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I
Discrete time

Historically, financial mathematics originated in continuous time - like in the famous works
from Black & Scholes (1973) and Bachelier (1900) and the main driving force was a Brownian
motion. It seems very plausible, that a large number of traders who act independently can be
approximated by a Gaussian distribution through the central limit theorem, such that this is a
very appealing setup.

However, this requires the full power of stochastic integration and the technical details are
quite subtle. It is remarkable, that the main concepts of financial markets, like absence of ar-
bitrage, the first and second fundamental theorem can be proven in discrete time without the
need to dive into the technicalities while providing similarly deep insights. I therefore believe,
it is a good start to spend some time on discrete time.

1 A discrete-time financial market

An excellent introduction to the field is Föllmer & Schied (2016). We follow this book for the
introduction and directly start in a multi-period financial market. The advantage of this ap-
proach - as we will soon see - is that a multi-period market essentially can be reduced to a
one-period market.

To this end we fix a probability space (Ω, F , P). A financial market consists of one primary
risk-free asset S0 which is assumed to be strictly positive. Furthermore, we have d risky assets
S = (S1, . . . , Sd) which are assumed to be non-negative. All assets are described as stochastic
processes on the time interval T = {0, . . . , T}.

The information flow is described by the filtration F = (Ft)t∈T. We denote by S̄ = (S0, S)
the d + 1-dimensional stochastic process including the risk-free account. We assume that S̄ is
adapted to the filtration F.

Definition 1. A trading strategy H̄ is a predictable, d + 1-dimensional stochastic process. The
trading strategy is self-financing, if

H̄t · S̄t = H̄t+1 · S̄t, t = 1, . . . , T − 1.

Intuitively, a self-financing trading strategy does not require external funds while rebalanc-
ing at time t, neither does it produce a consumable profit.

Let us denote the increments of S by

∆St = St − St−1, t = 1, . . . , T.
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It is a remarkable result, that for a self-financing trading strategy, the position at time t can
be decomposed in the initial value plus the gains from trading. The gains itself can be written
as a (discrete) stochastic integral.

Lemma 2. For a self-financing trading strategy H̄, we obtain that

H̄t · S̄t = H̄1 · S̄0 +
t

∑
k=1

H̄k · ∆S̄k, 1 ≤ t ≤ T.

Proof. This follows in two steps:

H̄t · S̄t = H̄t · S̄t + H̄t−1 · S̄t−1 − H̄t−1 · S̄t−1

= H̄t · S̄t + H̄t−1 · S̄t−1 − H̄t · S̄t−1

= H̄t · (S̄t − S̄t−1) + H̄t−1 · S̄t−1

=
t

∑
k=2

H̄k · (S̄k − S̄k−1) + H̄1 · S̄1

where we used that H̄ is self-financing. For the last time step we obtain,

H̄1 · S̄1 = H̄1S̄1 + H̄1 · S̄0 − H̄1 · S̄0

= H̄1(S̄1 − S̄0) + H̄1 · S̄0

and the claim follows.

Example 3 (Bank account). A typical example for S0 is the bank account. The bank account
starts at S0

0 = 1 and offers the interest rate rt from t − 1 to tt. Note that rt is of course already
known at t − 1 and hence predictable. Hence,

S0
t =

t

∏
s=1

(1 + rs).

We always require rt > −1. But often one additionally assumes that rt ≥ 0.

1.1 Moving to discounted quantities

An important step - economically, and mathematically - is to move to discounted quantities.
While this simplifies that setup drastically, it also has a number of subtle consequences (in
particular in continuous time).

We introduce the discounted price process

Xi
t :=

Si
t

S0
t

, t = 0, . . . , T, i = 0, . . . , d.

Note that X0 ≡ 1 and in particular ∆X0
t = 0. As previously, we use the notation H̄ = (H0, H).
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Definition 4. The discounted value process V = V H̄ of the trading strategy H̄ is given by

Vt := H̄t · X̄t, t = 1, . . . , T

with V0 := H̄1 · X̄0. The discounted gains process G = GH̄ is

Gt :=
t

∑
k=1

Hk · ∆Xk, t = 1, . . . , T

with G0 = 0.

Of course,

Gt =
t

∑
k=1

H̄k · ∆X̄k,

which explains why we can switch from H̄ to H on discounted quantities.

Proposition 5. Consider the trading strategy H̄. Then the following are equivalent:

(i) H̄ is self-financing,

(ii) H̄t · X̄t = H̄t+1 · X̄t, t = 1, . . . , T − 1,

(iii) Vt = V0 + Gt for 0 󰃑 t 󰃑 T.

Proof. By definition, self-financing is equivalent to

H̄t · S̄t = H̄t+1 · S̄t t = 0, . . . , T − 1,

⇔ H̄t ·
S̄t

S0
t
= H̄t+1 ·

S̄t

S0
t

, t = 0, . . . , T − 1,

since S0 > 0. This yields equivalence of (i) and (ii). For the next step we compute the incre-
ments of the value process. By (ii),

Vt − Vt−1 = H̄t+1 · X̄t+1 − H̄t · X̄t = H̄t+1 · (X̄t+1 − X̄t) = Ht+1 · (Xt+1 − Xt).

Hence,

Vt − V0 =
t

∑
s=1

Hs · (Xs − Xs−1), t = 1, . . . , T

and the conclusion follows.

Remark 6 (Trading strategies). If we start with a d-dimensional trading strategy H, we can
determine the associated self-financing strategy H̄ as follows: choose H0 according to

H0
t+1 − H0

t = −(Ht+1 − Ht) · Xt, t = 0, . . . , T − 1,

and H0
1 = V0 − H1 · X0. In the following, if we speak of a self-financing trading strategy H, we

mean equivalently this associated strategy H̄.
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1.2 Arbitrage and martingales

The central concept for our analysis of financial markets is the concepts of arbitrage.

Definition 7. An arbitrage is a self-financing trading strategy H, such that the associated
discounted value process V satisfies

(i) V0 󰃑 0,

(ii) VT 󰃍 0, and

(iii) P(VT > 0) > 0.

If there are no arbitrages on a financial market, we call it arbitrage-free.

If we recall our introduction, we realize that a financial market consists of the triplet (F, S, P).
It can be easily shown that the above conditions are equivalent to the same conditions for the
undiscounted value process (H̄t · S̄t).

Proposition 8. A financial market is free of arbitrage if and only if every one-period financial market
(St, St+1), t = 0, . . . , T − 1 is free of arbitrage.

Proof. The idea of the proof is to show the equivalence of the negotiations: there exists an
arbitrage if and only if for a t ∈ {1, . . . , T} there exists a Ft−1-measurable random ξ ∈ Rd, such
that ξ · ∆Xt ≥ 0 P-a.s. and P(ξ · ∆Xt > 0) > 0.

For the first part we start with an arbitrage and show that there exists a single period with
an arbitrage: let H̄ be an arbitrage with value process V. Let

t := min
󰀋

s ∈ {1, . . . , T} : Vs 󰃍 0 und P(Vs > 0) > 0
󰀌

be a deterministic time with the convention that min∅ = ∞. Since H̄ is an arbitrage, we obtain
that t 󰃑 T. There are two possibilities to be taken into account: either Vt−1 = 0, or P(Vt−1 <

0) > 0. In the first case, we are ready, since

Ht · (Xt − Xt−1) = Vt − Vt−1 = Vt,

so ξ = Ht does the job.
For the second case we choose ξ := Ht1{Vt−1<0}. Then ξ is Ft−1-measurable and

ξ · (Xt − Xt−1) = (Vt − Vt−1)1{Vt−1<0} 󰃍 −Vt−11{Vt−1<0} 󰃍 0.

Now observe that the r.h.s. is positive with positive probability and the first part is finished.
The other direction is straightforward: set Hs = ξ1{s=t} and construct the associated self-

financing trading strategy H̄, which is an arbitrage.

Remark 9. It is interesting to see that the property to deduce absence of arbitrage from one
time period only breaks down if one allows for two filtrations, see Kabanov & Stricker (2006).
A fundamental theorem for two markets with two filtrations is still an open research question.
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Definition 10. A probability measure Q on (Ω, FT) is called martingale measure, if X is a
Q-martingale.

We note that a martingale measure refers to the discounted price process being a martingale.
It is a bit surprising that an artificial probability measure takes up such a prominent role in
no-arbitrage theory. We will see later, why. Recall that Q is called absolutely continuous with
respect to P (Q ≪ P) if P(F) = 0 for an F ∈ FT implies that Q(F) = 0. Q is called equivalent to
P (P ∼ Q), if Q ≪ P and P ≪ Q.

1.3 Martingale measures

We denote the set of equivalent martingale measures by Me(F) = Me. If we assume that the ini-
tial filtration is trivial, the following result can already be obtained. It is remarkable that the
integrability condition of a martingale can be obtained from no-arbitrage (equivalently the exis-
tence of a martingale measure as we will see later) and a substantially weakened integrability.

Satz 11. Let F0 = {∅, Ω}. Then, the following are equivalent:

(i) Q ∈ ME(F)

(ii) For any bounded self-financing trading strategy H̄, V H̄ is a Q-martingale.

(iii) For any self-financing trading strategy H̄ such that EQ[(V H̄
T )−] < ∞ V H̄ is a Q- martingale.

(iv) For any self-financing trading strategy H̄ with VT = V H̄
T 󰃍 0 it holds that

V0 = EQ[VT ].

Proof. i) ⇒ ii): we start with a bounded self-financing strategy H̄, i.e. |Hi
t| 󰃑 c, for i = 0, . . . , d,

t = 0, . . . , T. Then, integrability of V = V H̄ follows from the integrability of X since

|Vt| 󰃑 |V0|+
t

∑
k=1

c ·
d

∑
i=1

󰀓
|Xi

k|+ |Xi
k−1|

󰀔
.

Moreover, we have that

EQ[Vt|Ft−1] = EQ[Vt−1 + H̄t · (X̄t − X̄t−1)|Ft−1]

= Vt−1 + H̄t · (EQ[X̄t|Ft−1]− X̄t−1) = Vt−1.

ii) ⇒ iii): We want to show the martingale property under a minimal integrability assumption.
We start with the assumption that EQ[V−

T ] < ∞. Then EQ[VT ] and, similarly, EQ[VT |FT−1] is
well-defined (though possibly not finite).

Consider a > 0. Then,

EQ[VT |FT−1]1{|H̄T |󰃑a} = EQ[H̄T · X̄T1{|H̄T |󰃑a}|FT−1]

= EQ[H̄T(X̄T − X̄T−1)1{|H̄T |󰃑a}|FT−1] + VT−11{|H̄T |󰃑a}

= VT−11{|H̄T |󰃑a}. (12)

Now with a → ∞, {|H̄T | 󰃑 a} → Ω, since H̄T is a Rd+1-value random variable. Hence,
EQ[VT |FT−1] = VT−1 Q-a.s. The next step is to show EQ[V−

T−1] < ∞ with Jensens’ inequality:
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this follows since

EQ[V−
T−1] = EQ[EQ[VT |FT−1]

−] 󰃑 EQ[EQ[V−
T |FT−1]] = EQ[V−

T ] < ∞.

Proceeding iteratively we obtain EQ[V−
t ] < ∞ as well as EQ[Vt| Ft−1] = Vt−1.

Then,
V0 = EQ[Vt].

Since EQ[V−
t ], the expectation is well-defined. Moreover, V0 ∈ R, so EQ[V+

t ] < ∞, and hence
EQ[|Vt|] < ∞. We obtain integrability and hence V is a Q-martingale.

iii) ⇒ iv): clear.
iv) ⇒ i): First, we show integrability of Xi

t. This can be achieved using Xi
t = Xi

0 + ∑t
s=1 ∆Xi

s.
We choose accordingly H j

s = 1{s≤t}1{j=i}, such that GT = ∑t
s=1 ∆Xi

s and, (by Proposition 1.1
(iii)), V0 = Xi

0. Moreover, VT = Xi
t ≥ 0. Then we can apply (iv), such that

∞ > Xi
0 = V0 = EQ[VT ] = EQ[Xi

t] = EQ[|Xi
t|]. (13)

The next goal is to show
EQ[Xi

t+11F] = EQ[Xi
t1F] ∀F ∈ Ft

and for 1 ≤ t ≤ T. For this, we aim at a similar strategy, but Hs = 1{s≤t}1F − 1{s≤t−1}1F is
not possible since 1F is only Ft-measurable. Instead we search for a strategy which achieves
VT = Xi

t1F + Xi
t+11FC ≥ 0. Note that VT = Xi

t + ∆Xi
t+11FC which can be achieved by the

trading strategy
Hi

s = 1{s≤t} + 1FC 1{s=t+1},

and H j = 0 for j ∕= i together with V0 = Xi
0, as above. Again, by (iv),

Xi
0 = V0 = EQ[VT ] = EQ[1FXi

t + 1FC Xi
t+1].

Together with (13),
EQ[Xi

t+1] = Xi
0 = EQ[1FXi

t + 1FC Xi
t+1],

hence EQ[1FXi
t] = EQ[1FXi

t+1], and the claim follows.

