simply take opposite positions. The one who is long has to pay for
entering the put while the one who is short receives an upfront payment. Thus, for
the long position it is optimal to minimize the cost of the put while the investor
who is short wants to maximize the initial cash inflow.

In Table 2 below, we compare the costs of a long put on Allianz and Volkswagen
with their cost-efficient counterparts for the Lévy models discussed in Section 2.3.
All computations are based on the estimated parameters given in Table 1. The initial
stock prices S0 of Allianz resp. Volkswagen are the closing prices on October 1, 2012,
and the time to maturity is chosen to be T = 23 trading days, meaning that the put
options mature on November 1, 2012. According to Proposition 2.1 and Eq. (3.1),
the cost of the efficient put can be calculated by

c
(
XP
T

)
= E

[
e−rTZ θ̄TX

P
T

]
=

1

Mdist(θ̄)

∫ 1

0

eθ̄F
−1
dist (1−y)

(
K − S0e

F−1
dist (y)

)
+
dy

where dist is either NIG(α, β, δT, µT ), V G(λT, α, β, µT ), or N((µ− σ2

2 )T, σ2T ).

Using Eqs. (2.7) and (A.5), the cost c(XP
T ) of the vanilla put in the NIG model

is given by

c(XP
T ) = Eθ̄

[
e−rT (K − ST )+

]
= e−rT

∫ ln(K/S0)

−∞
(K − S0e

x)Z θ̄T dNIG(α,β,δT,µT )(x) dx (3.6)

= Ke−rTFNIG(α,β+θ̄,δT,µT )

(
ln
(
K
S0

))
− S0FNIG(α,β+θ̄+1,δT,µT )

(
ln
(
K
S0

))
,

and for the VG model one analogously obtains

c(XP
T ) = Ke−rTFV G(λT,α,β+θ̄,µT )

(
ln
(
K
S0

))
− S0FV G(λT,α,β+θ̄+1,µT )

(
ln
(
K
S0

))
.

c(XP
T ) c(XP

T ) Efficiency loss in %

Allianz
NIG 6.4495 5.2825 18.09
VG 6.3681 5.2270 17.92
Normal 6.4324 5.2683 18.10

Volkswagen
NIG 8.0064 4.0871 48.95
VG 7.9765 4.0603 49.10
Normal 7.9909 4.0749 49.01

Table 2. Comparison of the cost of a long put option on Allianz and Volkswagen, resp., and the

corresponding cost-efficient payoffs in different Lévy models. Initial stock price, strike, and time
to maturity are S0 = 93.42, K = 98, T = 23 for Allianz and S0 = 130.55, K = 135, T = 23 for
Volkswagen. The other parameters needed for the calculations are taken from Table 1.
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In the Samuelson model, c(XP
T ) is given by the well-known Black–Scholes put price

formula.
The results show that the savings from choosing the cost-efficient strategies can

be quite substantial: For Allianz, the cost of the efficient put is less than 83% of the
price of the plain vanilla put, and in case of Volkswagen the vanilla put is almost
twice as expensive as the efficient put. The great differences in the efficiency losses
of the Allianz and Volkswagen puts may seem somewhat surprising at first glance
because the stock price to strike ratio S0

K is roughly the same in both cases (0.953
for Allianz and 0.967 for Volkswagen), but is suggested by Proposition 2.3 if we
suppose that a change in θ̄ has a much greater impact on the efficiency loss than
a modification of the Lévy parameters η. Since the payoffs XP

T and XP
T are both

bounded by the strike K (see (3.2)), the condition Eθ̄
[
(XP

T −X
P
T )2
]
< ∞ here is

trivially fulfilled, so Proposition 2.3 assures that the efficiency loss is increasing in
|θ̄| if we can neglect the influence of η here. As can be seen from Table 1, the value
of |θ̄| for Volkswagen is more than 2.5 times as large as that of Allianz, and this
is also reflected in the magnitude of the efficiency losses in Table 2. However, for
each stock itself the efficiency losses obtained under the different Lévy models are
of almost the same size and thus seem to be widely model-independent.

3.2. Call options (θ̄ > 0). Consider a long call option with strike K > 0, matu-
rity T > 0, and payoff XC

T = (ST −K)+ = (S0e
LT −K)+. As already pointed out

before in Example 2.1 (b), XC
T is monotonically increasing in LT , hence the long

call option is not cost-efficient if θ̄ > 0. Its distribution function GC = FXCT can

easily be derived as

GC(x) = P
(
XC
T ≤ x

)
=

{
0, if x < 0,

FLT
(
ln
(
K+x
S0

))
, if x ≥ 0.

(3.7)

The corresponding inverse is given by

G−1
C (y) =

(
S0e

F−1
LT

(y) −K
)

+
, y ∈ (0, 1). (3.8)

Applying Proposition 2.1 again, for θ̄ > 0 the cost-efficient payoff that generates
the same distribution GC as the long call option is given by

XC
T = G−1

C (1− FLT (LT )) =
(
S0e

F−1
LT

(1−FLT (LT )) −K
)

+
. (3.9)

Similarly, one can show that the short call is inefficient for θ̄ < 0 as its payoff func-
tion X−CT = −(S0e

LT −K)+ is monotonically decreasing in LT . The distribution
function G−C of the short call payoff is

G−C(x) = P
(
X−CT ≤ x

)
=

{
1, if x ≥ 0,

1− FLT
(
ln
(
K−x
S0

))
, if x < 0,

and for its inverse one obtains

G−1
−C(y) = −

(
S0e

F−1
LT

(1−y) −K
)

+
, y ∈ (0, 1).

Thus, the cost-efficient strategy for a short call in the case θ̄ < 0 is

X−CT = G−1
−C(FLT (LT )) = −

(
S0e

F−1
LT

(1−FLT (LT )) −K
)

+
. (3.10)

From the preceding equations we obtain that for θ̄ > 0,

XC
T = −X −CT and c

(
XC
T

)
= −c

(
X
−C
T

)
, (3.11)

under the general assumptions of Proposition 2.1. If θ̄ < 0, analogous relations hold.
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3.3. Forwards. The payoff function X−FT = K − ST = K − S0e
LT of a short

forward with delivery price K is strictly decreasing in LT and thus inefficient if
θ̄ < 0. The corresponding distribution function G−F is given by

G−F (x) = P (K − S0e
LT ≤ x) = 1− FLT

(
ln

(
K − x
S0

))
and has the inverse

G−1
−F (y) = K − S0e

F−1
LT

(1−y)
, y ∈ (0, 1).

By Proposition 2.1, the cost-efficient strategy for a short forward in case θ̄ < 0 is

X−FT = G−1
−F (FLT (LT )) = K − S0e

F−1
LT

(1−FLT (LT ))
. (3.12)

Remark 3.2. Observe that the payoff X−FT and hence the cost c
(
X−FT

)
of the

efficient short forward depend on the distribution of LT and hence on the specific
Lévy model one has chosen. In contrast to this, simple no-arbitrage arguments show
that the cost c

(
X−FT

)
of the standard short forward (if the underlying provides no

income during the lifetime of the contract) is given by c
(
X−FT

)
= Ke−rT −S0, and

thus, is obviously model-independent.

Recall that the payoff of a short forward equals the payoff of the sum of a long
put and a short call with the same strike K and maturity T , i.e.,

X−FT = K − ST = (K − ST )+ − (ST −K)+.

This decomposition suggests that the cost-efficient strategy of a short forward may
alternatively be derived as the combination of the cost-efficient strategies for a long
put and a short call which are both inefficient if θ̄ < 0. Indeed, from Eqs. (3.2) and
(3.10) we have

X−FT =
(
K − S0e

F−1
LT

(1−FLT (LT )))
+
−
(
S0e

F−1
LT

(1−FLT (LT )) −K
)

+

= XP
T +X−CT . (3.13)

Analogously, a long forward is inefficient if θ̄ > 0. Its payoff XF
T corresponds to

the sum of the payoffs of a long call and a short put

XF
T = ST −K = (ST −K)+ − (K − ST )+. (3.14)

Here, one also obtains that the payoff of a cost-efficient long forward

XF
T = G−1

F (1− FLT (LT )) = S0e
F−1
LT

(1−FLT (LT )) −K (3.15)

corresponds to the sum of an efficient long call and an efficient short put.
The decomposition of the cost-efficient strategy of a forward into the sum of

cost-efficient strategies for a call and a put suggests that there exists some cost-
efficient analogue to the put-call parity which says that the prices of a long call
and a long put can be derived from each other by just adding resp. subtracting
the corresponding forward price. However, this classical result essentially relies on
the fact that the payoffs and costs of short positions are just the negative payoffs
resp. costs of the corresponding long positions, but this relationship does not apply
to cost-efficient payoffs anymore. Thus, in general the price of a cost-efficient long
put cannot be obtained as the difference of the prices of an efficient long call and
an efficient long forward. The terms in Eq. (3.13) cannot be simply rearranged
because altering between long and short positions here means to switch between
cost-efficient and most-expensive payoffs, so the correct put-call parity within this
framework is given by the following proposition.
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Proposition 3.1 (Cost-efficient put-call parity). The cost-efficient long for-

ward payoff XF
T allows the decomposition XF

T = XC
T + X−PT which implies XC

T =

XF
T +X

P

T , and thus, c
(
XC
T

)
= c
(
XF
T

)
+ c
(
X
P

T

)
.

