## Exercises for the lecture "Probability Theory II"

## Sheet 6

**Submission deadline:** Wednesday, 26.11.2025, 2 p.m. in the mailbox in the math institute. (You may deliver the exercise solutions in pairs.)

Exercise 1 (4 points)

Let  $\mathcal{C}([0,1])$  be the set of continuous functions from [0,1] to  $\mathbb{R}$  and  $\mathscr{B}(\mathbb{R})^{[0,1]}$  the product- $\sigma$ -algebra on  $\mathbb{R}^{[0,1]}$ . Prove the following:

- (a) Singletons  $\{f\}, f \in \mathcal{C}([0,1]), \text{ are not measurable w.r.t. } \mathscr{B}(\mathbb{R})^{[0,1]}.$
- (b)  $\mathcal{C}([0,1]) \notin \mathcal{B}(\mathbb{R})^{[0,1]}$ , i.e.  $\mathcal{C}([0,1])$  is not measurable w.r.t. the product- $\sigma$ -algebra on  $\mathbb{R}^{[0,1]}$ .

Exercise 2 (4 points)

Let  $B = (B_t)_{t>0}$  a standardized Brownian motion in  $\mathcal{C}([0,\infty))$ .

- (a) Let  $\mathcal{F} = (\mathcal{F}_t)_{t \geq 0}$  with  $\mathcal{F}_t = \sigma(B_s : s \leq t)$  be the induced filtration and  $\mu \in \mathbb{R}$ . Prove that the following processes are martingales w.r.t.  $\mathcal{F}$ :
  - (i)  $(B_t)_{t>0}$ ,
  - (ii)  $(B_t^2 t)_{t>0}$ ,
  - (iii)  $\left(\exp\left(\mu B_t \frac{\mu^2}{2}t\right)\right)_{t>0}$ .
- (b) Let  $a \in \mathbb{R} \setminus \{0\}$  and  $T_a := \inf\{s > 0 : B_s = a\}$  the first hitting time of a.
  - (i) Prove that for every x > 0 we have  $\mathbb{E}[e^{-xT_a}] = e^{-|a|\sqrt{2x}}$ .
  - (ii) Deduce that  $\mathbb{E}[T_a] = \infty$ .

Exercise 3 (4 points)

Let  $M = (M_t)_{t\geq 0}$  be a martingale with right-continuous sample paths w.r.t. a filtration  $\mathcal{F} = (\mathcal{F}_t)_{t\geq 0}$ . Let  $\tau$  be a  $\mathcal{F}$ -stopping time, i.e.  $\{\tau \leq t\} \in \mathcal{F}_t$  for every  $t \geq 0$ . Prove that

$$\mathbb{E}[M_{\tau}] = \mathbb{E}[M_0]$$

if one of the following conditions holds true:

- (i)  $\tau(\omega) \leq n_0$  for some  $n_0 \in \mathbb{N}$  and almost all  $\omega \in \Omega$ .
- (ii)  $\mathbb{P}(\tau < \infty) = 1$ ,  $\mathbb{E}[|M_{\tau}|] < \infty$  and  $\mathbb{E}[M_t \mathbb{1}_{\{\tau > t\}}] \to 0$  for  $t \to \infty$ .

HINT: Define the approximating sequence of stopping times

$$\tau_n(\omega) := \inf \left\{ \frac{k}{2^n} : \tau(\omega) \le \frac{k}{2^n}, k \in \mathbb{N}_0 \right\}$$

and use the corresponding result in discrete time (see lecture notes Probability Theory I, Theorem 5.15).

(please turn over)

Exercise 4 (4 points)

Let  $\mathcal{F} = (\mathcal{F}_t)_{t\geq 0}$  be a filtration. A random time  $\tau$  is called *weak stopping time* w.r.t.  $\mathcal{F}$  if  $\{\tau < t\} \in \mathcal{F}_t$  for all  $t \geq 0$ . The filtration is called *right-continuous* if  $\mathcal{F}_s = \bigcap_{t>s} \mathcal{F}_t$  for all  $s \geq 0$ .

Let  $\mathcal{F}$  be a right-continuous filtration and  $\tau$  a random time. Prove that  $\tau$  is a weak stopping time w.r.t.  $\mathcal{F}$  if and only if  $\tau$  is a stopping time w.r.t.  $\mathcal{F}$  (see Exercise 3 for the definition of a stopping time).