2 The fundamental theorem

The following fundamental theorem relates absence of arbitrage with a very simple criterion -
the existence of a martingale measure. This measure can be used for pricing in a very simple
manner, which explains the immense success of this approach.

Theorem 14 (FTAP). A financial market is free of arbitrage, if and only if Me(F) ∕= ∅. In this case
there exists a Q ∈ Me with bounded density dQ/dP.



I.2. The fundamental theorem 11

This theorem is proved in several steps. The first step, which is the most important step in
applications, is surprisingly easy.

Proposition 15. If Me ∕= ∅, then there is no arbitrage.

Proof. We use proposition 11 (iii). Assume that H is an arbitrage with discounted value process
V and chose a Q ∈ Me.

Note that with V0 󰃑 0 P-a.s. it holds that V0 󰃑 0 Q-a.s. In the same manner, we obtain that
VT ≥ 0 Q-a.s. and hence EQ[V−

T ] = 0 < ∞.
Since H is an arbitrage, P(VT > 0) > 0, and hence Q(VT > 0) > 0. This implies EQ[VT ] > 0.

Since Proposition 11 (iii) yields that V is a Q-martingale, i.e.

V0 = EQ[VT ] > 0,

we obtain a contradiction to V0 󰃑 0.

2.1 Examples

Let us visit shortly some examples which illustrate the importance to the application of Propo-
sition 15. Note that if we add a Q-martingale as additional coordinate to the price process X
the market remains arbitrage-free. It is therefore natural to use the risk-neutral pricing rule for
pricing additional contingent claims.

Consider n FT-measurable contingent claim with (discounted) payoff CT ≥ 0 and let

Xd+1
t = EQ[CT |Ft], t ∈ T.

Then, the extended market 󰁨X = (X1, . . . , Xd+1) is free of arbitrage.

Example 16 (Black-Scholes Model). The famous Black-Scholes modelgives the stock price
under P as a geometric Brownian motion, precisely:

dSt = Stµdt + StσdWt

with a Brownian motion W and initial value R ∋ S0 > 0. The unique strong solution of this
SDE is given by

St = S0 exp
󰀓󰀃

µ − σ2/2
󰀄
t + σWt

󰀔
, t ≥ 0.

A typical derivative is an European call which offers the pay-off

(ST − K)+.

If we additionally assume that the Bank account is ert, then the Girsanov theorem shows that
the measure dQ = LTdP with

dLt = −LtλdWt,

and λ = r−µ/σ is a martingale measure. Under Q, 󰁨Wt = Wt + λt, t ≥ 0 is a Brownian motion
and so

dSt = Strdt + Stσd 󰁨Wt,

and – of course – dXt = Stσd 󰁨Wt. Let us compute shortly the price of the call option,

EQ[CT ] = S0Φ(d1)− Ke−rTΦ(d2), (17)

d1/2 =
log S0

Ke−rT ± σ2T
2

σ
√

T
(18)
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While this model is in continuous time, the discrete analogue S = (Sti )i=0,...,n with ti = δi
is of course in discrete time. It is remarkable that the continuous time model has only one
equivalent martingale measure, while the discrete time model has many.

Example 19 (The binomial model). An example in discrete time which is very illustrative, is
the Binomial model (also called the Cox-Ross-Rubinstein model). Here, we assume that

St = S0

t

∏
i=1

ξi, t = 1, . . . , T

with ξi ∈ {1 + u, 1 + d}, −1 ≤ d ≤ u. The bank account is S0
t = (1 + r)t, r > −1. This model

has no-arbitrage if and only if
d < r < u.

Indeed, for a martingale measure we need

1 = EQ[(1 + r)−1 · ξt|Ft−1] = (1 + r)−1
󰀓

qt · (1 + u) + (1 − qt) · (1 + d)
󰀔

which is equivalent to

qt =
r − d
u − d

.

It is remarkable to realise that under Q, (ξt) are i.i.d., while this assumption is of course not
necessary under P. We also may see that the martingale measure is actually used to charac-
terise the convex hull of (1 + d, 1 + u) and so a geometric interpretation of existence of a mar-
tingale measure is the property that the return of the bank account 1 + r lies in the interior of
the convex span of the return of the stock.

It is also interesting to see that for a contingent claim with price Ct−1 at t − 1 and values
{C+

t , C−
t } at t, the replicating strategy is determined by

Ht =
C+

t − C−
t

St−1 · (u − d)
.

Note that this strategy is unique !

2.2 Complete markets

We call a contingent claim CT replicable, if there exists a self-financing trading strategy, such
that VT = CT . We call an arbitrage-free market complete, if every contingent claim is replicable.

Proposition 20. Assume that F0 = {∅, F}. Then, an arbitrage-free market is complete, if and only
if

Me = {Q}.

Proof. Assume that the market is complete. We first note that a replicable claim has a unique
price: we first note that by Proposition 11 the value processes of replicable trading strategies
are martingales, since VT = CT ≥ 0. Hence, EQ[VT ] = V0 < ∞ for all Q ∈ Me. This implies that
the price of a replicable contingent claim CT is unique, since for any replicable trading strategy

V0 = EQ[VT ] = EQ[CT ]

and the right hand side does not depend on VT .
Now we show that for Q, Q′ ∈ Me it holds that Q = Q′. Indeed, consider CT = 1F for any

F ∈ FT . Then
Q(F) = EQ[1F] = EQ′ [1F] = Q′(F).

We postpone the second assertion - since it needs a little bit more technique.
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2.3 The second part of the proof of the FTAP

Now we return to the fundamental theorem. The main goal is to show the existence of an
equivalent martingale measure. Since this relates to linear functionals, our proof will reside on
the Hahn-Banach theorem

Since we already know that it is sufficient to consider one period only, we study the gains
which can be obtained in a self-financing manner with zero initial investment. Fix 0 < t ≤ T.
Then these gains are given by

K = {H · ∆Xt : H ∈ L0(P, Ft−1, Rd)}.

Then, absence of arbitrage (NA) is equivalent to

K ∩ L0
+(Ft, P, R) = {0}.

Since, t is fixed we shortly write L0
+(Ft, P, R) = L0

+. One central and very useful observation
in the following theorem is that the set K can be replaced by the claims which can be super-
replicated which is given by the set K − L0

+.

Satz 21. Consider the one period-market from t − 1 to t. Then, the following are equivalent:

(i) K ∩ L0
+ = {0},

(ii) (K − L0
+) ∩ L0

+ = {0},

(iii) there exists an equivalent martingale measure with bounded density,

(iv) there exists an equivalent martingale measure.

Proof. We show (iv) ⇒ (i) ⇔ (ii) and (iii) ⇒ (iv). The part (ii) ⇒ (iii) is the most difficult part
and will be treated separately.

(iv) ⇒ (i): we aim at a contradiction. Consider Q ∈ Me and assume there exists H ∈
L0(P, Ft−1, Rd) such that H · (Xt − Xt−1) 󰃍 0 while P(H · (Xt − Xt−1) > 0) > 0. Note that
this implies Q(H · (Xt − Xt−1)) > 0.

This cannot hold if H is bounded. We therefore consider Hc := H1{H|󰃑c} for c > 0. Since
{H| 󰃑 c} ↑ Ω for c → ∞, we can exploit σ-continuity of the probability measure Q. Hence
Q(Hc∗(Xt − Xt−1) > 0) → Q(H(Xt − Xt−1) > 0) > 0. Then there exists a c∗ such that
Q(Hc∗(Xt − Xt−1) > 0) > 0.

But,
EQ[Hc∗ · (Xt − Xt−1)|Ft−1] = Hc∗EQ[Xt − Xt−1|Ft−1] = 0,

which contradicts with Hc∗ · (Xt − Xt−1) 󰃍 0 and Q(Hc∗(Xt − Xt−1) > 0) > 0.

(i) ⇒ (ii): Consider Z ∈ (K − L0
+) ∩ L0

+. With a Ft−1-measurable H and U ∈ L0
+,

Z = H · (Xt − Xt−1)− U 󰃍 0.

Hence H · (Xt − Xt−1) 󰃍 U 󰃍 0, such that H · (Xt − Xt−1) ∈ K ∩ L0
+. By (i),t H · (Xt − Xt−1) = 0,

also U = 0 and so Z = 0.
The missing (ii) ⇒ (i) and (iii) ⇒ (iv) are immediate.
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For the remaining step (ii) ⇒ (iii) will be achieved through a number of steps:

(i) We first show that integrability can always achieved through a change of measure (Lemma
22). This allows us to consider the convex cone C as a subset of L1, see (23).

(ii) Then we apply the Hahn-Banach theorem: consider F ∈ L1
+ together with B = {F} and C.

The difficulty is to show that C is closed (which we postpone for a moment). This gives us a
strictly separating continuous functional.

(iii) Using duality we obtain a density (Lemma 28 (i)). Since C is countably convex we can even
select a positive density, hence an equivalent martingale measure (Lemma 28 (ii)).

(iv)

(v)

The following step shows that we can always achieve integrability by an equivalent measure
change with a bounded density.

Lemma 22. There exists 󰁨P ∼ P such that 󰁨E[|Xt|] < ∞ and 󰁨E[|Xt−1|] < ∞.

Proof. Consider c > 0, let

Z :=
c

1 + |Xt|+ |Xt−1|
󰃑 c

and d󰁨P = ZdP. Obviously, 󰁨E[|Xt|] < ∞ and 󰁨E[|Xt−1|] < ∞.

Since (ii) only depends on the nullsets of P, it holds if and only it if holds with respect to
󰁨P when 󰁨P ∼ P. The same holds for boundedness of the density and we therefore can assume
without loss of generality that E[|Xt|] < ∞ und E[|Xt−1|] < ∞.

Define the convex cone

C = (K − L0
+) ∩ L1. (23)

Example 24 (C not closed). It is remarkable that NA actually implies closedness of C: indeed,
the following example (where an arbitrage exists) shows that C is not always closed: consider
Ω = [0, 1], the Borel σ-field F1 =, trivial F0 = {∅, Ω}, and ∆X(ω) = ω (clearly, we have
arbitrages here).

Note that C is a true subset of L1, since for F 󰃍 1 (for all ω ∈ Ω), F ∕∈ C. Define

Fn = (F+ ∧ n)1[1/n,1] − F− for F ∈ L1,

such that Fn
L1
→ F. Moreover, Fn ∈ C: note that

(F+ ∧ n)1[1/n,1] 󰃑

󰀻
󰀿

󰀽
n ω ∈ [1/n, 1],

0 ω ∈ [0, 1/n).

Hence,

(F+ ∧ n)1[1/n,1] 󰃑 n · n∆X = n2∆X,

such that (F+ ∧ n)1[1/n,1] = n2∆X − U ∈ C.
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2.4 The Hahn-Banach theorem

Recall that a topological vector space is a vector space with a topology, such that addition
and scalar multiplication are continuous. It is called locally convex if its topology is generated
by convex sets. Note that any Banach space is locally convex, since we can use as base the
ε balls for each element. However, the space of all random variable L0 with the topology of
convergence in probability is not convex if (Ω, F , P) has no atoms.

Theorem 25 (Hahn-Banach). Consider two non-empty sets B and C of the locally convex space E
and assume that

(i) B ∩ C = ∅,

(ii) B, C are convex,

(iii) B is compact and C is closed.

Then there exists a continuous linear functional ℓ : E → R, such that

sup
x∈C

ℓ(x) < inf
x∈B

ℓ(x).

By a duality argument the linear functional can be represented by a Z satisfying the follow-
ing property (27). We first show that this is sufficient to obtain a martingale measure.

Lemma 26. Let c 󰃍 0 and Z ∈ L∞(P, Ft), such that

E[ZW] 󰃑 c for all W ∈ C. (27)

’Then

(i) E[ZW] 󰃑 0 for all W ∈ C,

(ii) Z 󰃍 0 P-a.s.,

(iii) If P(Z > 0) > 0, then
dQ
dP

:= Z

defines a martingale measure and Q ≪ P.

Proof. (i) Since C is a cone, it follows for any W ∈ C and α > 0, that

E[ZW] = α · E[Zα−1W] 󰃑 αc,

and the equation holds already for c = 0.

(ii) Choose W = −1{Z<0} ∈ C. Then,

E[Z−] = E[ZW] 󰃑 0,

such that Z− = 0 and hence Z ≥ 0 P-a.s.

(iii) Choose H in L∞(P, Ft−1, Rd), α ∈ R and Y = (Xt − Xt−1). Then, Y ∈ C and, since H
and Z are bounded,

E[ZHY] 󰃑 c and E[αZHY] 󰃑 c.



16 I – Discrete time

As above, E[ZHY] 󰃑 0. Außerdem ist für alle α ∈ R

αE[ZHY] 󰃑 0,

also E[ZHY] = 0 = E[H(Xt − Xt−1)]. Wir erhalten EQ[1F(Xi
t − Xi

t−1)] = 0 für alle F ∈ Ft−1,
also ist X Q-Martingal.