For the price of a cost-efficient long put one analogously obtains

c(XP
T ) = c(X−FT ) + c(X

C

T ). (3.16)

Remember that for θ̄ < 0 we have XC
T = XC

T , XF
T = XF

T , and XP
T = X

P

T , whereas

for θ̄ > 0 the standard payoffs XP
T = XP

T , X−FT = X−FT , and XC
T = X

C

T are already
cost-efficient, resp. most-expensive.

3.4. Spread trading strategies. A bull spread is a combination of a long call C1

with strike K1 > 0 and a short call −C2 with strike K2 > K1. The payoff is given
by

Xbull
T =

(
S0e

LT −K1

)
+
−
(
S0e

LT −K2

)
+

and thus is increasing in LT . Hence, the bull spread is not cost-efficient if θ̄ > 0.
Its distribution function is

Gbull(x) =


0, if x < 0,

FLT
(
ln
(
K1+x
S0

))
, if 0 ≤ x < K2 −K1,

1, if x ≥ K2 −K1,

and the corresponding inverse can be represented by

G−1
bull(y) =

(
S0e

F−1
LT

(y) −K1

)
+
−
(
S0e

F−1
LT

(y) −K2

)
+
.

Note that for x < K2−K1, the distribution function Gbull(x) coincides with that of
the long call C1, therefore it is not surprising that the first summand of the inverse
G−1

bull(y) is equal to G−1
C1

(y). The second summand here is necessary to ensure that

the quantile function takes only values in the range [0,K2 −K1] of Xbull
T . If θ̄ > 0,

the cost-efficient strategy corresponding to such a bull spread then is

Xbull
T = G−1

bull(1− FLT (LT )) = XC1

T −X
C2

T = XC1

T +X
−C2

T (3.17)

where the last equalities follow from Eqs. (3.9), (3.10), and (3.11). Hence, the effi-

cient bull spread payoff Xbull
T is equivalent to a long position in an efficient call C1

and a short position in a most-expensive call C2.
A bear spread is a combination of a short put with strike K1 > 0 and a long put

with strike K2 > K1. Its payoff thus is

Xbear
T =

(
K2 − S0e

LT
)

+
−
(
K1 − S0e

LT
)

+

which is decreasing in LT and thus inefficient if θ̄ < 0. Similarly to the bull spread,
we derive the cost-efficient payoff of the bear spread for θ̄ < 0 as

Xbear
T = XP2

T −X
P1

T = XP2

T +X
−P1

T , (3.18)

which corresponds to the sum of an efficient long put P2 with strike K2 and a
most-expensive short put −P1 with strike K1.

From the above examples, one may have the impression that the cost-efficient
strategy for any combination of long and short puts or calls can easily be obtained
by just replacing the long positions by their cost-efficient and the short positions
by their most-expensive counterparts. However, this is not true in general as the
following counterexample shows: Consider a butterfly spread which is the combi-
nation of two long calls C3 and C1 with strikes K3 > K1 > 0, and two short calls
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−C2 with strike K2 = K1+K3

2 . The payoff Xbfly
T of a butterfly spread is thus given

by

Xbfly
T =

(
S0e

LT −K1

)
+

+
(
S0e

LT −K3

)
+
− 2
(
S0e

LT −K2

)
+
,

and the corresponding distribution function Gbfly can be shown to equal

Gbfly(x) =


0, if x < 0,

FLT
(
ln
(
K1+x
S0

))
+ 1− FLT

(
ln
(
K3−x
S0

))
, if 0 ≤ x < K3−K1

2 ,

1, if x ≥ K3−K1

2 .

The distribution function has a more complex form because the payoff Xbfly
T is not

monotonic in LT , and it can easily be checked that the inverse G−1
bfly does not admit

a representation in form of a sum of G−1
C1

, G−1
C3

, and G−1
−C2

. Therefore, the relation

Xbfly
T = XC1

T +XC3

T + 2X
−C2

T cannot be valid either.
For several further options like self-quanto calls and puts as well as straddles

explicit or semi-explicit formulas can be derived analogously as in the preceding
sections.

4. Delta hedging of cost-efficient strategies in Lévy models

In the previous section, we provided a semi-explicit formula for the cost of a cost-
efficient strategy which is valuable for many financial applications since it can be
easily evaluated numerically. For practitioners, however, this formula might still be
unsatisfying unless an explicit hedging strategy for the cost-efficient payoff exists.
In this section, we want to deal with the hedging problem and first provide some
formulas of possible hedging strategies for efficient puts and calls which we then
apply to hedge the efficient puts on Allianz and Volkswagen discussed in Section 3.1.
We also develop alternative hedging strategies for vanilla puts and calls based on
a series of efficient puts resp. calls with decreasing times to maturity and compare
them to the classical ones. In the following we focus on deriving formulas for delta
hedges, i.e., the derivative of the cost of a strategy with respect to the underlying.
If the underlying asset is traded sufficiently liquid in the market, delta hedging
probably is one of the simplest, but nevertheless fairly effective ways to cover a
risky position and is therefore widely used in practice.

4.1. Delta hedging of efficient puts and calls. Consider the payoffs XP
T =

(K − ST )+ and XC
T = (ST −K)+ of a put resp. call option with strike K > 0 and

maturity T > 0. We already saw in Example 2.1 (b) and Sections 3.1 and 3.2 that
the payoff XP

T becomes inefficient for θ̄ < 0 while the payoff XC
T is inefficient if

θ̄ > 0. As was pointed out in Remark 3.1, the payoff profiles of the corresponding
cost-efficient counterparts are fixed at their issuance dates and cannot be altered
afterwards. Using Eq. (3.3), the writer of an efficient put initiated at time 0 thus
has to hedge the price

c(XP
T,t) = e−r(T−t)E[Z θ̄T−tX

P
T,t]

=
1

MLT−t(θ̄)

∫ +∞

−∞
eθ̄y−r(T−t)

(
K − S0e

F−1
LT

(1−FLT (ln(Ste
y/S0))))

+
FLT−t(dy)

=
e−r(T−t)

MLT−t(θ̄)

∫ 1

0

e
θ̄F−1
LT−t

(z)
(
K − S0e

F−1
LT

(
1−FLT

(
ln
(
Ste

F
−1
LT−t

(z)

S0

))))
+
dz (4.1)
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at time t. In case of an efficient call, the price to be hedged at time t can analogously
be derived as

c(XC
T,t) =

e−r(T−t)

MLT−t(θ̄)

∫ 1

0

e
θ̄F−1
LT−t

(z)
(
S0e

F−1
LT

(
1−FLT

(
ln
(
Ste

F
−1
LT−t

(z)

S0

)))
−K

)
+
dz (4.2)

The following theorem provides explicit formulas for the derivatives of c(XP
T,t)

and c(XC
T,t) with respect to the price St of the underlying at time t.

Theorem 4.1 (Deltas for cost-efficient puts and calls). Let (Lt)t≥0 be a Lévy
process with a continuous and strictly increasing distribution FLt for all t ∈ [0, T ],
and assume that a solution θ̄ of (2.7) exists. For each t ∈ [0, T ) we have:

(a) If θ̄ < 0, the delta ∆P
t of the cost-efficient long put XP

T,t initiated at time 0 is

∆P
t =

S0

St

e−r(T−t)

MLT−t(θ̄)
(4.3)

·
∫ +∞

yPT,t

e
θ̄y+F−1

LT

(
1−FLT

(
ln
(
Ste

y

S0

))) dLT
(
ln
(
Ste

y

S0

))
dLT

(
1− FLT

(
ln
(
Stey

S0

))) FLT−t(dy),

where dLT (y) is the density of FLT , and yPT,t = ln
(
S0

St

)
+F−1

LT

(
1−FLT

(
ln
(
K
S0

)))
.

(b) If θ̄ > 0 and c(XC
T,t) < ∞, the delta ∆C

t of the cost-efficient long call XC
T,t

initiated at time 0 is

∆C
t = −S0

St

e−r(T−t)

MLT−t(θ̄)
(4.4)

·
∫ yCT,t

−∞
e
θ̄y+F−1

LT

(
1−FLT

(
ln
(
Ste

y

S0

))) dLT
(
ln
(
Ste

y

S0

))
dLT

(
1− FLT

(
ln
(
Stey

S0

))) FLT−t(dy),

where yCT,t = yPT,t.

Eqs. (4.3) and (4.4) of the previous theorem especially entail that the deltas of
efficient puts and calls just have opposite signs compared to their classical counter-
parts. This is in line with the intuition because Figure 3 has shown that the payoff
of an efficient put is reversed to that of a vanilla put and bears some similarities to
the payoff of a vanilla call, and a similar observation can be made when comparing
the payoffs of standard and efficient calls. In Section 4.3, we shall demonstrate that
delta hedging of cost-efficient puts can be efficiently applied in practice and that
the obtained hedge errors are usually not greater, but often even smaller than those
of the corresponding vanilla puts.