So, by Lemma 26, the existence of an equivalent martingale measure is equivalent to find an
element of the following set:

Z := {Z ∈ L∞, 0 󰃑 Z 󰃑 1, P(Z > 0) > 0, E[ZW] 󰃑 0 ∀W ∈ C}.

Lemma 28. Assume that C is closed in L1 and that C ∩ L1
+ = {0}. Then,

(i) for all F ∈ L1
+\{0} there exists an Z ∈ Z , such that E[FZ] > 0, and

(ii) there exists Z∗ ∈ Z , such that Z∗ > 0.

Proof. For the first part, consider B = {F}. Then B ∩ C = ∅, C ∕= ∅; both sets are convex, B is
compact and C is closed by assumption.

Then, we can apply the theorem of Hahn-Banach which gives us a continuous linear func-
tional ℓ, such that

sup
W∈C

ℓ(W) < ℓ(F). (29)

The dual space of L1 can be identified with L∞ by the Riesz theorem, such the linear function ℓ

can be represented by a Z ∈ L∞ such that

ℓ(F′) = E[Z · F′], F′ ∈ L1.

Without loss of generality we may assume that 󰀂Z󰀂∞ = 1.
By Equation (29), we obtain that ℓ(W) = E[ZW] < ℓ(F) = E[ZF] for all W ∈ C. Hence, Z

satisfies (27) and we can apply Lemma 26. This yields that Z ∈ Z . Since 0 ∈ C we obtain that
E[FZ] > 0.

For the second part, we start by showing that Z is countably convex. To this choose αk ∈
[0, 1], k ∈ N with ∑∞

k=1 αk = 1, and (Zk)k∈N ⊂ Z and consider

Z :=
∞

∑
k=1

αkZk.

For W ∈ C,
∞

∑
k=1

|αkZkW| 󰃑 |W|
∞

∑
k=1

|αk| = |W| ∈ L1.

such that by dominated convergende

E[ZW] =
∞

∑
k=1

αkE[ZkW] 󰃑 0

and hence Z ∈ Z .
Now set

c := sup{P(Z > 0) : Z ∈ Z}.
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and choose a sequence (Zn) ∈ Z , such that P(Zn > 0) → c. Then,

Z∗ :=
∞

∑
k=1

1
2k Zk ∈ Z .

Now we show that P(Z∗ > 0) = 1. Indeed, {Z∗ > 0} =
󰁖∞

k=1{Zk > 0}, such that

P(Z∗ > 0) 󰃍 sup
k∈N

P(Zk > 0) = c.

If we would have on the contrary that P(Z∗ = 0) > 0, then F := 1{Z∗=0} ∕= 0 and F ∈ L1
+. By

Lemma 28 there exists Z′ ∈ Z , s.t.

0 < E[FZ′] = E[1{Z∗=0}Z′].

Hence P({Z′ > 0} ∩ {Z∗ = 0}) > 0. This implies that the convex combination achieves

P
󰀓1

2
(Z′ + Z∗) > 0

󰀔
> P(Z∗ > 0),

a contradiction to the maximality of c and the claim follows.

The following Lemma generalizes the theorem of Bolzano-Weierstraß to infinite dimensional
spaces. Boundedness is not sufficient in infinite dimensional spaces, such that we require exis-
tence of an accumulation point instead.

Lemma 30. Consider a sequence (Hn) of d-dimensional random variables and assume that

λ := lim inf
n

󰀂 Hn 󰀂< ∞.

Then there exists H ∈ L0(Rd) and a strictly increasing sequence (σm) such that

Hσm(ω)(ω) → H(ω)

for P-almost all ω ∈ Ω.

The idea is to proceed pointwise, such that we can rely on the classical Bolzano-Weierstraß.

Proof. Define σm = m on {λ = ∞}. On {λ < ∞} let σ0
1 := 1 and

σ0
m(ω) := inf

󰁱
n > σ0

m−1(ω) : 󰀂 Hn(ω) 󰀂 −|λ(ω)| 󰃑 1
m

󰁲
m = 2, 3, . . .

Now we proceed inductively through the coordinates. We denote for the sequence (σi−1),
Hi := lim infm→∞ Hi

σi−1
m

and construct (σi) as follows: let σi
1 = 1 and

σi
m(ω) := inf

󰁱
σi−1

n (ω) : σi−1
n (ω) > σi

m−1(ω) und |Hi
σi−1

n (ω)
(ω)− Hi(ω)| 󰃑 1

n
󰀌

.

Then, σm := σd
m on {λ < ∞} does the job.

We are almost ready, but two portfolios can lead to the same payoff, which creates problems.
Or, equivalently, it could happen that

H(Xt − Xt−1) = 0
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holds even if H ∕= 0. Using orthogonal projections we create a subset where this can not hap-
pen.

We consider the not locally convex space L0 with the topology of convergence in probability,
which is generated by the semi-metric E[|X − Y| ∧ 1].

Lemma 31. Define:

N = {H ∈ L0(Ω, Ft−1, P; Rd) : H(Xt − Xt−1) = 0 P − f.s.}
N⊥ = {G ∈ L0(Ω, Ft−1, P; Rd) : G · H = 0 für alle H ∈ N}

Then it holds that

(i) N, N⊥ are closed in L0. Moreover, for g ∈ L0(Ω, Ft−1, P; R) it holds that

gH ∈ N if H ∈ N and gG ∈ N⊥ if G ∈ N⊥.

(ii) N ∩ N⊥ = {0}.

(iii) Every G ∈ L0(Ω, Ft−1, P, Rd) has the following unique decomposition

G = H + G⊥, H ∈ N, G⊥ ∈ N⊥.

Proof. (i) Consider a sequence Hn
P−→ H. Then we have an a.s. converging subsequence

(Hσm). This implies

Hσm(ω) · (Xt(ω)− Xt−1)(ω) → H(ω)(Xt(ω)− Xt−1(ω)) for P-almost all ω ∈ Ω. (32)

Similarly, if we now consider a subsequence (Hn) ⊆ N with Hn → H a.s., then the left hand
side of (32) is equal to 0 for all n and so is the limit. Hence, H ∈ N.

Similarly, for (Gk) ⊆ N⊥ with Gn →a.s. G, we obtain G ∈ N⊥.

The additional property is immediate.

(ii) Since for G ∈ N ∩ N⊥, it holds by definition that

0 = G · G = |G|

which is equivalent to G = 0 a.s.

(iii) For ξ ∈ Rd we write ξ = ξ1e1 + · · ·+ ξded with respect to a basis {e1, . . . , ed}.

First, assume that ei = ni + e⊥i with ni ∈ N and e⊥i ∈ N⊥, i = 1, . . . , d. Then

ξ =
d

∑
i=1

ξni

󰁿 󰁾󰁽 󰂀
∈N

+
d

∑
i=1

ξie⊥i
󰁿 󰁾󰁽 󰂀
∈N⊥

.

The decomposition is unique since N ∩ N⊥ = {0}.

Now we show ei = ni + e⊥i . To this end consider the Hilbert space L2 = L2(Ω, Ft, P; Rd)

with scalar product 〈X, Y〉 = E[XY]. Both N ∩ L2 and N⊥ ∩ L2 are closed subspaces of L2,
since convergence in probability implies L2-convergence and we already showed closeness
of N and N⊥. We define the orthogonal projections

π : L2 → N ∩ L2, π⊥ : L2 → N⊥ ∩ L2
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and set ni = π(ei), e⊥i = π⊥(ei).

Now consider ξ := ei − π(ei). Since π(ei) is the orthogonal projection, it holds that

〈ξ, n〉 = 0 (33)

for all n ∈ N ∩ L2. Note that ei ∈ L2 and so is π(ei), such that ξ ∈ L2. We show that ξ ∈ N⊥:
assume, ξ ∕∈ N⊥ ∩ L2. Then there exists H ∈ N with P(ξ · H > 0) > 0. Set

󰁨H := H1{ξ·H>0 , |H|󰃑c} ∈ N ∩ L2.

If c is large enough,
0 < E[ 󰁨H · ξ] = 〈 󰁨H, ξ〉,

a contradiction to (33).

The final step is done in the following lemma: it shows, that already K ∩ L0
+ = {0} implies

the required closeness.

Lemma 34. If K ∩ L0
+ = {0}, then K − L0

+ is closed in L0.

Proof. Consider a sequence (Wn) of elements of K − L0
+ converging in L0 (hence in probability)

to W. By changing to a subsequence we can assume that the convergence is even almost surely.
Then we have the representation

Wn = 󰁨Hn · ∆X − Un
L.31
= 󰁨󰁨Hn∆X + H⊥

n ∆X − Un = H⊥
n ∆X − Un =: Hn∆X − Un,

with Hn ∈ N⊥, since 󰁨󰁨Hn∆X = 0.
First, we assume that lim inf |Hn| < ∞ P-a.s. Then, Lemma 30 implies that we find a subse-

quence for which Hσn → H P-a.s. Moreover,

0 󰃑 Uσn = Hσn ∆X − Wσn → H∆X − W =: U P − f.s.

with some U 󰃍 0, such that W ∈ K − L0
+ and closeness holds.

The proof is finished when we can show that lim inf|Hn| < ∞ P-a.s. To this end, consider the
trading strategy ξn = Hn

|Hn | and A = {ω ∈ Ω : lim inf|Hn| = ∞}. We apply 30 to ξn = Hn
|Hn | .

This yields a subsequence (τn), such that ξτn → ξ P-a.s. Now it holds that

0 󰃑 1A
Uτn

|Hτn |
= 1A

󰀕
Hτn

|Hτn |
· ∆X − Wτn

|Hτn |

󰀖
→ 1Aξ∆X P − a.s.,

since Wτn
|Hτn |

→ 0. This yield that 1Aξ∆X ∈ K ∩ L0
+, such that by our assumption 1Aξ∆X = 0.

Note that for η ∈ N,

ξτn · η =
∞

∑
k=1

1{τn=k}
1

|Hk|
Hk · η = 0,

since Hk ∈ N⊥. Hence, ξτn ∈ N⊥ and so is 1Aξτn . Since N⊥ is closed, 1Aξ ∈ N⊥. But we also
showed that 1Aξ ∈ N. This is, by (ii) of Lemma 30, only possible if 1Aξ = 0. But |ξ| = 1, such
that P(A) = 0 follows.
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3 The 2nd fundamental theorem

In this section we study the second fundamental theorem of asset pricing. A proof for this the-
orem in discrete time under trivial initial conditions can be found in Föllmer & Schied (2016).
We follow Niemann & Schmidt (2024) and show a full proof of the conditional version using
non-linear expectations.

We start with a super short introduction to non-linear expectations.

3.1 Dynamic non-linear expectations

As before, we consider a measurable space (Ω, F ) with a filtration F = (Ft)t∈{0,...,T}. For this
section, we assume that FT = F and that F0 is trivial.

Consider a set of probability measures P on (Ω, F ). A P-null set A ⊆ Ω is a possibly not
measurable set being a subset of a measurable set A′ ∈ F with P(A′) = 0. A set A ⊆ Ω is
called a P-polar set, if A is a P-null set for every P ∈ P . We denote the collection of P-polar
sets by Pol(P). We say a property holds P-quasi surely, in short P-q.s., if it holds outside a
P-polar set. If P = {P}, we write short Pol(P) instead of Pol({P}).

For two subsets of probability measures P and Q, we call Q absolutely continuous with re-
spect to P , denoted by Q ≪ P , if Pol(P) ⊆ Pol(Q). We write Q ∼ P , if Q ≪ P and
P ≪ Q.

On L 0(Ω, F ) = {X : Ω → R : X F -measurable} we introduce the equivalence relation ∼P

by X ∼P Y if and only if X = Y P-q.s.. Then, we set

L0(Ω, F , P) := L 0(Ω, F )/P

Lp(Ω, F , P) := {X ∈ L0(Ω, F , P) : sup
P∈P

EP[|X|p] < ∞}

L∞(Ω, F , P) := {X ∈ L0(Ω, F , P) : ∃C > 0 : |X| ≤ C P-q.s.}

Then, Proposition 14 in Denis et al. (2011) shows that for each p ∈ [1, ∞], Lp(Ω, F , P) is a
Banach space. The space L0(Ω, F , P) can be equipped with the metric d given by

d(X, Y) := sup
P∈P

EP[|X − Y| ∧ 1]

inducing uniform convergence in probability.
We consider a set H ⊆ L0(Ω, F , P) containing all constants and set, for t ∈ {0, ..., T},

Ht := H ∩ L0(Ω, Ft, P).

The following definition introduces the notion of a conditional nonlinear expectation and
the associated notion of a dynamic nonlinear expectation which is a set of conditional nonlin-
ear expectations.

Definition 35. We call a mapping Et : H → Ht an Ft-conditional nonlinear expectation, if

(i) Et is monotone: for X, Y ∈ H the condition X ≤ Y implies Et(X) ≤ Et(Y),

(ii) Et preserves measurable functions: for Xt ∈ Ht we have Et(Xt) = Xt.

We call E = (Et)t∈{0,...,T} a dynamic nonlinear expectation, if for every t ∈ {0, ..., T} the mapping
Et : H → Ht is an Ft-conditional nonlinear expectation.