4.2. Delta hedging of vanilla puts and calls using cost-efficient strategies.
In the previous section, we considered just one efficient call resp. put whose payoff
profile was fixed at the initial date t = 0. However, one can also obtain alternative
hedging strategies for vanilla calls and puts by making use of the time-varying payoff
functions discussed in Section 3.1. To see how and why this works, recall that a
cost-efficient put that is initiated at time t and has time to maturity T−t is given by

XP
T−t =

(
K−Ste

F−1
LT−t

(1−FLT−t (LT−t)))
+

. Using the fact that L0 = 0 almost surely

for every Lévy process L, one easily obtains that XP
T−t → (K − ST )+ for t → T .

Alternatively, this also can be deduced from the fact that the asset price ST is a
known constant at maturity, therefore the payoff-distribution of the standard put
at time T is the degenerate distribution (unit mass) located at (K−ST )+. Since by
definition the corresponding efficient put must have the same payoff-distribution,
its payoff profile at time T must coincide with the latter. Analogous conclusions
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also hold, of course, for cost-efficient and vanilla calls. This implies that the prices
of efficient puts and calls converge to those of their classical counterparts if the time
to maturity goes to zero, that is, c(XP

T−t) − c(X
P
T−t) → 0 if t → T (see Figures 7

and 8). Therefore, a delta hedge which reproduces the evolution of the efficient put

prices (c(XP
T−t))0≤t≤T can be regarded as an alternative way to hedge the final put

payoff (K − ST )+ at maturity.

Remark 4.1. The general risk-neutral pricing rule implies that the sequence
(e−rtc(XP

T−t))0≤t≤T of the discounted vanilla put prices is a Q-martingale. Be-

cause c(XP
T−t) < c(XP

T−t) for all t < T and c(XP
T−T ) = c(XP

T−T ), the sequence

(e−rtc(XP
T−t))0≤t≤T cannot be a Q-martingale, and hence every trading strategy

which replicates the values (c(XP
T−t))0≤t≤T of the efficient put prices cannot be

self-financing either. This, of course, also applies to our alternative hedging strat-
egy. However, almost every trading strategy which is self-financing in the theory
of continuous-time trading will loose this property in practice, because there only
discrete-time trading is possible which inevitably leads to hedging errors. Reducing
these surely is the predominant task from a hedger’s point of view. As we shall
see in Section 4.3, the alternative delta hedging strategies have the potential to
outperform the classical ones in this context. Therefore, they might be interest-
ing for practitioners although they lack the theoretical appealing feature of being
self-financing.

The following theorem gives explicit representations of the alternative deltas for
vanilla calls and puts. To better distinguish them from the classical hedge deltas
∆C
t ,∆

P
t , we denote them by ∆roC

t ,∆roP
t here. This notation should also reflect the

similarity of these delta hedges to a rolling-over strategy where an investor buys at
each day t the cost-efficient put XP

T−t or call XC
T−t initiated at that day and sells

it on the following day to buy the actual efficient put XP
T−t−1 resp. call XC

T−t−1

instead.

Theorem 4.2 (“Rollover”-deltas for vanilla puts and calls). Let (Lt)t≥0 be
a Lévy process with a continuous and strictly increasing distribution FLt for all
t ∈ [0, T ], and assume that a solution θ̄ of (2.7) exists. Then for each t ∈ [0, T ) we
have:

(a) If θ̄ < 0, the alternative delta ∆roP
t of the long vanilla put XP

T at time t is

∆roP
t = − 1

MLT−t(θ̄)

∫ FLT−t

(
ln
(
K
St

))
0

e
θ̄F−1
LT−t

(1−y)+F−1
LT−t

(y)−r(T−t)
dy. (4.5)

(b) If θ̄ > 0, the alternative delta ∆roC
t of the long vanilla call XC

T at time t is

∆roC
t =

1

MLT−t(θ̄)

∫ 1−FLT−t

(
ln
(
K
St

))
0

e
θ̄F−1
LT−t

(y)+F−1
LT−t

(1−y)−r(T−t)
dy. (4.6)

Eqs. (4.5) and (4.6) especially imply that the alternative deltas ∆roP
t ,∆roC

t for
the vanilla puts and calls have the same sign as their classical counterparts ∆P

t ,∆
C
t ,

which is in line with the intuition. We now compare the magnitudes of ∆roP
t and

∆P
t resp. ∆roC

t and ∆C
t and show that the absolute values of the rollover-deltas are

always smaller for calls and in many cases also for puts.

Theorem 4.3 (Comparison of deltas). Let (Lt)t≥0 be a Lévy process with a
continuous and strictly increasing distribution FLt for all t ∈ [0, T ], and assume
that a solution θ̄ of (2.7) exists.

(a) For vanilla calls, we have the following relations for each t ∈ [0, T ):
If θ̄ > 0, then 0 ≤ ∆roC

t ≤ ∆C
t . For θ̄ < 0 we have ∆roC

t = ∆C
t .
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(b) In the put case, we have ∆roP
t = ∆P

t for θ̄ > 0 and each t ∈ [0, T ).
If θ̄ < 0 and FLT−t

(
ln
(
K
St

))
≤ q∗ where q∗ ∈ (0.5, 1] is the unique positive root

of the function DP : [0, 1]→ R,

DP (q) =
1

MLT−t(θ̄)

∫ q

0

e
θ̄F−1
LT−t

(y)+F−1
LT−t

(y) − eθ̄F
−1
LT−t

(1−y)+F−1
LT−t

(y)
dy,

then ∆P
t ≤ ∆roP

t ≤ 0.

Remark 4.2. Observe again that the condition in Theorem 4.3 (b) is time-depen-
dent, thus even if ∆P

0 ≤ ∆roP
0 holds at the initial time t = 0, this does not necessarily

mean that ∆P
t ≤ ∆roP

t for all t ∈ (0, T ). However, in practical examples this
inequality typically holds throughout the lifetime of the contract as the subsequent
examples show. The fact that the rollover-deltas are smaller than their classical
counterparts also implies that the corresponding hedge portfolios react less sensitive
to changes in value of the underlying and thus may provide more robust hedging
strategies for vanilla puts and calls.

4.3. Applications to real market data. In the following, we illustrate the the-
oretical findings by some practical examples for the put case which continue the
calculations in Section 3.1. We first consider the price evolution (c(XP

T−t))0≤t≤T of

a vanilla put and a cost-efficient put c(XP
T,t)0≤t≤T on the Allianz and the Volkswa-

gen stock which are assumed to be issued on October 1, 2012, and to mature on
November 1, 2012. Figure 4 shows the prices of the Allianz stock and the corre-
sponding puts with strike K = 98 within the aforementioned time period, as well
as the values of the deltas (∆P

t )0≤t≤T resp. (∆P
t )0≤t≤T associated to both puts.

Here, all calculations are based on the NIG model; the NIG parameters for Allianz
can be found in Table 1. The deltas ∆P

t of the efficient put were calculated using
Eq. (4.3) from Theorem 4.1, and an explicit formula for their counterparts ∆P

t of
the vanilla put in the NIG model can be easily derived from Eq. (3.6): Observing
that

dNIG(α,β+θ̄+1,δ(T−t),µ(T−t))(x) =
(A.5)

e(θ̄+1)x

MLT−t(θ̄ + 1)
dNIG(α,β,δ(T−t),µ(T−t))(x)

=
(2.7)

ex

er(T−t)
eθ̄x

MLT−t(θ̄)
dNIG(α,β,δ(T−t),µ(T−t))(x)

=
(A.5)

ex

er(T−t)
dNIG(α,β+θ̄,δ(T−t),µ(T−t))(x),

we here obtain

∆P
t =

∂c(XP
T−t)

∂St
= −Ke

−r(T−t)

St
dNIG(α,β+θ̄,δ(T−t),µ(T−t))

(
ln
(
K
St

))
− FNIG(α,β+θ̄+1,δ(T−t),µ(T−t))

(
ln
(
K
St

))
+ dNIG(α,β+θ̄+1,δ(T−t),µ(T−t))

(
ln
(
K
St

))
= −Ke

−r(T−t)

St
dNIG(α,β+θ̄,δ(T−t),µ(T−t))

(
ln
(
K
St

))
− FNIG(α,β+θ̄+1,δ(T−t),µ(T−t))

(
ln
(
K
St

))
+
Ke−r(T−t)

St
dNIG(α,β+θ̄,δ(T−t),µ(T−t))

(
ln
(
K
St

))
= −FNIG(α,β+θ̄+1,δ(T−t),µ(T−t))

(
ln
(
K
St

))
.

As is obvious from Figure 4, the price of the cost-efficient put evolves almost exactly
in the opposite way as that of the vanilla put. This reflects the fact that the payoff
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Figure 4. Left: Stock price of Allianz from October 1, 2012, to November 1, 2012, and the prices
c(XP

T−t), c(X
P
T,t) of the associated vanilla resp. efficient put. Right: Comparison of the deltas ∆P

t

and ∆P
t of the vanilla and the efficient put on Allianz.

profiles of both puts are, in some sense, reversed to each other (see Figure 3); the
efficient put roughly behaves like a vanilla call. However, the efficient put ends in
the money although the price of the Allianz stock remains below the strike price at
maturity because its payoff function already takes positive values for some ST < K.
The opposite behaviour of the efficient and the vanilla put is also mirrored in the
values of the associated deltas. Because the values of the deltas at maturity are not
relevant for hedging purposes anymore, Figure 4 only shows the deltas up to one
day to maturity, that is, from October 1, 2012, to October 31, 2012. The results
obtained for the other two Lévy models (normal and VG) look quite similar and
therefore are not plotted here separately. This is also in line with our previous
estimations and calculations. Since the risk-neutral Esscher parameter roughly was
of the same size for all three models (see Table 1) and also the put prices and
efficiency losses in Table 2 were almost identical, one should not expect greater
differences here.

Figure 5 below shows the evolution of the prices of the Volkswagen stock and the
cost-efficient and vanilla puts on it with strike K = 135 as well as the corresponding
deltas. Again, the results do not differ much between all three Lévy models under
consideration, thus we only show the plots for the VG case. The delta of the vanilla
put in this model can be derived analogously as above to be

∆P
t =

∂c(XP
T−t)

∂St
= −FVG(λ(T−t),α,β+θ̄+1,µ(T−t))

(
ln
(
K
St

))
.
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Figure 5. Left: Stock price of Volkswagen from October 1, 2012, to November 1, 2012, and the

prices c(XP
T−t), c(X

P
T,t) of the associated vanilla resp. efficient put. Right: Comparison of the

deltas ∆P
t ,∆

P
t of the vanilla and the efficient put on Volkswagen.
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Note that in this example we have ST > K, therefore the vanilla put expires
worthless, and the corresponding delta converges to zero, whereas the efficient put
ends deep in the money.

However, computing the put deltas is only one side of the coin, market partic-
ipants will surely be more interested in how well the hedging strategies based on
them work in practice. The NIG and VG models are incomplete from the very be-
ginning, so one cannot expect perfect hedging there, but also the Samuelson model
is only complete in theory. Since in reality just discrete hedging is feasible, one will
encounter hedge errors within this framework, too. The magnitude of these errors
is, of course, relevant for practical applications. Therefore, we also calculate and
compare the hedge errors that occur in delta hedging of the vanilla and efficient
puts on Allianz and Volkswagen considered before.

We assume that the hedge portfolios are rebalanced daily, hence the portfolio
weights δt (amount of stock at time t) and bt (amount of money on the savings
account at t) just have to be calculated at the discrete times t = 0, 1, . . . , T − 1.

For the vanilla puts δt = ∆P
t , and in case of the efficient puts we have δt = ∆P

t .
Depending on the put type under consideration, we analogously set ct = c(XP

T−t)

or ct = c(XP
T,t), respectively. At the initial time t = 0, the hedge portfolio is set

up with the weights δ0 and b0 = −δ0S0 + c0 since the writer of the put obtains c0
from the buyer, shorts |δ0| stocks and deposits all incomes on his savings account.
At time t > 0, the value of the portfolio before rebalancing is δt−1St + erbt−1, and
we define the corresponding hedge error by

et := ct − δt−1St − erbt−1,

so positive hedge errors mean losses and negative gains. At the end of the trading
day, the new weights δt and bt = ct − δtSt are chosen to ensure that the value of
the portfolio again exactly coincides with the present put price. Using the above
definition of et, we can alternatively represent bt in the form

bt = et + erbt−1 + St(δt−1 − δt).
This means that the hedge error is nothing but the amount of money one has to
additionally inject in or withdraw from the savings account after adapting the stock
position to make the value of the hedge portfolio congruent with the current put
price.

Remark 4.3. In general, the size of the hedge error also depends on the rebalancing
frequency and the continuity properties of the payoff function. Our empirical results
below show that for standard and efficient puts a daily rebalancing of the portfolio
already is sufficient to get a fairly precise approximation to the current option
prices. A thorough theoretical analysis of the behaviour of hedge errors resulting
from delta and quadratic hedging strategies in exponential Lévy models can be
found in Broden & Tankov (2011).

The upper graphs of Figure 6 display the hedge errors obtained from delta hedg-
ing of the different puts on Allianz and Volkswagen. At the beginning, the hedge
errors of the efficient and the vanilla puts behave fairly similarly, but with time
passing the distinctions increase. This might again be explained by the different
shapes of the payoff profiles and the different signs of the corresponding deltas
which lead to more pronounced differences in the hedge errors as the time to matu-
rity becomes smaller. The sums

∑22
t=0 |et| of the absolute hedge errors for Allianz

are 1.296 (efficient put) and 1.798 (vanilla put), for Volkswagen we obtain 1.794
(efficient put) resp. 2.252 (vanilla put). This indicates that cost-efficient options
can be hedged at least as efficiently as standard options. However, since the prices
of vanilla and efficient puts can differ significantly over time, one should not only
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Figure 6. Top: Delta hedge errors of the efficient and vanilla puts on Allianz with strike K = 98
and Volkswagen with strike K = 135 maturing on November 1, 2012. Bottom: Percentage hedge

errors of the efficient and vanilla puts on Allianz.

look at the absolute hedge errors to confirm this assertion, but also take the relative
or percentage hedge errors ẽt := et

ct
into account. The values of ẽt for the Allianz

puts are shown in the lower graph of Figure 6 above. For the efficient put, we ob-
tain

∑22
t=0 |ẽt| = 0.299, and the corresponding value for the vanilla put is 0.438.

Analogous computations for the Volkswagen puts would not make much sense here
because there the vanilla put ends up deep out of the money, therefore the ẽt would
tend to infinity as t→ T .

In the last part of this section, we want to compare the alternative hedging
strategy for vanilla puts based on the rollover-deltas ∆roP

t with its classical coun-
terpart and investigate if it can really provide an efficient and more robust way
to hedge the final put payoff (K − ST )+ as was expected from Theorem 4.3. For
this purpose, we again consider the vanilla puts on Allianz and Volkswagen with
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∆P
t , ∆roP

t of the vanilla put on Allianz shown on the left.
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Figure 8. Left: Stock price of Volkswagen from October 1, 2012, to November 1, 2012, and the
prices c(XP

T−t), c(X
P
T−t) of the associated vanilla resp. efficient puts. Right: Comparison of the

deltas ∆P
t , ∆roP

t of the vanilla put on Volkswagen shown on the left.

the same strikes and maturity as before, but now contrast the corresponding price
processes (c(XP

T−t))0≤t≤T with the series (c(XP
T−t))0≤t≤T of prices of efficient puts

which are newly initiated at each day t. Figures 7 and 8 show the stock and put
price processes for Allianz in the NIG model and for Volkswagen in the VG model,
respectively, as well as a graphical comparison of the associated classical put deltas
∆P
t and rollover-deltas ∆roP

t . The condition of Theorem 4.3 (b) is obviously fulfilled
for all 0 ≤ t ≤ T , the absolute values of the rollover-deltas are always smaller than
those of the classical deltas for both stocks.

This indicates that the hedging strategies based on the rollover-deltas may indeed
allow for a less expensive way to replicate the final put payoff. The advantage of
lower hedging costs might be annihilated by larger hedging errors though. Therefore
one also has, of course, to take these into account before coming to a definite
conclusion. Using some of the notations from above, we define the hedge error for
the alternative hedging strategy by

et := c(XP
T−t)−∆roP

t St − erbt−1.

Observe that we do not use the time-t-price c(XP
T−t) of the vanilla put in the

above definition although we want to hedge its final payoff. Since the rollover-deltas
∆roP
t are intended to replicate the prices c(XP

T−t), and c(XP
T−t) < c(XP

T−t) for all

0 ≤ t < T because θ̄ < 0 here, a comparison of the value of the hedge portfolio at
time t with c(XP

T−t) would lead to a systematic overestimation of the hedge error.
Moreover, we only consider options of European type here. Therefore it is more
important to look at the hedge error at maturity which tells us how precise the
hedging strategies can reproduce the final obligation of the writer of the option. At
time T , however, we have c(XP

T−T ) = c(XP
T−T ) = (K−ST )+ as pointed out before,

so there the hedge error is defined without ambiguity.
So let us finally take a look at the hedge errors obtained from the two delta-

hedging strategies for the vanilla puts on Allianz and Volkswagen which are visu-
alized in Figure 9. For Allianz, the hedge errors eT at maturity are −0.149 for the
classical delta hedge and −0.085 for the alternative rollover-delta hedge, and the
sum

∑22
t=0 |et| of the absolute hedge errors is 1.789 for the classical and 0.802 for

the rollover hedge. The final hedge errors eT for the Volkswagen put are zero for
both hedging strategies (which is not so surprising because the vanilla put expires
worthless here), and the sums of the absolute hedge errors are 2.252 for the classi-
cal and 0.983 for the rollover hedge. This shows that the latter can yield at least
comparable and often even more accurate results than the classical delta hedging
strategy. In case of the Allianz put, the classical delta hedge tends to superhedge
the option, that is, the value of the hedge portfolio is always greater than the option
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Figure 9. Left: Delta hedge errors of the vanilla put on Allianz with strike K = 98 maturing on
November 1, 2012, in the NIG model. Right: Delta hedge errors of the vanilla put on Volkswagen

with strike K = 135 maturing on November 1, 2012, in the VG model.

price. The rollover hedge does the same on most days, but produces smaller abso-
lute hedge errors. In view of Theorem 4.3, we suppose that analogous assertions
will also hold for calls and probably also for more complex options.