We introduce further properties which will be of interest in the context of dynamic nonlin-
ear expectations. First, we introduce some well-known properties regarding the set H , all in
an appropriate conditional formulation. Denote H +

t := {X ∈ Ht : X ≥ 0}.
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Definition 36. We call the set H

(i) symmetric, if −H = H .

(ii) additive, if H +H ⊆ H .

(iii) Ft-translation-invariant, if H +Ht ⊆ H .

(iv) Ft-convex, if for λt ∈ Ht with 0 ≤ λt ≤ 1 we have

λtH + (1 − λt)H ⊆ H .

(v) Ft-positively homogeneous, if H +
t ·H ⊆ H .

(vi) Ft-local, if 1AH ⊆ H for every A ∈ Ft.

We simply call H translation-invariant, if it is Ft-translation-invariant for every t ∈ {0, ..., T}
and do so in a similar fashion for all the other properties.

Next, we introduce well-known properties of nonlinear conditional expectations, all in an
appropriate conditional formulation which are frequently used for example in the context of
risk measures.

Definition 37. An Ft-conditional expectation Et is called

(i) subadditive, if H is additive

Et(X + Y) ≤ Et(X) + Et(Y), X, Y ∈ H .

(ii) Ft-translation-invariant, if H is Ft-translation-invariant and

Et(X + Xt) = Et(X) + Xt, X ∈ H , Xt ∈ Ht

(iii) Ft-convex, if H is Ft-convex and

Et (λtX + (1 − λt)Y) ≤ λtEt(X) + (1 − λt)Et(Y), 0 ≤ λt ≤ 1, λt ∈ Ht, X, Y ∈ H .

(iv) Ft-positively homogeneous, if H is Ft-positively homogeneous and

Et(XtX) = XtEt(X), X ∈ H , Xt ∈ H +
t .

(v) Ft-sublinear, if it is subadditive and Ft-positively homogeneous.

(vi) Ft-local, if H is Ft local and

Et(1AX) = 1AEt(X), X ∈ H , A ∈ Ft.

Moreover, we call a dynamic expectation E = (Et)t∈{0,...,T} translation-invariant, (subaddi-
tive, convex or positively homogeneous) if for every t ∈ {0, ..., T} the Ft-conditional expecta-
tion Et has the corresponding property.

3.2 Sensitivity and time consistency

In contrast to a classical expectation, a nonlinear expectation might contain only little informa-
tion on underlying random variables. Sensitivity is a property which allows at least to separate
zero from positive random variables. It should be noted that such sensitivity on a suitable set
of random variables is implied by no-arbitrage.

Definition 38. We call an Ft-conditional nonlinear expectation Et sensitive, if for every X ∈ H

with X ≥ 0 and Et(X) = 0 we have X = 0.
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Similarly, we call the dynamic nonlinear expectation E sensitive, if all Et, t = 0, . . . , T are
sensitive.

Time consistency is an important property in the context of dynamic risk measures, which has
been intensively studied. It transports the tower-property to the non-linear setting.

Definition 39. We call a dynamic expectation E time-consistent, if

Es = Es ◦ Et, 0 ≤ s ≤ t ≤ T.

Since F = FT , ET is the identity and hence, every expectation is time-consistent between
T − 1 and T, i.e.,

ET−1 ◦ ET = ET−1.

Remark 40 (Extension of time-consistency to stopping times). For simplicity, we restrict our
definition of time consistency to deterministic times s, t ∈ {0, . . . , T}. This can easily be gener-
alized when E is translation-invariant and local: indeed, let τ be a stopping time with values in
{0, . . . , T}. Given (Et)t, we define

Eτ(H) := ∑
s
1{τ=s}Es(H) .

If (Et)t is time-consistent, then for any two such stopping times σ, τ with σ ≤ τ, the equality

Eσ ◦ Eτ = Eσ

holds whenever E is translation-invariant and local.

The remarkable connection between sensitivity and time consistency can already be seen
from the simple observation that a time-consistent dynamic expectation is already sensitive, if
E0 is sensitive.

Remark 41. Let P and Q be two sets of probability measures on (Ω, F ), and let
Et : L∞(Ω, F , Q) → L∞(Ω, Ft, Q) be a conditional nonlinear expectation. Then, Et is well-

defined on L∞(Ω, F , P) if and only if Q ≪ P . However, for H ∈ L∞(Ω, F , P) the evaluation
Et(H) is a priori only an element of L∞(Ω, Ft, Q). For it to be well-defined in L∞(Ω, F , P)

we require Q ∼ P on Ft. Hence, if Q ≪ P and Q ∼ P on Ft, the conditional nonlinear
expectation Et induces a nonlinear expectation Ēt : L∞(Ω, F , P) → L∞(Ω, Ft, P). In case Et is
sensitive, sensitivity of Ēt is equivalent to P ∼ Q.

Lemma 42 below generalizes the well-known result that the acceptance sets of time-consistent
expectations are decreasing: if E is time-consistent, then

{Es ≤ 0} ⊇ {Et ≤ 0}

for s ≤ t.

Lemma 42. Let E be a time-consistent, local dynamic nonlinear expectation, fix t ∈ {0, . . . , T} and
consider H ∈ H . If Et(H) ≤ 0, then

Es(1A H) ≤ 0 for all A ∈ Ft and all s ≤ t.

If E0 is sensitive, then Es(1AH) ≤ 0 for all A ∈ Ft and some s ≤ t implies that Et(H) ≤ 0.

Proof. Since E is local, Et(H1A) = 1AEt(H) ≤ 0. Together with monotonicity we obtain

Es(1A H) = Es(1AEt(H)) ≤ 0.
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Now, suppose E0 is sensitive. If s = t, the result is clear with A = Ω. Let s < t and note that Es

is sensitive. To show that Et(H) ≤ 0, it thus suffices to show

Es(1AEt(H)) = 0

for A := {Et(H) ≥ 0} ∈ Ft. However, as above,

Es(1AEt(H)) = Es(1AH)

and the latter vanishes by assumption.

Let E∗
0 be a F0-conditional expectation. A dynamic extension of E∗

0 is a dynamic expectation E
such that E0 = E∗

0 .
Note that for any collection P of probability measures, the associated nonlinear expecta-

tion supP∈P EP[·] is sensitive; see Remark 41. We call P dominated if there exists a probability
measure P on (Ω, F ) with P ≪ {P}, i.e., every P-null set is P-polar. In this case, the Halmos-
Savage Lemma guarantees the existence of a countable collection {Pn : n ∈ N} ⊆ P with
{Pn : n ∈ N} ∼ P . In particular, there exists a measure P∗ (not necessarily contained in
P) such that P ∼ P∗. Consequently, for any set of random variables M ⊆ L0(Ω, F , P) =

L0(Ω, F , P∗), there exists a random variable called the P-essential infimum and denoted by
P − ess inf M such that

(i) P − ess inf M ≤ Y P-q.s. for every Y ∈ M,

(ii) P − ess inf M ≥ Z P-q.s. for every random variable Z satisfying Z ≤ Y P-q.s. for every
Y ∈ M.

If P is not dominated, the P-essential infimum might not exist, and it has in general no
countable representation. In light of the financial applications we have in mind, we will assume
in the next lemma that P is dominated.

Lemma 43. Assume that P is dominated. Then, every sensitive F0-conditional expectation E0 on a
symmetric set H has at most one translation-invariant, local, time-consistent dynamic extension E . If it
exists, it is given by

Et(H) = P − ess inf{Ht ∈ Ht : H − Ht ∈ At},

where
At := {H ∈ H : E0(1AH) ≤ 0, ∀A ∈ Ft} .

Proof. Lemma 42 characterizes for t ≥ 1 the acceptance set At := {H ∈ H : Et ≤ 0} solely in
terms of E0 and F. Indeed, it yields that

At = {H ∈ H : E0(1AH) ≤ 0 ∀A ∈ Ft} .

This allows to recover every translation-invariant nonlinear expectation on a symmetric set
from its acceptance set through the representation

Et(H) = P − ess inf{Ht ∈ Ht : Ht ≥ Et(H)}
= P − ess inf{Ht ∈ Ht : H − Ht ∈ At}.

Summarizing, we have obtained an explicit expression of the extension.

Next, we verify that translation-invariance implies locality if H ⊆ L∞(Ω, F , P). This
implies that every conditional risk measure on L∞(Ω, F , P) is local. In particular, for every
probability measure P, every dynamic risk-measure on L∞(Ω, F , P) has at most one time-
consistent extension. Moreover, one can show that not every coherent risk measure has a time-
consistent extension.
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Proposition 44. Every translation-invariant expectation on a local set H ⊆ L∞(Ω, F , P) is local.

Proof. Let Et be translation-invariant and A ∈ Ft. Further, let H ∈ H . The inequality

1A H − 1Ac 󰀂H󰀂∞ ≤ H ≤ 1AH + 1Ac 󰀂H󰀂∞ ,

yields
Et(H) ≥ Et(1AH − 1Ac 󰀂H󰀂∞),

and additionally
Et(H) ≤ Et(1AH + 1Ac 󰀂H󰀂∞).

Multiplying both inequalities with 1A gives, exploiting translation invariance,

1AEt(H) = 1AEt(1AH),

and thus

Et(1AH) = 1AEt(1A H) + 1AcEt(1AH)

= 1AEt(H) + 1A1AcEt(1AH)

= 1AEt(H).

3.3 Super- and Sub-hedging

Now we turn back to a financial market. Recall that we worked on the filtered probability
space (Ω, F , F, P) with a fixed probability measure P. Our aim is to study the upper bound of
the set of no-arbitrage prices in more detail. It is given by

Ēt(CT) := esssup{EQ[CT | Ft] : Q ∈ Me}, (45)

for H ∈ L∞(P). We are interested in its relation to the smallest super-hedging price given by

Et(CT) := ess inf{Ct ∈ L0
t : ∃ H ∈ Pred : Ct + Gt(H) ≥ CT} , (46)

where the gains process for the predictable (and hence self-financing) strategy H is given by
Gt(H) := (H · X)T − (H · X)t. We denote E(C) for the process (Et(C))t∈{0,t...,T} and use a
similar notation for the other dynamic non-linear expectations.

Lemma 47. Assume that NA holds. Then, the super-hedging price Et defined in (46) is a sensitive
and Ft-sub-linear, Ft-conditional nonlinear expectation on L∞ for all 0 ≤ t ≤ T.

Proof. First, we show that Et(CT) is bounded for CT ∈ L∞(P). The inequality Et(CT) ≤ 󰀂CT󰀂
follows by definition. If Ct ∈ L0

t is a superhedging price, choose H ∈ Pred with Ct + Gt(H) ≥
CT .

Consider the set A := {Ct < −󰀂CT󰀂} ∈ Ft. Then there exists H ∈ Pred with Gt(CT) ≥
1A(CT − Ct) ≥ 0 and therefore P(A) = 0 by absence of arbitrage. We conclude that −󰀂CT󰀂 ≤
Et(CT) ≤ 󰀂CT󰀂.

Second, one easily checks the properties of a sublinear expectation. The sensitivity of Et

follows from the no-arbitrage assumption.

Up to now we treated only bounded random variables, which excludes for example Euro-
pean calls. Typically one would consider the space L0

+(FT), which is of course not symmetric.
The extension to L0(FT) is done by establishing continuity from below of the superheding
price. The main argument resides of course on monotone convergence.
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3.4 The superhedging duality

At time t < T, an Ft - measurable random variable πt is a superhedging price for the Euro-
pean claim CT due at time T, if there is a self-financing trading strategy which provides always
a terminal wealth greater than CT , i.e.there exists a predictable process H, such that

πt + Gt(H) ≥ CT .

Remark 48. For every CT ∈ L0(FT), and every predictable H one has the orthogonality

Et(CT + Gt(H)) = Et(CT). (49)

For the following lemma we recall that on a upwards directed set, i.e. for X, Y ∈ M there
exists Z ∈ M such that Z ≥ X ∨Y, the essential supremum can be approximated by a sequence,
see for example (Föllmer & Schied 2016, Theorem A.37). The lemma shows that the essential
infimum of all superhedging prices is itself a superhedging price.

Lemma 50. Assume that NA holds. For every CT ∈ L0(FT), Et(CT) is a superhedging price for CT .

Proof. The set M := {Ct ∈ L0
t : ∃H ∈ Pred : Ct + Gt(H) ≥ CT} of superhedging prices is

directed downwards. Hence, by (Föllmer & Schied 2016, Theorem A.37) there exists a sequence
(Cn

t )n ⊆ M with Cn
t ↓ Et(C) a.s. By construction, we may write for each n ∈ N,

CT = Cn
t + Gt(Hn)− Un

for some Hn ∈ Pred and Un ∈ L0
+(FT).

As the cone {Gt(H) − U : H ∈ Pred, U ∈ L0
+(FT)} is closed by Lemma 34, the claim

follows.

The following result shows that the superhedging prices are actually time-consistent.

Theorem 51. Assume that NA holds. Then, the dynamic non-linear expectation E is time-consistent
on L∞.