5. Conclusion

We applied the concept of cost-efficiency to general Lévy market models where
the risk-neutral measure is obtained by an Esscher transform. Explicit criteria for
cost-efficiency were derived and applied to various financial derivatives, and we
established a cost-efficient version of the put-call parity. Furthermore, we proved
that the magnitude of the efficiency loss increases if the market trend, resp. the drift
of the underlying, becomes more pronounced. Numerical examples of cost-efficient
puts were presented which provide evidence that the savings from switching to
cost-efficient strategies can be quite substantial. We found that the efficiency losses
obtained under different Lévy models were of almost the same magnitude, and thus,
seem to be widely model-independent.

Further, we derived explicit formulas for the Greek delta of cost-efficient puts and
calls and developed alternative hedging strategies for vanilla puts and calls based on
rollover trading strategies involving their cost-efficient counterparts. We also proved
that the absolute values of the corresponding rollover-deltas are smaller than the
classical hedge deltas. This suggests that the alternative delta hedging strategies can
often be more accurate and lead to smaller hedge errors. In a practical application
using German stock price data we demonstrated that the computation of all the
deltas is numerically tractable. The cost-efficient puts can be hedged as accurately
as their vanilla counterparts, and the alternative hedging strategies for vanilla puts
indeed have the potential to outperform the classical ones. This indicates that cost-
efficient strategies provide a more advantageous way to achieve and hedge a final
payoff, and thus, may be an appropriate tool to increase market efficiency.

Appendix A. Derivation of the risk-neutral Esscher parameters

Normal inverse Gaussian model. We first provide some properties of NIG dis-
tributions as introduced in (2.11). The Lebesgue density dNIG(α,β,δ,µ) can be ob-
tained by calculating

dNIG(α,β,δ,µ)(x) =

∫ ∞
0

dN(µ+βy)(x) d
IG(δ,
√
α2−β2)

(y) dy

= n(α, β, δ)
K1

(
α
√
δ2 + (x− µ)2

)√
δ2 + (x− µ)2

eβ(x−µ),
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where K1(x) is the modified Bessel function of third kind with index 1, and the
norming constant n(α, β, δ) is given by

n(α, β, δ) =
αδ

π
eδ
√
α2−β2

.

The corresponding mgf MNIG(α,β,δ,µ) then can easily be derived observing that

MNIG(α,β,δ,µ)(u) =

∫ ∞
−∞

euxdNIG(α,β,δ,µ)(x) dx

=

∫ ∞
−∞

euµ
n(α, β, δ)

n(α, β + u, δ)
dNIG(α,β+u,δ,µ)(x) dx

= euµ
n(α, β, δ)

n(α, β + u, δ)
= euµ+δ

√
α2−β2−δ

√
α2−(β+u)2

(A.1)

which obviously is defined for all u ∈ (−α − β, α − β). Hence, Assumption 2.1 is
fulfilled if α− β − (−α− β) = 2α > 1. However, we have

lim
u→±α−β

MNIG(α,β,δ,µ)(u) = e(±α−β)µ+δ
√
α2−β2

,

that is, the mgf tends to a finite limit at the boundaries of this interval. According
to Lemma 2.1, it thus may not always be possible to find a solution θ̄ of Eq. (2.7).
If it exists, it is given by

θ̄NIG = −1

2
− β +

r − µ
δ

√
α2

1 + ( r−µδ )2
− 1

4
. (A.2)

For the derivation of this expression note that the defining Eq. (2.7) for the risk-
neutral Esscher parameter in the NIG model becomes

er =
MNIG(α,β,δ,µ)(θ̄NIG + 1)

MNIG(α,β,δ,µ)(θ̄NIG)
= eµ−δ

√
α2−(β+θ̄NIG+1)2+δ

√
α2−(β+θ̄NIG)2

,

or equivalently,

r − µ
δ

=
√
α2 − (β + θ̄NIG)2 −

√
α2 − (β + θ̄NIG + 1)2. (A.3)

Under Assumption 2.1, which is equivalent to 2α > 1 as seen above, Lemma 2.1
states that there can exist at most one solution θ̄NIG to (A.3) which obviously must
also fulfill the additional constraints |β + θ̄NIG | < α and |β + θ̄NIG + 1| < α.

Case 1: r = µ

Here we have that

0 =
√
α2 − (β + θ̄NIG)2 −

√
α2 − (β + θ̄NIG + 1)2

and hence (β + θ̄NIG)2 = (β + θ̄NIG + 1)2, which obviously is fulfilled iff

θ̄NIG = −1

2
− β.

This is a proper solution since by Assumption 2.1

α >
1

2
= |β + θ̄NIG | = |β + θ̄NIG + 1|.

Case 2: r 6= µ

To simplify notations, we set r∗ := r−µ
δ and β∗ := β+ θ̄NIG in the following. Using

these abbreviations, Eq. (A.3) can be rewritten as√
α2 − β∗2 − (2β∗ + 1) =

√
α2 − β∗2 − r∗.
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Squaring this equation and isolating the term
√
α2 − β∗2 yields√

α2 − β∗2 =
(1 + r∗2) + 2β∗

2r∗
.

Squaring again and reorganizing terms we finally obtain the following quadratic
equation for β∗:

β∗2 + β∗ +
1 + r∗2

4
− α2r∗2

1 + r∗2
= 0.

The solutions to this quadratic equation are given by

β∗= β + θ̄NIG = −1

2
± r∗

√
α2

1 + r∗2
− 1

4
=⇒ θ̄NIG = −1

2
− β ± r∗

√
α2

1 + r∗2
− 1

4
.

Note that the above solutions only exist if 2α >
√

1 + r∗2 which is more restrictive
than Assumption 2.1. From Eq. (A.3) we conclude that for r∗ > 0 we must have
(β + θ̄NIG)2 < (β + θ̄NIG + 1)2, which is equivalent to − 1

2 − β < θ̄NIG . If r∗ < 0,

we analogously arrive at the constraint − 1
2 − β > θ̄NIG . Comparing this with the

above solutions of the quadratic equation for β∗, we finally see that the only possible
solution for the risk-neutral Esscher parameter is

θ̄NIG = −1

2
− β +

r − µ
δ

√
α2

1 + ( r−µδ )2
− 1

4
. (A.4)

However, observe that this is a possible, but not a definitive solution! One addition-
ally has to check if the obtained θ̄NIG really solves the initial Eq. (A.3). There exist
sets of NIG parameters which fulfill all necessary constraints, however, the value
θ̄NIG calculated according to (A.4) is not a valid solution of (A.3). Take, for exam-

ple, (α, β, δ, µ) = (1,−0.1, 0.05, 0) and r = 0.06, then we have 2 = 2α >
√

1 + r∗2 =
1.56205, and calculating θ̄NIG according to (A.4) yields θ̄NIG = 0.07975404. Clearly,
this θ̄NIG also fulfills the additional constraints |β+θ̄NIG | < α and |β+θ̄NIG+1| < α,
but inserting this value and the other parameters into Eq. (A.3) one sees that the
latter is violated.

Note that the characteristic function φNIG of an NIG distribution can be ob-
tained via the relation φNIG(u) = MNIG(iu). Since for every Lévy process it
holds that φLt(u) = φL1

(u)t, one immediately obtains from (A.1) that φLt(u) =
φNIG(α,β,δ,µ)(u)t = φNIG(α,β,δt,µt)(u), hence for an NIG Lévy process (Lt)t≥0 we
have L(Lt) = NIG(α, β, δt, µt) for all t > 0. Similar arguments as used above in
(A.1) then show that for any Esscher transform the density dθLt of Lt under the

measure Qθ is

dθLt(x) =
eθx

MNIG(α,β,δt,µt)(θ)
dNIG(α,β,δt,µt)(x)

(A.5)

=
n(α, β + θ, δt)

n(α, β, δt)
eθ(x−µt)dNIG(α,β,δt,µt)(x) = dNIG(α,β+θ,δt,µt)(x),

that is, (Lt)t≥0 remains an NIG Lévy process under every Esscher transform Qθ,
but with different parameter β  β + θ.

Variance Gamma model. Again, we first summarize some properties of the VG
model as introduced in Section 2.3. The corresponding Lebesgue density dV G(λ,α,β,µ)

is given by

dV G(λ,α,β,µ)(x) =

∫ ∞
0

dN(µ+βy)(x) dG(λ,(α2−β2)/2)(y) dy

= m(λ, α, β) |x− µ|λ− 1
2 Kλ(α|x− µ|) eβ(x−µ)
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with the norming constant

m(λ, α, β) =
(α2 − β2)λ

√
π(2α)λ−

1
2 Γ(λ)

.

With the same reasoning as in (A.1) one obtains the mgf

MV G(λ,α,β,µ)(u) = euµ
m(λ, α, β)

m(λ, α, β + u)
= euµ

(
α2 − β2

α2 − (β + u)2

)λ
(A.6)

which again is defined for all u ∈ (−α − β, α − β). Observe that here we have
limu→±α−βMV G(λ,α,β,µ)(u) =∞, such that due to by Lemma 2.1 (b) the condition

2α > 1 is sufficient to guarantee a unique solution θ̄ of Eq. (2.7) in the VG model.
The defining equation for the risk-neutral Esscher parameter here becomes

er =
MV G(λ,α,β,µ)(θ̄V G + 1)

MV G(λ,α,β,µ)(θ̄V G)
= eµ

(
α2 − (β + θ̄V G)2

α2 − (β + θ̄V G + 1)2

)λ
,

or equivalently,

e
r−µ
λ =

α2 − (β + θ̄V G)2

α2 − (β + θ̄V G + 1)2
. (A.7)

Case 1: r = µ

In this case, (A.7) becomes

α2 − (β + θ̄V G)2 = α2 − (β + θ̄V G + 1)2

which apparently is solved by θ̄V G = − 1
2 − β. This is a proper solution as can be

seen analogously as in the NIG model.

Case 2: r 6= µ

To simplify the notation and formulas in the derivation of θ̄V G, we set, similarly
as before, r∗ := r−µ

λ and β∗ = β + θ̄V G. Multiplying both sides of (A.7) with

α2 − (β∗ + 1)2 yields

er
∗(
α2 − (β∗ + 1)2

)
= α2 − β∗2.

Expanding the expressions and rearranging terms we obtain

β∗2 +
2

1− e−r∗
β∗ +

(
1

1− e−r∗
− α2

)
= 0.

The solutions of this quadratic equation are given by

β∗ = β + θ̄V G = − 1

1− e−r∗
±

√
e−r∗

(1− e−r∗)2
+ α2.

Thus, the possible risk-neutral Esscher parameters are

θ̄V G = − 1

1− e−r∗
− β ±

√
e−r∗

(1− e−r∗)2
+ α2. (A.8)

Observe that the mgf MV G is only defined on the interval (−α − β, α − β), there-
fore θ̄V G ∈ (−α − β, α − β − 1) must hold. Further, note that we always have√

e−r∗

(1−e−r∗ )2 + α2 > α. Now suppose that r > µ, then e−r
∗
< 1, or equivalently,

− 1
1−e−r∗ < 0. Thus,

− 1

1− e−r∗
− β −

√
e−r∗

(1− e−r∗)2
+ α2 < −β − α.
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Hence, this solution of (A.7) does not lie within (−α− β, α− β − 1), so the unique
solution in the case r > µ is given by

θ̄V G = − 1

1− e− r−µλ
− β +

√√√√ e−
r−µ
λ(

1− e− r−µλ
)2 + α2. (A.9)

If on the other hand r < µ, then we have e−r∗ > 1, resp. − 1
1−e−r∗ > 0, so the above

solution (A.9) lies outside (−α− β, α− β − 1) because

− 1

1− e−r∗
− β +

√
e−r∗

(1− e−r∗)2
+ α2 > −β + α.

Consequently, the unique solution in the case r < µ is given by

θ̄V G = − 1

1− e− r−µλ
− β −

√√√√ e−
r−µ
λ(

1− e− r−µλ
)2 + α2. (A.10)

Again, we have φV G(u) = MV G(iu) and conclude from (A.6) that φLt(u) =
φV G(λ,α,β,µ)(u)t = φV G(λt,α,β,µt)(u), i.e., for a VG Lévy process (Lt)t≥0 it holds
that L(Lt) = V G(λt, α, β, µt) for all t > 0. Similarly as in the NIG case, one can
also show that every Esscher transform of the real-world measure P only affects the
parameter β and (Lt)t≥0 remains a VG Lévy process under Qθ, but with different
parameter β + θ.

Appendix B. Proofs

Proof of Proposition 2.1: Let XT be a payoff with distribution G, denote the dis-

tribution function of Z θ̄T = eθ̄LT

MLT
(θ̄)

by FZθ̄T
and observe that the representation of Z θ̄T

implies that the continuity of FLT transfers to FZθ̄T
. From Theorem 2.1 we already

know that the cost-efficient payoff in general is given by XT = G−1(1−FZθ̄T (Z θ̄T )).

If now θ̄ < 0, then

1− FZθ̄T (x) = 1− P
(
Z θ̄T ≤ x

)
= FLT

(
1

θ̄
ln
(
xMLT (θ̄)

))
,

from which XT = G−1(FLT (LT )) follows immediately. In a similar way one obtains
XT = G−1(1−FLT (LT )), and the representations for the case θ̄ > 0 can be proven
analogously. The formulas for the price bounds are easily obtained by observing

that the above equation implies F−1

Zθ̄T
(x) = e

θ̄F
−1
LT

(1−x)

MLT
(θ̄)

which just has to be inserted

into the general Eqs. (2.5) of Theorem 2.1.
To show the a.s. uniqueness of the strategies, suppose that again θ̄ < 0 and

X ′T ∼ G is another cost-efficient strategy with payoff-distributionG. Then (X ′T , Z
θ̄
T )

must also be countermonotonic by Theorem 2.1, hence X ′T = h(Z θ̄T ) a.s. for some

decreasing function h. On the other hand, we know that XT = G−1(1−FZθ̄T (Z θ̄T )).

But since both XT and X ′T have the same distribution function G, it must hold
that h(z) = G−1(1 − FZθ̄T (z)) for almost all z ∈ R and hence XT = X ′T a.s. The

proofs of uniqueness in the other cases follow analogously. �

Proof of Corollary 2.1: Suppose that θ̄ < 0 and XT is a cost-efficient payoff
with distribution function G. On the one hand, due to Proposition 2.1, it holds
that XT = G−1(FLT (LT )) almost surely, such that XT is increasing in LT , i.e.,
XT = v(LT ) for some measurable, increasing function v. On the other hand, if a

payoff XT is increasing in LT , then the representation Z θ̄T = eθ̄LT

MLT
(θ̄)

, together with
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the assumption θ̄ < 0, implies that XT = h(ZT ) where h(z) = v
(
θ̄−1 ln

(
zMLT (θ̄)

))
is decreasing. Therefore, XT and ZT are countermonotonic and hence XT is cost-
efficient due to Theorem 2.1 (b). The second statement as well as the reverse for
the most-expensive strategies can be shown analogously. �

Proof of Proposition 2.2: Assume θ̄ < 0 first. Then f(x) := eθ̄x and g(x) :=
ex are decreasing resp. increasing functions on R. Hence, f(L1) and g(L1) are
countermonotonic random variables and thus Cov(f(L1), g(L1)) ≤ 0, (see Lehman
(1966, Lemma 3)). Therefore, we obtain

0 ≥ Cov(eθ̄L1 , eL1) = ML1
(θ̄ + 1)−ML1

(θ̄)ML1
(1),

and equality holds true if and only if eθ̄L1 and eL1 are independent, which is not
true here because L1 is nondegenerate by Assumption 2.1. Further observe that the
assumptions made in the Proposition ensure the finiteness of all expressions on the
right hand side. Together with (2.7), the latter inequality thus implies

E[eLt ] = ML1
(1)t >

(
ML1(θ̄ + 1)

ML1
(θ̄)

)t
= ert

for all t > 0, which corresponds to a bullish market.
To show the converse, assume now a bullish market scenario where the expected

return E[eLt ] is greater than ert for all t > 0, or equivalently,

ML1
(1) > er =

ML1
(θ̄ + 1)

ML1(θ̄)
,

since θ̄ is the unique solution of Eq. (2.7). From latter inequality we infer that

ML1
(θ̄ + 1) < ML1

(θ̄)ML1
(1) and hence Cov(eθ̄L1 , eL1) < 0. From this we directly

conclude that the risk-neutral Esscher parameter θ̄ must be strictly negative be-
cause otherwise f(x) = eθ̄x and g(x) = ex are both non-decreasing functions on R,
implying that Cov(f(L1), g(L1)) cannot be negative if L1 is nondegenerate. The
statement for the bearish market can be shown analogously. �

Proof of Proposition 2.3: By Definition 2.2, we have θ ∈ (a, b) where a < 0 < b,
so there exists a sufficiently small ε > 0 such that also θ − ε, θ + ε ∈ (a, b). Thus,
we have

Eθ[e
±εLT ] =

E[e(θ±ε)LT ]

MLT (θ)
=
MLT (θ ± ε)
MLT (θ)

<∞

and conclude that LT also has a mgf Mθ
LT

(u) under the Esscher measure Qθ which
is well-defined and finite at least on the open interval (−ε, ε). In particular, this
implies Eθ[L

2
T ] <∞ and hence Eθ[|LT |] <∞.

Thus, we can differentiate the Esscher density ZθT = eθLT
MLT

(θ) with respect to θ

and obtain

∂ZθT
∂θ

=
LT e

θLT MLT (θ)− eθLTM ′LT (θ)

MLT (θ)2

= ZθTLT −
eθLTE[LT e

θLT ]