Proof. Applying Lemma 50 to the European contingent claims Et+1(CT) and CT allows to
choose strategies H, H′ ∈ Pred such that

Et(Et+1(CT)) + Gt(H) ≥ Et+1(CT)

and
Et+1(CT) + Gt+1(H′) ≥ CT .

Combining both inequalities yields

Et(Et+1(CT)) + Gt(H) + Gt+1(H′) ≥ CT .

Hence, the claim CT can be super-replicated at time t at price Et(Et+1(CT)). As Et(CT) is by
definition the smallest super-hedging price for claim CT at time t, we obtain

Et(Et+1(CT)) ≥ Et(CT).

Next, we obtain from Lemma 50 the existence of H′′ ∈ Pred, such that

Et(CT) + Gt(H′′) ≥ CT .



26 I – Discrete time

Applying Et+1 to this inequality gives

Et(CT) + Et+1(Gt(H′′)) ≥ Et+1(CT).

By Equation (49),

Et+1(Gt(H′′)) = H′′
t+1∆Xt+1 + Et+1(Gt+1(H′′)) = H′′

t+1∆Xt+1

and hence
Et(CT) + H′′

t+1∆Xt+1 ≥ Et+1(CT).

Again, by Equation (49),

Et(Et+1(CT)) ≤ Et(CT)

and the result is proven.

Remark 52 (Time-consistency of Ē ). Consistency of Ē is related to the stability of Me. With a
little bit of work we obtain from (Föllmer & Schied 2016, Theorem 11.22) that the expectation Ē
is time-consistent.

The following result is the famous super-hedging duality.

Corollary 53 (Superhedging duality on L∞). Assume (NA) holds. Then, for every 0 ≤ t ≤ T and
every CT ∈ L∞(P), the superhedging-duality

Et(CT) = Ēt(CT) (54)

holds.

Proof. By Theorem 51 and Remark 52, both E and Ē are time-consistent. Moreover, they are
translation invariant and hence local by Proposition 44. We leave the claim that

E0 = Ē0

to the reader. Then, Lemma 43 implies the claim.

By some monotone convergence arguments this can be extended to the space of claims (i.e.
non-negative random variables).

Proposition 55 (Superhedging duality for claims). Assume that (NA) holds. The superhedging-
duality (54), and consistency of E extends to L0

+(FT).

For the proof we refer to Proposition 2.16 in Niemann & Schmidt (2024).
Next, we prove a version of the optional decomposition directly by relying on the superheding-

duality. For the stochastic integral until t we use the following notation

(H · X)t =
t

∑
s=1

Hs ∆Xs.
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Theorem 56 (Optional decomposition). Assume that (NA) holds and let V be a non-negative Me-
supermartingale. Then there exists an adapted increasing process C with C0 = 0, and a predictable
process H such that

Vt = V0 + (H · X)t − Ct .

Proof. By assumption,
EQ[Vt | Ft−1] ≤ Vt−1

for every 0 ≤ t ≤ T and Q ∈ Me. This is equivalent to Ēt−1(Vt) ≤ Vt−1 and hence Ēt−1(∆Vt) ≤
0. By Proposition 55,

Et−1(∆Vt) ≤ 0.

Hence, for t ∈ {1, . . . , T} there exists a strategy H = H(t) ∈ Pred such that

∆Vt ≤ Gt−1(H) =
T

∑
s=t

Hs∆Xs.

an application of Et on both sides yields, by Equation (49),

Et(∆Vt) = ∆Vt ≤ Et(Ht∆Xt + Gt(H)) = Ht∆Xt.

Summing over t ∈ {0, . . . , T}, we obtain a predictable H′ such that (H′ · X)− V is increasing.

3.5 Structure of arbitrage-free prices

The main goal in computing arbitrage-free prices relying on the fundamental theorem of as-
set pricing is to obtain a price process for a new security which can be added to the market
without violating absence of arbitrage.

In this spirit, an Ft-measurable random variable πt is called arbitrage-free price (at time t) of
a European contingent claim CT if there exists an adapted process Xd+1 such that Xd+1

t = πt,
Xd+1

T = H and the market (X, Xd+1) extended with Xd+1 is free of arbitrage. Note that every-
thing is formulated in discounted terms here. Denote by Πt(CT) the collection of arbitrage free
prices at time t.

Denote the upper and the lower bound of the no-arbitrage set at time t by

π
sup
t (CT) := esssup Πt(CT), and πinf

t (CT) := ess inf Πt(CT).

To achieve countable convexity of the set of equivalent martingale measures we exploit
nonnegativity of the price process and triviality of the initial σ-algebra F0 in the following
lemma.

Lemma 57. Me is countably convex.

Proof. Let (Qn) ⊆ Me and (λn)n ⊆ R+ with ∑n λn = 1. Set Q∗ := ∑n λnQn. Obviously,
Q∗ ∼ P. For every t ∈ {1, . . . , T} we have by monotone convergence

EQ∗ [Xt] = ∑
n

λnEQn [Xt] = ∑
n

λnX0 = X0 < ∞

and hence XT ∈ L1(Q∗). Similarly, for A ∈ Ft−1,

EQ∗ [Xt1A] = ∑
n

λnEQn [Xt1A] = ∑
n

λnEQn [Xt−11A] = EQ∗ [Xt−11A]

and therefore E∗[Xt | Ft−1] = Xt−1.
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It is important to acknowledge that, in the notation of Lemma 57, we typically do not have

EQ∗ [H | Ft] = ∑
n

λnEQn [H | Ft]

for bounded H at t > 0, while this holds, as just shown, for Xi
T , i = 1, . . . , d.

Proposition 58. For every t ∈ {0, . . . , T}, and for every CT ∈ L0
+(FT) the set

󰀋
EQ[CT | Ft] : Q ∈ Me

󰀌
(59)

is Ft-countably convex.

Proof. Let (Qn) ⊆ Me. By pasting we may assume that all Qn agree on Ft.
Set Q∗ := ∑n 2−nQn. By Lemma 57, Q∗ ∈ Me. Denote by Zn := dQn/dQ∗ the associated

densities. As Q∗ = Qn on Ft for each n ∈ N, we have

Zn
t = EQ∗ [Zn | Ft] = 1.

Since CT ≥ 0, monotone convergence implies for a sequence (λn
t ) ∈ L0

+(Ft) with ∑n λt = 1,
that

∑
n

λn
t EQn [CT | Ft] = EQ∗

󰁫
CT ∑

n
λn

t Zn | Ft

󰁬
.

Set Z := ∑n λn
t Zn > 0. Note that

EQ∗
󰁫
∑
n

λn
t Zn | Ft

󰁬
= ∑

n
λn

t = 1

and we may therefore define the measure Q by

dQ/dQ∗ := Z.

Then,

EQ∗
󰁫
CT ∑

n
λn

t Zn | Ft

󰁬
= EQ[CT | Ft].

It remains to verify that Q is indeed a martingale measure (after t). As the price process is
nonnegative, its conditional expectation is well-defined, and we obtain by monotone conver-
gence for s ≥ t

EQ[Xs+1 | Fs] = EQ∗
󰁫 Z

Zs
Xs+1 | Fs

󰁬

=
1
Zs

∑
n

λn
t EQ∗ [ZnXs+1 | Fs]

=
1
Zs

∑
n

λn
t Zn

s EQn [Xs+1 | Fs] = Xs

such that Q ∈ Me.

Note that, due to the integrability conditions, Πt(CT) is not necessarily Ft-countably con-
vex. Even in the unconditional case this fails. It is an easy consequence that integrability is the
only difference between the set of risk-neutral expectations in (59) and Πt(CT).

Lemma 60. Consider Q ∈ Me. If EQ[CT | Ft] is finite-valued, then it is an arbitrage-free price.
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Proof. If ξ := EQ[CT | Ft] is finite, it is an element of L0
+(FT). We recall that we always may

achieve integrability for ξ under an equivalent martingale measure: indeed, we can always find
a P′ such that ξ ∈ L1(P). Then we can choose a martingale measure with a bounded density.

Hence, there exists 󰁨Q ∈ Me such that EQ[CT | Ft] is integrable with respect to 󰁨Q. We now
paste Q and 󰁨Q, which is again a martingale measure. By construction, we even have 󰁨Q ⊙t Q ∈
M CT

e . Moreover, it follows that

E 󰁨Q⊙tQ
[CT | Ft] = EQ[CT | Ft].

Since the associated price process is a martingale, this an arbitrage-free price by the fundamen-
tal theorem 15.

Corollary 61. Consider a claim CT ∈ L0
+(FT), let (Qn) ⊆ M H

e and (λn
t ) ⊆ L0

+(Ft) with ∑n λn
t =

1. If ∑n λn
t EQn [CT | Ft] is finite-valued, it is contained in Πt(CT).

Proof. Due to Proposition 58, there exists Q ∈ Me with

∑
n

λn
t EQn [CT | Ft] = EQ[CT | Ft] .

Now the claim follows by Lemma 60.

Now we collect some properties of the non-linear expectation Πt.

Corollary 62. Consider t ∈ {0, . . . , T}. Then

(i) Πt(H) is Ft-convex for every claim H ∈ L0
+(FT),

(ii) Πt(H) is directed upwards for every claim H ∈ L0
+(FT),

(iii) Πt(H) is Ft-countably convex for every bounded claim H ∈ L∞(P), and,

(iv) for H ∈ L0
+(FT), any partition (An) ⊆ Ft, and any sequence (Qn) ⊆ M H

e (P),

∑
n
1An EQn [H | Ft] ∈ Πt(H) .

The next step is to show that Πt is also local.

Lemma 63. For t ∈ {0, . . . , T}, A ∈ Ft and H ∈ L0
+(FT), it holds that

Πt(1AH) = 1AΠt(H).

Proof. Let Q ∈ Me such that H1A is integrable with respect to Q. By construction EQ[H |
Ft]1A + E 󰁨Q[H | Ft]1Ac is finite, and by Corollary 62 and Lemma 60 there exists Q∗ ∈ M H

e
with

EQ∗ [H | Ft] = EQ[H | Ft]1A + E 󰁨Q[H | Ft]1Ac

and therefore

EQ∗ [H | Ft]1A = EQ[H1A | Ft]

which finishes the proof.

The next Proposition shows that, for every claim H, the non-linear expectation

Ē(H) = esssup{EQ[H | Ft] : Q ∈ Me}

can be computed by considering a subset of Me only: one can restrict to the set of martingale
measure M H

e (P) under which H is integrable. In particular, for every claim H, the non-linear
expectation Ē(H) agrees with the upper bound of the no-arbitrage interval π

sup
t (H). This links

the superhedging-duality Proposition 55 with the pricing in financial markets.
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Proposition 64. For every H ∈ L0
+(FT) we have the equalities

esssup{EQ[H | Ft] : Q ∈ Me} = esssup{EQ[H | Ft] : Q ∈ M H
e }

and

ess inf{EQ[H | Ft] : Q ∈ Me} = ess inf{EQ[H | Ft] : Q ∈ M H
e }

Proof. We only show the first equality, the other one is left as exercise. Using Lemma 63 and
Lemma 60, it suffices to show the following: if there exits Q ∈ Me with EQ[H | Ft] = +∞, then
π

sup
t (H) = +∞.
In this regard, consider Q ∈ Me with EQ[H | Ft] = +∞ and some Yt ∈ L0

t . Then, there exists
n ∈ N such that {Yt ≤ EQ[H ∧ n | Ft]} has positive probability. By the fundamental theorem of
asset pricing we find πt ∈ Πt(H) such that {Yt ≤ πt} has positive probability.

Since Yt was arbitrary, it follows that π
sup
t = +∞ with positive probability. Now set A :=

{π
sup
t < +∞}. Using Lemma 63, and arguing as above for the claim H1A, we deduce that

P(A) = 0.

For the next lemma, recall that the smallest superhedging price Et was defined in (46).

Lemma 65. Consider the claim CT ∈ L0
+(FT). Then, CT is symmetric w.r.t. Et if and only if CT is

attainable at time t.

Proof. We start with some observations. Symmetry requires to consider E∗
t (·) = −Et(−·). This

is the smallest subhedging price, and as a consequence of the superhedging-duality, Corollary
53,

E∗
t (H) = esssup{Ct ∈ L0

t : ∃ H ∈ Pred : Ht + Gt(H) ≤ CT}
is the largest sub-hedging price. Due to Lemma 50, E∗

t (H) is itself a sub-hedging price.
Now, suppose that CT is attainable, i.e. CT = Ct + Gt(H) for some predictable process

H ∈ Pred. Then,

E∗
t (CT) = −Et(−CT) = −Et(−Ct − Gt(H))

= E∗
t (Ct) = Ct = Et(Ct + Gt(H)) = Et(CT).

On the contrary, if CT is symmetric, Et(CT) = E∗
t (CT) is by definition finite. Hence there is a

super- and a subhedging strategy such that

E∗
t (CT) + Gt(H) ≤ CT ≤ Et(CT) + Gt(H) . (66)

This implies
0 ≤ H − Et(CT)− Gt(H) ≤ Gt(H − H) .

By no-arbitrage, Gt(H) = Gt(H) and so CT = Et(H) + Gt(H).

Theorem 67 (2nd fundamental theorem). The market is complete at time t if and only if every
European contingent claim CT ∈ L0

+(FT) has a unique price at time t.

Proof. Assume that the market is complete. Then, by Lemma 65 and the superhedging duality,
Proposition 55, every contingent claim has a unique arbitrage-free price.

On the contrary, if a contingent claim has a unique arbitrage-free price, the superhedging
duality implies that CT is symmetric and hence the claim is attainable.

One can additionally show a number of things: for example completeness is equivalent to
the pasting property Me ⊂ Me ⊙t Q with some Q ∈ Me. Moreover, if the market

For details, we again refer to Niemann & Schmidt (2024).
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4 A fundamental theorem under uncertainty





II
Continuous-time Finance

We start with a gentle introduction to semimartingale theory, relying on the scriptum on
stochastic processes from last semester.

1 Semimartingale theory

Let us first visit some important examples for semimartingales. We recall that a process is
called càdlàg, if it is a process which has almost surely left limits and is almost surely continu-
ous from the right (RCLL - right continuous with left limits).

We will consider a filtered probability space (Ω, F , F, P) satisfying the usual conditions, i.e.
the filtration is right-continuous and F is complete (subsets of null-sets are F0-measurable).

1.1 The Poisson process

Figure II.1: Path of a Poisson process.

Definition 1 (Poissonprocess). An adapted, càdlàg process X taking values in N is called
extended Poisson process, if

(i) X0 = 0,

(ii) ∆Xt ∈ {0, 1},

(iii) E[Xt] < ∞ for all t ≥ 0,

(iv) Xt − Xs is independent of Fs, for 0 ≤ s ≤ t.

We define the cumulated intensity Λ of X by

Λ (t) = E[Xt], t ≥ 0.

Note that this is again an increasing, right-continuous process. X is called Poisson-Prozess with
intensity λ > 0, if Λ(t) = λt, t ≥ 0.

If the cumulated intensity is absolutely continuous, i.e.

Λ (t) =
󰁝 t

0
λ (s) ds, t ≥ 0

then the function λ is called the intensity of X. X is called standard Poissonprocess if λ = 1.
We note that we also may look at the time-transformed Poisson-process

XTt , t ≥ 0,
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Whenever T is increasing. If T is continuous and independent of X, we obtain that X is a Pois-
son process conditional on the filtration generated by the time-transformation T. If T has jumps
we can no longer guarantee ∆Xt ∈ {0, 1}.

The Poisson process corresponds one-to-one to a point process. Indeed if Tn = inf{t ≥
t : Nt ≥ n} denotes the n-th jumping time of N, then (Tn)n≥1 are an increasing sequence of
stopping time, so a point process.

If we additionally have a sequence (Zn)n≥1 of random variable on a Polish space E, then the
double sequence (Tn, Zn)n≥1 constitutes a marked point process.

If we want to construct integrals over the marked point process we would be interested in
expressions like

∑
n≥1

H(Tn, Zn) =
󰁝

H(s, x)µ(ds, dx)

where we can introduce the associated random measure

µ(ω; ds, dx) = ∑
n≥1

δ(Tn ,Zn)(ds, dx),

where δa is the Dirac measure in point a.

1.2 Survival processes

In many applications, the first jump of the Poisson process is the most important one: mortal-
ity, default, insurance, etc. and it is therefore interesting to study this process in more general-
ity.

Hence, consider a càdlàg process H with H0 = 0 and a single jump of size 1. Then, this
process is increasing, and hence by the Doob-Meyer decomposition there exists a unique com-
pensator Hp which is a predictable process such that

H − Hp

is a local martingale. Hp takes over the role of a generalised intensity: indeed, in the Poisson
example above, Hp = Λ. For a deeper study and applications to credit risk we refer to Gehm-
lich & Schmidt (2018).

1.3 Brownian motion

Definition 2. A continuous, adapted process W is called Brownian motion if

(i) W0 = 0,

(ii) E [Wt] = 0 and Var (Wt) < ∞, for all t ≥ 0,

(iii) Wt − Ws is independent of Fs.

One can show that

Wt − Ws ∼ N (0, t − s),

i.e. the increments are even normally distributed. If we choose a time-change T appropriately,
we can even construct a Poisson process as time-changed Brownian motion.
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1.4 Classes of stochastic processes

To a stochastic process X we associate the mappgin

󰁥X : Ω × R≥0 → Rd.

This allows us to consider the stochastic process as a simple random variable on the product
space Ω × R≥0. In particular, measurability can be considered with respect to F ⊗ B(R≥0),
which however lacks the link to the filtration.

Definition 3. (i) X is called progressivly measurable, if for all t ≥ 0 the mapping

Ω × [0, t] → Rd

(ω, s) 󰀁→ Xs(ω)

is Ft ⊗B
󰀃
[0, t]

󰀄
-B(Rd)-measurable.

(ii) The optional σ-algebra O is the σ-algebra on Ω × R≥0, generated by adapted, càdlàg-
processes. X is called optional, if 󰁥X is O-measurable.

(iii) The predictable σ-algebra P is the σ-algebra on Ω × R≥0, generated by adapted, càg-
processes. X is called predictable, if 󰁥X is P-measurable.

In particular we obtain the following inclusions: predictable ⇒ optional ⇒ progressive ⇒
adapted. A classical example is that for a progressive process X, X∗ = sups≤· Xs is optional.
Moreover, if we denote by XT the process stopped at the stopping time T, then the following
properties are kept while stopping: adapted, predictable, optional, progressive.

For the reverse consider an adapted process X. If X is càd, then X is progressive. If it is
càg, then it is optional. If it is càdlàg, then X− and ∆X = X − X− are optional. For the
following result, see the almost sure blog (see https://almostsuremath.com/2016/11/15/

optional-processes/.)

Lemma 4. Consider an adapted process X which is làd. Assume that X is càd everywhere except of a
countable set S ⊂ R≥0. Then X is optional.

We will often study random intervals, defined for two random times S and T by

󰌻S, T󰌼 := {(ω, t) ∈ Ω × R≥0 : S(ω) ≤ t ≤ T(ω)}.

As above we can call the interval optional or predictable if it is O resp. P-measurable.

1.5 Localization

If we have a property C of a class of properties, then we introduce the localised class Cloc by
all those processes X for which it holds there exists a sequence of stopping times Tn → ∞ such
that XTn ∈ C for all n. The sequence (Tn) is called localising sequence.

Definition 5. (i) A martingale X is uniformly integrable, if the family (Xt)t≥0 is uniformly
integrable. We denote by M the class of all uniformly integrable martingales.

(ii) A martingale X is called square integrable, if supt≥0 E[X2
t ] < ∞. This class is denoted by

H 2.

(iii) A process in Mloc is called local martingale and a process in H 2
loc locally square integrable.

https://almostsuremath.com/2016/11/15/optional-processes/
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Definition 6. A function f : R≥0 → R has locally finite variation, if

Var( f )t := sup
0≤t0 ...tn≤t

n

∑
i=1

| f (ti)− f (ti−1)| < ∞

for all t ≥ 0. A process is called of locally finite variation, if it has paths of locally finite
variation.

Let V + := denotes the increasing càdlàg process A, with A0 = 0,

V := V + − V +,

A + :=
󰀋

A ∈ V + : E[A∞] < ∞
󰀌

,

A := A + −A + =
󰀋

A ∈ V : E[Var(A)∞] < ∞
󰀌

.

Then V is the set of all adapted processes of locally finite variation. For each A ∈ V we can as-
sociate t 󰀁→ At(ω) with a signed measure, denoted by dAt(ω). Then we can define (pathwise)
for optional processes H,

󰀃
H · A

󰀄
t(ω) =

󰀻
󰀿

󰀽

󰁕 t
0 HsdAs falls

󰁕 t
0 |Hs|d Var(A)s < ∞

∞ sonst.

We obtained the following theorem.

Theorem 7 (Integral of finite variation processes). Let A ∈ V (V +) and H ≥ 0 be optional, such
that B = H · A < ∞. Then B ∈ V (V +). If H and A are predictable, so is B.

We also obtained the important result that the only predictable local martingale with finite
variation is M = 0 (Recall that the Brownian motion is of course predictable).

Theorem 8 (Dual predictable projection). Consider A ∈ A +
loc. Then there is a unique predictable

process Ap ∈ A +
loc, satisfying one of the following, equivalent properties

(i) A − Ap ∈ Mloc,

(ii) E[Ap
T ] = E[AT ] for all stopping times T,

(iii) E
󰀅
(H · A)∞)

󰀆
= E

󰀅
(H · Ap)∞)

󰀆
for all predictable H ≥ 0.

One can also directly project on the predictable σ-algebra, but here we have a more versa-
tile tool, the dual predictable projection. It helps us to generate local martingales, which is of
course very importance to classify absence of arbitrage.

As an example, you might want to check for an extended Poisson process X, Xp = Λ.

1.6 Semimartingales

We can now define the set of all square integrable martingales by

H 2 = {M ∈ M : sup
t≥0

E[X2
t ] < ∞}

.
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Proposition 9 (Predictable covariation). Let M, N ∈ H 2
loc. Then there exists a unique predictable

process 〈M, N〉 ∈ V , s.t.

MN − 〈M, N〉 ∈ Mloc .

If M, N ∈ H 2, then 〈M, N〉 ∈ A and MN − 〈M, N〉 ∈ M .

The process 〈M, N〉 is called predictable covariation and 〈M〉 = 〈M, M〉 (predictable)
quadratic variation.

Now you could show that a Wiener process with σ2(t) = Var(Wt) is a continuous, square-
integrable martingale with 〈W〉 = σ2(t).

Mit L bezeichnen wir die Teilmenge von Mloc für die M0 = 0 gilt

Definition 10. (i) If the process X can be decomposed as

X = X0 + M + A (11)

with M ∈ L and A ∈ V , then X is called a semimartingale. By S we denote the space of
semimartingales.

(ii) If A is predictable, the decomposition in (11) is unique and we call X special. The space
of special semimartingales is denoted by Sp.

If a semimartingale is continuous, it is special and M and A in its decomposition are con-
tinuous. If a semimartingale has bounded jumps, it is also special. So the issue of not being a
special semimartingale arises from the large jumps.

We even can show a little bit more: for every semimartingale, there exists the decomposition

X = X0 + Xc + M + A

with a continuous local martingale Xc and a purely discontinuous local martingale M ∈ H 2
loc

and A ∈ V .

1.7 The stochastic integral

We call H simple, if

H = Y1󰌻0󰌼 oder H = Y1󰌼S,T󰌼

with stopping times S und T and bounded, FS-measurable Y. These are the prototypes of
simple processes, where it is clear how to integrate them. Indeed, let us define for simple H its
stochastic integral H · X with respect to a stochastic process X by

(H · X)t :=

󰀻
󰀿

󰀽
0 if H = Y1󰌻0󰌼
Y · (XT∧t − XS∧t) otherwise.

(12)

By E we denote the space of simple (elementary) processes.
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Theorem 13 (The stochastic integral). Let X be a semimartingale. The mapping H 󰀁→ H · X has
an extension from E to the space of locally bounded, predictable processes, such that

(i) H · X is adapted and càdlàg,

(ii) H 󰀁→ H · X is linear,

(iii) if predictable (Hn) converge pointwise to H, and is |Hn| ≤ K for a locally bounded, predictable
process K, then

(Hn · X)t
P−−→ (H · X)t ∀ t > 0.

We obtained the following properties:

(i) H · X is again a semimartingale.

(ii) If X is a local martingale, so is H · X.

(iii) If X ∈ V , then H · X is the Lebesgue-Stieltjes integral.

(iv) (H · X)0 = 0 and H · (X − X0) = H · X.

(v) K · (H · X) = (KH) · X.

(vi) ∆(H · X) = H · ∆X.

(vii) Is T predictable and Y FT-messbar, then

(Y1󰌻T󰌼) · X = Y · ∆XT1󰌻T,∞󰌻

If X is even locally square integrable we can allow a larger class of integrands.

Theorem 14. Let X ∈ H 2
loc. Then, H 󰀁→ H · X has an extension from E to L2

loc such that

(i) H · X ∈ H 2
loc

(ii) H ∈ L2(X) ⇐⇒ H · X ∈ H 2

(iii) For X, Y ∈ H 2
loc and predictable K, M ∈ L2

loc(X),

〈H · X, K · Y〉 = HK · 〈X, Y〉 .

For two semimartingales X, Y ∈ S we can define the quadratic covariation of X and Y by

[X, Y] = XY − X0Y0 − X− · Y − Y− · X . (15)

And we showed a number of properties: Consider X, X′ ∈ S and Y ∈ V . Then

(i) [X, X′] ∈ V and [X] ∈ V +,

(ii) [X, Y] = ∆X · Y,

(iii) if Y is predictable, then [X, Y] = ∆Y · X,

(iv) if either X or Y is continuous, then [X, Y] = 0.