MLT (θ)2
= ZθT (LT − Eθ[LT ])

where in the second equality we used that M ′LT (θ) = E
[
∂
∂θ e

θLT
]
. The interchange

between differentiation and integration here is justified because E
[∣∣ ∂
∂θ e

θLT
∣∣] =

E[|LT |eθLT ] = MLT (θ)Eθ[|LT |] < ∞ as shown above. Further, observe that XT

does not depend on θ, and by Proposition 2.1, neither does XT , such that we have
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∂ZθT (XT−XT )
∂θ =

∂ZθT
∂θ (XT −XT ) and

E

[∣∣∣∣∂ZθT∂θ (XT −XT )

∣∣∣∣] = E
[∣∣ZθT (LT − Eθ[LT ])(XT −XT )

∣∣]
≤ E

[
ZθT (|LT |+ Eθ[|LT |]) |XT −XT |

]
= Eθ

[
|LT | |XT −XT |

]
+ Eθ

[
|LT |

]
Eθ
[
|XT −XT |

]
<∞

because Eθ[L
2
T ] < ∞ and, by assumption, also Eθ

[
(XT −XT )2

]
< ∞. This again

allows to interchange differentiation and integration in the following calculation
which yields, similarly as above,

∂l(θ, η)

∂θ
= e−rT

∂E
[
ZθT (XT −XT )

]
∂θ

= e−rTE

[
∂ZθT
∂θ

(XT −XT )

]
= e−rTE

[
ZθT (LT − Eθ[LT ])(XT −XT )

]
= e−rT

(
E
[
ZθTLT (XT −XT )

]
− Eθ

[
LT
]
E
[
ZθT (XT −XT )

])
= e−rTCovθ(LT , XT −XT ).

Hence, l(θ, η) is increasing in θ iff Covθ(LT , XT ) ≥ Covθ(LT , XT ). The latter in-
equality is fulfilled for θ > 0, because XT then is defined by Eq. (2.9) and hence is
a decreasing function of LT , implying that (LT , XT ) is a countermonotonic pair of
random variables, and thus, has the smallest covariance among all pairs of random
variables possessing the same marginal distributions. Analogously, one obtains that
l(θ, η) is decreasing for θ < 0, because in this case XT is defined by Eq. (2.8) and
thus is an increasing function of LT . Therefore, (LT , XT ) is comonotonic and hence
Covθ(LT , XT ) ≤ Covθ(LT , XT ). �

Proof of Theorem 4.1: (a) Fix t ∈ [0, T ) and recall that by Eq. (4.1) the time-t-
price of the efficient put initiated at time 0 is given by

c(XP
T,t) =

1

MLT−t(θ̄)

∫ +∞

−∞
eθ̄y−r(T−t)

(
K − S0e

F−1
LT

(1−FLT (ln(Ste
y/S0))))

+
FLT−t(dy)

The above integrand f(St, y) : R+ ×R→ R+ with

f(St, y) = eθ̄y−r(T−t)
(
K − S0e

F−1
LT

(1−FLT (ln(Ste
y/S0))))

+

is bounded for all St ≥ 0 by g(y) = Keθ̄y which is integrable with respect to FLT−t

because
∫ +∞
−∞ g(y)FLT−t(dy) = KMLT−t(θ̄) < ∞. Moreover, f(St, y) is differen-

tiable in St for all y ∈ R (apart from the point St = S0e
F−1
LT

(1−FLT (ln(K/S0)))−y
, but

since the left- and right-hand side derivatives are bounded, this can be neglected
here), and the partial derivative is

∂f(St, y)

∂St
=
S0

St
e
θ̄y−r(T−t)+F−1

LT
(1−FLT (ln(Ste

y/S0)))

·
dLT

(
ln
(
Ste

y

S0

))
dLT

(
1− FLT

(
ln
(
Stey

S0

))) 1(
ln(

S0
St

)+F−1
LT

(1−FLT (ln( KS0
))),∞

)(y)

where dLT denotes the Lebesgue density of FLT which exists and is strictly positive

on R due to our assumptions on FLT . Since θ̄ < 0, 1 − FLT
(
ln
(
Ste

y

S0

))
→ 0 and

dLT
(
ln
(
Ste

y

S0

))
→ 0 for y → ∞ (the latter must hold for any probability density),

we see that ∂
∂St

f(St, y) ≤ S0

StdLt (0) for sufficiently large y. Therefore, the partial
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derivative is integrable with respect to FLT−t , so we can interchange differentiation
and integration and obtain

∆P
t =

∂c(XP
T,t)

∂St
=

∂

∂St

1

MLT−t(θ̄)

∫ +∞

−∞
f(St, y)FLT−t(dy)

=
1

MLT−t(θ̄)

∫ +∞

−∞

∂f(St, y)

∂St
FLT−t(dy)

=
S0

St

e−r(T−t)

MLT−t(θ̄)

·
∫ +∞

yPT,t

e
θ̄y+F−1

LT
(1−FLT (ln(Ste

y/S0))) dLT
(
ln
(
Ste

y

S0

))
dLT

(
1− FLT

(
ln
(
Stey

S0

))) FLT−t(dy)

where yPT,t = ln
(
S0

St

)
+ F−1

LT

(
1− FLT

(
ln
(
K
S0

)))
.

(b) In case of an efficient call we have c(XC
T,t) = 1

MLT−t (θ̄)

∫ +∞
−∞ f̃(St, y)FLT−t(dy)

with

f̃(St, y) = eθ̄y−r(T−t)
(
S0e

F−1
LT

(1−FLT (ln(Ste
y/S0))) −K

)
+

and, by assumption, f̃(St, y) is integrable w.r.t. FLT−t for all St ≥ 0. Moreover,

f̃(St, y) is differentiable in St (again, apart from St = S0e
F−1
LT

(1−FLT (ln(K/S0)))−y
),

and the partial derivative is

∂f̃(St, y)

∂St
= −S0

St
e
θ̄y−r(T−t)+F−1

LT
(1−FLT (ln(Ste

y/S0)))

·
dLT

(
ln
(
Ste

y

S0

))
dLT

(
1− FLT

(
ln
(
Stey

S0

))) 1(
−∞,ln(

S0
St

)+F−1
LT

(1−FLT (ln( KS0
)))
)(y).

Similarly as above, we have dLT
(
ln
(
Ste

y

S0

))
→ 0 and dLT

(
1 − FLT

(
ln
(
Ste

y

S0

)))
→

dLT (1) for y → −∞, so the quotient of the densities remains bounded as y → −∞,

thus the integrability of f̃(St, y) with respect to FLT−t readily transfers to ∂f̃(St,y)
∂St

.
Hence, we can again interchange differentiation and integration and obtain

∆C
t =

∂c(XC
T,t)

∂St
=

1

MLT−t(θ̄)

∫ +∞

−∞

∂f̃(St, y)

∂St
FLT−t(dy)

= −S0

St

e−r(T−t)

MLT−t(θ̄)

·
∫ yCT,t

−∞
e
θ̄y+F−1

LT
(1−FLT (ln(Ste

y/S0))) dLT
(
ln
(
Ste

y

S0

))
dLT

(
1− FLT

(
ln
(
Stey

S0

))) FLT−t(dy)

with yCT,t = yPT,t. �

Proof of Theorem 4.2: (a) Fix t ∈ [0, T ). The price c(XP
T−t) = c(XP

T−t,0) of the
cost-efficient long put with maturity T that is initiated at time t is obtained from
Proposition 2.1 (a) and Eq. (3.1) by replacing T by T − t as well as S0 by St:

c(XP
T−t) =

e−r(T−t)

MLT−t(θ̄)

∫ 1

0

e
θ̄F−1
LT−t

(z)
(
K − Ste

F−1
LT−t

(1−z)
)

+
dz

It can easily be seen that the above integrand f(St, z) : R+ × [0, 1]→ R+ with

f(St, z) = e
θ̄F−1
LT−t

(z)−r(T−t)(
K − Ste

F−1
LT−t

(1−z))
+
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is integrable with respect to z for all St ≥ 0 since it is bounded by the function

g(z) = K e
θ̄F−1
LT−t

(z)−r(T−t)
. For the integrability of g(z), observe that∫ 1

0

g(z) dz = K

∫ 1

0

e
θ̄F−1
LT−t

(z)−r(T−t)
dz

= K

∫ +∞

−∞
eθ̄x−r(T−t)dLT−t(x) dx = Ke−r(T−t)MLT−t(θ̄) <∞,

where dLT−t denotes the density of FLT−t . Moreover, f(St, z) is differentiable in St

for all z ∈ [0, 1] (apart from the point St = Ke
F−1
LT−t

(1−z)
, but again the left- and

right-hand side derivatives are bounded), and the partial derivative is

∂

∂St
f(St, z) = e

θ̄F−1
LT−t

(z)−r(T−t)(−eF−1
LT−t

(1−z))
1[1−FLT−t (ln(K/St)),1](z).

Its absolute value is bounded by the integrable function

g̃(z) =
K

St
e
θ̄F−1
LT−t

(z)−r(T−t)
.