(v) [X, X′]t = 〈X, X′〉t + ∑
s≤t

∆Xs∆X′
s.
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1.8 The Itô-formula

One major result was the following result on the semimartingale property of twice differen-
tiable functions of semimartingales.

Theorem 16 (Itô-Formula). Consider a d-dimensional semimartingale X = (X1, . . . , Xd) and
f ∈ C 2(Rd, R). Then, f (X) ∈ S and

f (X) = f (X0) + ∑
i≤d

Di f (X−) · Xi

+
1
2 ∑

i,j≤d
Dij f (X−) · 〈Xi,c, X j,c〉 (17)

+ ∑
0≤s≤·

󰀓
f (Xs)− f (Xs−)− ∑

i≤d
Di f (Xs−)∆Xi

s

󰀔
.

As a first application we considered stochastic exponentials. Here Y was called a sotchastic
exponential, if X ∈ S and

Y = 1 + Y− · X. (18)

We denote the solution of (18) by Y = E (X).
As an important example we have met the geometric Brownian motion, E (W). If W is a

standard Brownian motion, then

E (W)t = exp
󰀓

Wt −
1
2

t
󰀔

, t ≥ 0.

Theorem 19. Consier X ∈ S . Then there exists a unique solution of (18) given by

E (X)t := Yt = ∏
0<s≤t

(1 + ∆Xs)e−∆Xs · exp
󰀓

Xt − X0 −
1
2
〈Xc〉t

󰀔
, t ≥ 0.

1.9 Girsanovs theorem

We have already seen that measure changes are of prime importance in financial mathematics.
The key tool here is Girsanovs theorem. Define for a stopping time T

PT := P|FT .

P′ is called locally absolutely continuous w.r.t. P, if

P′
t ≪ Pt , ∀t ≥ 0;

which we denote by P′ loc
≪ P. This is even equivalent to our localisation procedure (there exist

stopping times Tn → ∞ for which P′
Tn

≪ PTn , ∀n .

Theorem 20. Let P′ loc
≪ P. Then there exists a unique P-martingale Z ≥ 0, such that

Zt =
dP′

t
dPt

, t ≥ 0 . (21)
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Z is called density of P′ w.r.t. P and E[Zt] = 1 for all t ≥ 0. If P′ ≪ P, then Z is uniformly
integrable and

Z∞ =
dP′

dP
.

A typical example is a geometric Brownian motion

Zt = eaWt− a2t
2 , t ≥ 0,

which however is not uniformly integrable!

Theorem 22 (Girsanov). Let P′ loc
≪ P with density Z. Consider M ∈ Mloc(P) with M0 = 0. Then

M′ = M − 1
Z
· [M, Z]

is P′-almost surely well-defined and a P′-local martingale. If [M, Z] ∈ Aloc, then

M′′ = M − 1
Z−

〈M, Z〉

is a P′-local martingale.

As a typical application we consider

Zt = exp
󰀓

θWt −
θ2t
2

󰀔
, 0 ≤ t ≤ T,

hence Zt = Z0 + Z− · θWt. Then

M′
t = Wt −

1
Z
· [W, Z]t

= Wt −
1
Z
· θZd〈W〉t = Wt − θt

is a local martingale. Since quadratic variation is not changed by the measure change, (Wt −
θt)0≤t≤T is a Brownian motion under P′.

1.10 Semimartingale characteristics

With the above tools we have a good access to jump-diffusion, i.e. processes of the type

dXt = µtdt + σtdWt + κtdJt.

We note that the distributional characteristics depend on the drift µ, the volatility σ and the
jump term κ. Semimartingale characteristics generalise this notion to the full generality of
semimartingale processes.

To describe the jumps of the semimartingale in a precise way, we utilize the concept of ran-
dom measure. A random measure on R≥0 × Rd is a family µ = (µ(ω; dt, dx) : ω ∈ Ω) of non-
negative measures on (R≥0 × Rd, B(R≥0) ⊗ B(Rd)) such that µ(ω; {0} × Rd) = 0 for all
ω ∈ Ω.

To this end, we introduce

󰁨Ω = Ω × R≥0 × Rd (23)
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with σ-fields 󰁨O = O ⊗ B(Rd) and 󰁩P = P ⊗ B(Rd). In principle, one can replace Rd be a
general Polish space, but we will not need this level of generality here.

A function W on 󰁨Ω is called optional (predictable) when it is 󰁨O ( 󰁩P)-measurable. Now we
define the integral

W ∗ µt =
󰁝

[0,t]×E
W(ω, s, x)µ(ω; ds, dx)

whenever the integral is finite and +∞ otherwise.
The random measure µ is called optional (predictable) if W ∗ µ is optional (predictable) for

every optional (predictable) function W.
The Doob-Meyer decomposition can also be extended to this processes by the following tool:

for every optional P-σ-finite random measure µ there exists a unique, predictable random
measure νp such that for every 󰁩P-measureable W such that |W| ∗ µ ∈ A +

loc, |W| ∗ µp ∈ A +
loc

W ∗ (µ − µp) is a local martingale.

In that case there exists a predictable A ∈ A + and a kernel K(ω, t; dx) such that

µp(ω; dt, tx) = K(ω, t; dx) dAt(ω).

We call µp the (predictable) compensator of µ or the dual predictable projection of µ (compare
Theorem 8).

To an adapted càdlàg process X we associate the integer-valued random measure

µX(ω; dt, dx) = ∑
s
1{∆Xs(ω) ∕=0}δ(s,∆Xs(ω))(dt, dx).

As for semimartingales one can construct a stochastic integral with respect to the compen-
sated random measure µX − (µX)p.

We call h a truncation function if it bounded and satisfies h(x) = x in a neighbourhood of 0.
For a semimartingale X we introduce

X̌(h) = ∑
s≤·

󰀃
∆Xs − h(∆Xs)

󰀄
,

X(h) = X − X̌(h)
(24)

the process X(h) with truncated, in particular bounded, jumps. Then X(h) is special and hence
it may be decomposed, see Equation (11) uniquely into

X(h) = X0 + B(h) + M(H). (25)

Definition 26. The triplet (B, C, ν) is called characteristics of the semimartingale X for the trun-
cation function h where

(i) B = B(h) in decomposition (25),
(ii) C = Cij with Cij = 〈Xi,c, X j,c〉,
(iii) ν is the compensator of µX .

Proposition 27. One can find a version of the characteristics of X such that

Bi = bi · A,

Cij = cij · A,

ν(ω; dt, dx) = K(ω, t; dx)dAt(ω)

where
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(i) A is predictable and A ∈ A +
loc which may be chosen continuous of X is quasi-left-continuous;

(ii) b = (bi) is d-dimensional and predictable,
(iii) c = (cij) is predictable with values in the set of symmetric nonnegative matrices,
(iv) K is a transition kernel, such that

K({0}) = 0,
󰁝
(|x|2 ∧ 1)K(ω, t; dx) < ∞;

∆At(ω) > 0 ⇒ bt(ω) =
󰁝

h(x)K(ω, t; dx)

∆At(ω)K(ω, t; Rd) ≤ 1.

(28)

We then have a nice version of the Itô-formula: for each bounded f ∈ C2, the following
process is a local martingale

f (X)− f (X0)− ∑ Dj f (X−) · Bj − 1
2 ∑ Djk f (X−) · Cjk

−
󰀃

f (X− + x)− f (X−)− ∑
j

Dj f (X−)hj(x)
󰀄
∗ ν.

(29)

This is is also sufficient for X being a semimartingale with characteristics (B, C, ν).
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2 Affine semimartingales

We recall from our lecture on stochastic processes that there are a number of interesting affine
processes, in particular those satisfying

dXt = b0 + b1Xtdt +
√

a0dWt

dXt = b0 + b1Xtdt +
󰁳

a1XtdWt.

For those processes we showed that

E[eiuXt |X0 = x] = exp
󰀓

φ(t, u) + ψ(t, u) · x
󰀔

with functions φ and ψ solving some Riccatti equations. Our aim is now to extend this to the
semimartingale level.

Note that it is clear, that there are also affine processes in discrete time, which certainly do
not have a jump-compensator of dt-type. We hence should expect that dt can be replaced by a
more general dAt - but what kind of properties does this process have ? Moreover, we can now
longer expect a homogenous affine process (where the functions φ and ψ do only depend on
the length of the considered interval and not on the place of the interval). We consider a state
space D ⊂ Rd which is a closed convex cone of dimension d together with a filtered probability
space, as previously, satisfying the usual conditions. Moreover, we define the complex dual cone
of the state space D by

U := {u ∈ Cd : 〈ℜu, x〉 ≤ 0 for all x ∈ D}. (30)

An important example is the set Rm
≥0 × Rn with m + n = d, which we call s the ‘canonical

state-space’.

Definition 31. Let X be a càdlàg semimartingale, taking values in D. The process X is called an
affine semimartingale, if there exist C and Cd-valued deterministic functions φs(t, u) and ψs(t, u),
continuous in u ∈ U and with φs(t, 0) = 0 and ψs(t, 0) = 0, such that

E
󰀅
e〈u,Xt〉|Fs

󰀆
= exp

󰀃
φs(t, u) + 〈ψs(t, u), Xs〉

󰀄
(32)

for all 0 ≤ s ≤ t and u ∈ U . Moreover, X is called time-homogeneous, if φs(t, u) = φ0(t − s, u) and
ψs(t, u) = ψ0(t − s, u), again for all 0 ≤ s ≤ t and u ∈ U .

Condition 33. We say that an affine semimartingale X has support of full convex span, if

conv(supp(Xt)) = D, for all t > 0.

Under Condition 33, φ and ψ are uniquely specified:

Lemma 34. Let X be an affine semimartingale satisfying the support condition 33. Then φs(t, u) and
ψs(t, u) are uniquely specified by (32) for all 0 < s ≤ t and u ∈ U .

Proof. Fix 0 < s ≤ t and suppose that 󰁨φs(t, u) and 󰁨ψs(t, u) are also continuous in u ∈ U and
satisfy (32). Write ps(t, u) := 󰁨φs(t, u)− φs(t, u) and qs(t, u) := 󰁨φs(t, u)− φs(t, u). Due to (32) it
must hold that

ps(t, u) + 〈qs(t, u), Xs〉 takes values in {2πik : k ∈ N} a.s. ∀ u ∈ U .

However, the set U is simply connected, and hence its image under a continuous function must
also be simply connected. It follows that u 󰀁→ ps(t, u) + 〈qs(t, u), Xs〉 is constant on U and
therefore equal to ps(t, 0) + 〈qs(t, 0), Xs〉 = 0. Hence,

ps(t, u) + 〈qs(t, u), x〉 = 0,
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for all x ∈ supp(Xs) and u ∈ U . Taking convex combinations, the equality can be extended for
x ∈ D. Since D has full linear span, we conclude that ps(t, u) = 0 and qs(t, u) = 0 for all u ∈ U ,
completing the proof.

Lemma 35. Let X be an affine semimartingale satisfying the support condition 33. Then,

(i) the function u 󰀁→ φs(t, u) maps U to C≤0 and u 󰀁→ ψ(t, u) maps U to U , for all 0 < s ≤ t,

(ii) φ and ψ satisfy the semi-flow property, i.e. for all 0 < s ≤ r ≤ t and u ∈ U ,

φs(t, u)= φr(t, u) + φs(r, ψr(t, u)), φt(t, u) = 0
ψs(t, u)= ψs(r, ψr(t, u)), ψt(t, u) = u.

(36)

Proof. To show the first property, recall that by Equation (32) we have

E
󰀅
e〈u,Xt〉|Fs

󰀆
= exp

󰀃
φs(t, u) + 〈ψs(t, u), Xs〉

󰀄
(37)

for all u ∈ U and 0 ≤ s ≤ t. Since 〈ℜu, Xt〉 ≤ 0, a.s., the left hand side is bounded by one in
absolute value. Thus, also

ℜφs(t, u) + 〈ℜψs(t, u), Xs〉 ≤ 0, a.s.

and consequently

ℜφs(t, u) + 〈ℜψs(t, u), x〉 ≤ 0, for all x ∈ supp(Xs).

Taking arbitrary convex combinations of these inequalities and using that conv(supp(Xs)) = D
by Condition 33, we obtain that the inequality must in fact hold for all x ∈ D. Since D is a cone
this implies that ℜφs(t, u) ≤ 0 and ψs(t, u) ∈ U , proving (i).

To show the semi-flow equations we apply iterated expectations to the left hand side of (37),
yielding

E
󰀅
E
󰀅
e〈u,Xt〉|Fr

󰀆
|Fs

󰀆
= E

󰀅
exp

󰀃
φr(t, u) + 〈ψr(t, u), Xr〉

󰀄
|Fs

󰀆
=

= exp
󰀃
φs(r, u) + φs(r, ψr(t, u)) + 〈ψs(r, ψr(t, u)), Xs〉

󰀄
.