Hence, we can interchange differentiation and integration and obtain

∆roP
t =

∂

∂St
c(XP

T−t) =
1

MLT−t(θ̄)

∫ 1

0

∂

∂St
f(St, z) dz

= − 1

MLT−t(θ̄)

∫ 1

1−FLT−t (ln(K/St))

e
θ̄F−1
LT−t

(z)+F−1
LT−t

(1−z)−r(T−t)
dz

= − 1

MLT−t(θ̄)

∫ FLT−t (ln(K/St))

0

e
θ̄F−1
LT−t

(1−y)+F−1
LT−t

(y)−r(T−t)
dy.

(b) The price c(XC
T−t) of the cost-efficient call with maturity T that is initiated at

time t can analogously derived as in part (a) from Proposition 2.1 b) and Eq. (3.8)
to be

c(XC
T−t) =

e−r(T−t)

MLT−t(θ̄)

∫ 1

0

e
θ̄F−1
LT−t

(z)
(
Ste

F−1
LT−t

(1−z) −K
)

+
dz.

Here we consider the function

f̃(St, z) : R+× [0, 1]→ R+, f̃(St, z) = e
θ̄F−1
LT−t

(z)−r(T−t)(
Ste

F−1
LT−t

(1−z)−K
)

+

which is integrable with respect to z for all St ≥ 0 because c(XC
T−t) ≤ c(XC

T−t) ≤
e−r(T−t)Eθ̄[Ste

LT−t ] = St. Further, f̃(St, z) is differentiable in St for all z ∈ [0, 1]

(apart from St = Ke
−F−1

LT−t
(1−z)

which again is negligible here), and we have

∂

∂St
f̃(St, z) = e

θ̄F−1
LT−t

(z)−r(T−t) · eF
−1
LT−t

(1−z)
1[0,1−FLT−t (ln(K/St))](z) ≥ 0.

Clearly, the integrability of f̃(St, z) with respect to z readily transfers to ∂
∂St

f̃(St, z),
thus we can again interchange differentiation and integration and obtain

∆roC
t =

∂

∂St
c(XC

T−t) =
1

MLT−t(θ̄)

∫ 1

0

∂

∂St
f̃(St, z) dz

=
1

MLT−t(θ̄)

∫ 1−FLT−t (ln(K/St))

0

e
θ̄F−1
LT−t

(z)+F−1
LT−t

(1−z)−r(T−t)
dz.

�
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Proof of Theorem 4.3: (a) Since the vanilla and the efficient call coincide for
θ̄ < 0, the equation ∆roC

t = ∆C
t is immediately obvious, thus we only have to

consider the case θ̄ > 0. Fix an arbitrary t ∈ [0, T ). Because the vanilla call is most-
expensive for θ̄ > 0, we can combine Proposition 2.1 and Eq. (3.8) to represent its
time-t-price by

c(XC
T−t) =

1

MLT−t(θ̄)

∫ 1

0

e
θ̄F−1
LT−t

(y)−r(T−t)(
Ste

F−1
LT−t

(y) −K
)

+
dy

from which one can derive completely analogously as in the proof of Theorem 4.2
the following formula for the corresponding delta:

∆C
t =

1

MLT−t(θ̄)

∫ 1

FLT−t

(
ln
(
K
St

)) eθ̄F−1
LT−t

(y)+F−1
LT−t

(y)−r(T−t)
dy

=
1

MLT−t(θ̄)

∫ 1−FLT−t

(
ln
(
K
St

))
0

e
θ̄F−1
LT−t

(1−y)+F−1
LT−t

(1−y)−r(T−t)
dy. (B.1)

Because ∆roC
t ≥ 0 by Theorem 4.2, the assertion of the theorem is proven if we can

show that ∆C
t −∆roC

t ≥ 0. Comparing Eqs. (4.6) and (B.1), the latter inequality
obviously is equivalent to the statement that the function DC : [0, 1]→ R, defined
by

DC(q) =
1

MLT−t(θ̄)

∫ q

0

e
θ̄F−1
LT−t

(1−y)+F−1
LT−t

(1−y) − eθ̄F
−1
LT−t

(y)+F−1
LT−t

(1−y)
dy,

is nonnegative for all q ∈ [0, 1]. We have DC(0) = 0 and

DC(1) =
1

MLT−t(θ̄)

∫ 1

0

e
θ̄F−1
LT−t

(1−y)+F−1
LT−t

(1−y) − eθ̄F
−1
LT−t

(y)+F−1
LT−t

(1−y)
dy

=

∫ ∞
−∞

eθ̄z

MLT−t(θ̄)
ezfLT−t(z) dz −

∫ ∞
−∞

eθ̄z

MLT−t(θ̄)
e
F−1
LT−t

(1−FLT−t (z))fLT−t(z) dz

= E

[
Z θ̄T−t

ST−t
S0

]
− E

[
Z θ̄T−t e

F−1
LT−t

(1−FLT−t (LT−t))
]
≥ 0

because ST−t
S0

= eLT−t d
= e

F−1
LT−t

(1−FLT−t (LT−t)), but Z θ̄T−t, e
LT−t are comonotonic

and Z θ̄T−t, e
F−1
LT−t

(1−FLT−t (LT−t)) are countermonotonic for θ̄ > 0. Moreover,

D′C(q) =
1

MLT−t(θ̄)

[
e
θ̄F−1
LT−t

(1−q)+F−1
LT−t

(1−q) − eθ̄F
−1
LT−t

(q)+F−1
LT−t

(1−q)
]

from which we conclude

D′C(q) = 0 ⇐⇒ e
θ̄F−1
LT−t

(1−q)
= e

θ̄F−1
LT−t

(q) ⇐⇒ q = 0.5.

The assumptions on FLT−t imply that F−1
LT−t

(q) is strictly increasing as well, so

the above calculations further show that D′C(q) ≥ 0 for q ≤ 0.5 and D′C(q) ≤ 0 for
q ≥ 0.5. Hence, the function DC(q) is increasing on [0, 0.5] and decreasing on [0.5, 1]
with boundary values DC(0) = 0 and DC(1) ≥ 0 which yields that DC(q) ≥ 0 for
all q ∈ [0, 1], and thus ∆C

t −∆roC
t ≥ 0.

(b) For θ̄ > 0, the equality ∆roP
t = ∆P

t again follows from the fact that vanilla and
efficient put coincide in this case, therefore we assume θ̄ < 0 in the following. Then
the vanilla put is most-expensive, and combining Proposition 2.1 and Eq. (3.1)
allows to represent its time-t-price as

c(XP
T−t) =

1

MLT−t(θ̄)

∫ 1

0

e
θ̄F−1
LT−t

(1−y)−r(T−t)(
K − Ste

F−1
LT−t

(1−y))
+
dy
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from which the delta can be derived as

∆P
t = − 1

MLT−t(θ̄)

∫ 1

1−FLT−t

(
ln
(
K
St

)) eθ̄F−1
LT−t

(1−y)+F−1
LT−t

(1−y)−r(T−t)
dy

= − 1

MLT−t(θ̄)

∫ FLT−t

(
ln
(
K
St

))
0

e
θ̄F−1
LT−t

(y)+F−1
LT−t

(y)−r(T−t)
dy. (B.2)

Because ∆roP
t ,∆P

t ≤ 0, the assertion of the theorem is equivalent to ∆roP
t −∆P

t ≥ 0.
Analogously as in the call case we see by comparing Eqs. (4.5) and (B.2) that for
given values K and St we have ∆roP

t −∆P
t ≥ 0 if and only if DP

[
FLT−t

(
ln
(
K
St

))]
≥

0, where the function DP (q) : [0, 1]→ R is defined by

DP (q) =
1

MLT−t(θ̄)

∫ q

0

e
θ̄F−1
LT−t

(y)+F−1
LT−t

(y) − eθ̄F
−1
LT−t

(1−y)+F−1
LT−t

(y)
dy.

We have DP (0) = 0 and calculate, similarly as before, that

DP (1) = E

[
Z θ̄T−t

ST−t
S0

]
− E

[
Z θ̄T−t e

F−1
LT−t

(1−FLT−t (LT−t))
]
≤ 0

since Z θ̄T−t, e
LT−t are countermonotonic for θ̄ < 0 and Z θ̄T−t, e

F−1
LT−t

(1−FLT−t (LT−t))

are comonotonic. Further,

D′P (q) =
1

MLT−t(θ̄)

[
e
θ̄F−1
LT−t

(q)+F−1
LT−t

(q) − eθ̄F
−1
LT−t

(1−q)+F−1
LT−t

(q)
]

and hence

D′P (q) = 0 ⇐⇒ e
θ̄F−1
LT−t

(1−q)
= e

θ̄F−1
LT−t

(q) ⇐⇒ q = 0.5.

Since F−1
LT−t

(q) is strictly increasing and θ̄ < 0, we see that D′P (q) ≥ 0 for q ≤ 0.5

and D′P (q) ≤ 0 for q ≥ 0.5, consequently the function DP (q) has a positive maxi-
mum in q = 0.5 and is strictly decreasing on (0.5, 1]. The fact that DP (1) ≤ 0 then
implies the existence of a unique q∗ ∈ (0.5, 1] with DP (q∗) = 0 and DP (q) ≥ 0 for
all q ∈ [0, q∗]. This proves the assertion. �
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