Note that the exponent on the right hand side is continuous in u and that the same holds true
for (37). By the same argument as in the proof of Lemma 34 we conclude that

φs(t, u) + 〈ψs(t, u), x〉 = φs(r, u) + φs(r, ψr(t, u)) + 〈ψs(r, ψr(t, u)), x〉 ,

for all x ∈ D. Since the linear hull of D is Rd the semi-flow equations (36) follow. Note
that the terminal conditions ψt(t, u) = u and φt(t, u) = 0 are a simple consequence of
E [exp(〈u, Xt〉)| Ft] = exp(〈u, Xt〉) and the uniqueness property from Lemma 34.

Definition 38. Let A be a non-decreasing càdlàg function with continuous part Ac and jump
points JA := {t ≥ 0|∆At > 0}. Let (γ, β, α, µ) = (γi, βi, αi, µi)i∈{0,...,d} be functions such that
γ0 : R≥0 × U → C, γ̄ : R≥0 × U → Cd, βi : R≥0 → Rd, αi : R≥0 → Sd and (µi(t, ·))t≥0 are
families of (possibly signed) Borel measures on D \ {0} with

󰁕
D\{0}(1 + 󰀂x󰀂2)µi(t, dx) < ∞. We

call (A, γ, β, α, µ) a good parameter set if for all i ∈ {0, . . . , d},

(i) αi and βi are locally integrable w.r.t. Ac,

(ii) for all compact sets K ⊂ D \ {0}, µ(·, K) is locally Ac-integrable.

(iii) γ(t, u) = 0 for all (t, u) ∈ (R≥0 \ JA)× U .
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Definition 39. An affine semimartingale is called quasi-regular, if the following holds:

(i) The functions φ and ψ are of finite variation in s and càdlàg in both s and t. More precisely,
we assume that for all (t, u) ∈ R≥0 × U

s 󰀁→ φs(t, u) and s 󰀁→ ψs(t, u)

are càdlàg functions of finite variation on [0, t], and for all (s, u) ∈ R≥0 × U

t 󰀁→ φs(t, u) and t 󰀁→ ψs(t, u)

are càdlàg functions on [s, ∞).

(ii) For all 0 < s ≤ t, the functions

u 󰀁→ φs−(t, u) and u 󰀁→ ψs−(t, u)

are continuous on U .

Theorem 40. Let X be a quasi-regular affine semimartingale satisfying the support condition 33. Then
there exists a good parameter set (A, γ, β, α, µ) such that the semimartingale characteristics (B, C, ν) of
X w.r.t. the truncation function h satisfy, P-a.s. for any t > 0,

Bc
t (ω) =

󰁝 t

0

󰀃
β0(s) +

d

∑
i=1

Xi
s−(ω)βi(s)

󰀄
dAc

s (41a)

Ct(ω) =
󰁝 t

0

󰀃
α0(s) +

d

∑
i=1

Xi
s−(ω)αi(s)

󰀄
dAc

s (41b)

νc(ω, ds, dx) =
󰀃
µ0(s, dx) +

d

∑
i=1

Xi
s−(ω)µi(s, dx)

󰀄
dAc

s (41c)

󰁝

D

󰀓
e〈u,ξ〉 − 1

󰀔
ν(ω, {t}, dξ) =

󰀣
exp

󰀓
γ0(t, u) +

d

∑
i=1

〈Xi
t−(ω), γ̄i(t, u)〉

󰀔
− 1

󰀤
. (41d)

Moreover, for all (T, u) ∈ (0, ∞) × U , the functions φ and ψ are absolutely continuous w.r.t A and
solve the following generalized measure Riccati equations: their continuous parts satisfy

dφc
t (T, u)
dAc

t
= −F(t, ψt(T, u)), (42)

dψc
t (T, u)
dAc

t
= −R(t, ψt(T, u)), (43)

dAc-a.e., where

F(s, u) = 〈β0(s), u〉+ 1
2
〈u, α0(s)u〉+

󰁝

D

󰀓
e〈x,u〉 − 1 − 〈h(x), u〉

󰀔
µ0(s, dx)

Ri(s, u) = 〈βi(s), u〉+ 1
2
〈u, αi(s)u〉+

󰁝

D

󰀓
e〈x,u〉 − 1 − 〈h(x), u〉

󰀔
µi(s, dx),

(44)

while their jumps are given by

∆φt(T, u) = −γ0(t, ψt(T, u))

∆ψt(T, u) = −γ̄(t, ψt(T, u)),
(45)

and their terminal conditions are

φT(T, u) = 0 and ψT(T, u) = u. (46)
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Before we start with the proof, we visit some examples:

Example 47. Consider the following discrete-time variant of the (time-inhomogeneous) Poisson
process: let X0 = x ∈ N. Furthermore, assume that X is constant except for t ∈ {1, 2, . . . } and
assume that ∆Xn ∈ {0, 1}, n ∈ {1, 2, . . . } are independent with P(∆Xn = 1) = pn ∈ (0, 1). Then
X is an affine semimartingale because for 0 ≤ s ≤ t,

E[euXt |Fs] = exp
󰀓

uXs + ∑
s<n≤t,n∈N

φn(u)
󰀔

where

φn(u) = E[eu∆Xn ] = eu(pn + e−u(1 − pn)) = exp(u + log(pn + e−u(1 − pn))).

Clearly, it may happen that ∆Xn = 0 while φ(u, n, t)− φ(u, n−, t) = φn(u) ∕= 0. Stochastic
discontinuity is reflected by having jumps at t ∈ {1, 2, . . . } with positive probability. The
considered process falls in the class of point processes whose associated jump measure is an
extended Poisson measure. In contrast to Poisson processes, X is not quasi-left continuous. In
summary, X is a process with independent increments, but not a time-inhomogeneous Lévy
process. ⋄

When we consider processes in discrete time we emphasize this by using a hat 󰁥X = ( 󰁥Xn)n∈N.

Example 48 (AR(1)). A (time-inhomogeneous) autoregressive time series of order (1) is given
by

󰁥Xn = α(n) 󰁥Xn−1 + εn

where we assume that (εn) are independent (not necessarily identically nor normally dis-
tributed). Then, 󰁥X is affine, as

E[euXn | 󰁥Fn−1] = E[euεn ]eα(n)Xn−1

with 󰁥Fn−1 = σ( 󰁥X0, . . . , Xn−1). The generalization to higher order requires an extension of the
state space. So an AR(p) series gives an affine process ( 󰁥Xn, . . . , 󰁥Xn−p)n≥p. ⋄

Analogously we obtain the class of discrete affine processes (Exercise). Are GARCH time
series affine ?

2.1 Proof of Theorem 40

We start with some easy observations

Lemma 49. Let X be a quasi-regular affine semimartingale. Then,

E
󰀅
e〈u,Xt−〉|Fs

󰀆
= exp

󰀃
φs(t−, u) + 〈ψs(t−, u), Xs〉

󰀄
, ∀ 0 ≤ s < t, u ∈ U . (50)

E
󰀅
e〈u,Xt〉|Fs−

󰀆
= exp

󰀃
φs−(t, u) + 〈ψs−(t, u), Xs−〉

󰀄
, ∀ 0 < s ≤ t, u ∈ U . (51)

If in addition X has full support, it also holds that

E
󰀅
e〈u,∆Xt〉|Ft−

󰀆
= exp

󰀃
− ∆φt(t, u)− 〈∆ψt(t, u), Xt−〉

󰀄
, ∀ (t, u) ∈ R≥0 × U . (52)

Lemma 53. Let X be a quasi-regular affine semimartingale of full support and with characteristics
(B, C, ν). For any (t, u) ∈ (0, ∞)× U ,

󰁝

D

󰀓
e〈u,ξ〉 − 1

󰀔
ν(ω; {t}, dξ) = exp

󰀓
− ∆φt(t, u)− 〈∆ψt(t, u), Xt−〉

󰀔
− 1. (54)
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Proof. By definition, ν({t}, dξ) is the dual predictable projection of δ∆Xt(dξ) such that
󰁝

D

󰀓
e〈u,ξ〉 − 1

󰀔
ν(ω; {t}, dξ) = E

󰁫󰀓
e〈u,∆Xt〉 − 1

󰀔󰀏󰀏󰀏Ft−
󰁬

.

Combining with (52), the claim follows.

Next, we consider the continuous parts of the semimartingale characteristics, and make the
following definition:

G(dt, ω, T, u) := 〈ψt, dBc
t (ω)〉+ 1

2
〈ψt, dCt(ω)ψt〉+ (55)

+
󰁝

D

󰀓
e〈ψt ,ξ〉 − 1 − 〈ψt, h(ξ)〉

󰀔
νc(ω, dt, dξ),

where we write ψt := ψt(T, u) for short.

Lemma 56. Let X be a quasi-regular affine semimartingale with a good version of its characteristics
(B, C, ν), let (T, u) ∈ (0, ∞)× U and let G(dt, ω, T, u) be the complex-valued random measure defined
in (55). It holds that

G(dt; ω, T, u) + dφc
t (T, u) + 〈Xt(ω), dψc

t (T, u)〉 = 0, P − a.s, (57)

as identity between measures on [0, T].

Proof. For (T, u) ∈ (0, ∞)× U consider the process

Mu,T
t := E

󰁫
e〈u,XT〉

󰀏󰀏Ft

󰁬
= exp (φt (T, u) + 〈ψt (T, u), Xt〉) t ∈ [0, T),

which is a càdlàg martingale with the terminal value Mu,T
T = exp (〈u, XT〉). To alleviate nota-

tion we consider (T, u) fixed and write

Mt = Mu,T
t = exp (φt + 〈ψt, Xt〉) ,

with φt := φt(T, u) and ψ(t) := ψt(T, u). Applying the Itô-formula to M we obtain a decompo-
sition

Mt = Lt + Ft,

where L is a local martingale and F is the predictable finite variation process

Ft :=
󰁝 t

0
Ms−

󰀝
dφc

s + 〈Xs−, dψc
s〉+ 〈ψs−, dBs〉+

1
2
〈ψs−, dCsψs−〉 (58)

+
󰁝

D

󰀓
e∆φs+〈ψs ,Xs−+ξ〉−〈ψs− ,Xs−〉 − 1 − 〈ψs−, h(ξ)〉

󰀔
ν(ω, ds, dξ)

󰀞
.

The jump part ∆F vanishes due to Lemma 53, and we are left with the continuous part

Ft = Fc
t =

󰁝 t

0
Ms−

󰀝
dφc

s + 〈Xs−, dψc
s〉+ 〈ψs−, dBc

s〉+
1
2
〈ψs−, dCsψs−〉

+
󰁝

D

󰀓
e〈ψs− ,ξ〉 − 1 − 〈ψs−, h(ξ)〉

󰀔
νc(ω, ds, dξ)

󰀞
.

Recall that M is a martingale, and hence M ≡ L and F ≡ 0 on [0, T], P-a.s. With (55), F can be
rewritten as

Ft =
󰁝 t

0
Ms− {dφc

s + 〈Xs−, dψc
s〉+ G(ds; ω, T, u)} .

Since none of the measures appearing above charges points, the left limits Xs−, ψs− can be
substituted by right limits Xs, ψs. Moreover, Ms− is nonzero everywhere and (57) follows.
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In order to make efficient use of the full-support condition (Definition 33), we introduce
the following convention: Given an affine semimartingale X, a tuple X = (X0, . . . , Xd) repre-
sents d + 1 stochastically independent copies of X. Formally, the tuple X can be realized on the
product space (Ω(d+1),F⊗(d+1), (F⊗(d+1)

t )t≥0) equipped with the associated product measure.
Moreover, for any points ξ0, . . . , ξd in Rd, we define the (d + 1)× (d + 1)-matrix

H(ξ0, . . . , ξn) :=

󰀳

󰁅󰁅󰁃

1 ξ⊤0
...

...
1 ξ⊤n

󰀴

󰁆󰁆󰁄 . (59)

The matrix-valued process Θt is formed by inserting X = (X0, . . . , Xd) into H, i.e. we set

Θt(ω) = H(X0, . . . , Xd) =

󰀳

󰁅󰁅󰁃

1 X0
t (ω)⊤

...
...

1 Xd
t (ω)⊤

󰀴

󰁆󰁆󰁄 . (60)

Lemma 61. Let s > 0 and let X be an affine semimartingale with full support. Then there exists
ε > 0 and a set E ∈ Fs with P(E) > 0, such that the matrices Θt(ω) and Θt−(ω) are regular for all
(t, ω) ∈ (s, s + ε)× E.

Proof. Define the first hitting time

τ := inf{t > s : Θt singular, or Θt− singular}.

Since the set of singular matrices is a closed subset of the vector space of R(d+1)×(d+1)-matrices,
τ is a stopping time. Moreover, by monotone convergence, we have

lim
n→∞

P
󰀓

Θt and Θt− regular for all t ∈ (s, s + 1/n)
󰀔
= lim

n→∞
P(τ ≥ s + 1/n) = P(τ > s).

If we can show that P(τ > s) > 0, then the claim follows by choosing N large enough and
setting ε = 1/N and E = {τ ≥ s + 1/N}. But by right-continuity of X, the set {ω : τ(ω) >

s} is equal to {ω : Θs(ω) is regular} and it remains to show that Θs is regular with strictly
positive probability. To this end, we use the full support condition conv(supp(Xs)) = D to find
d + 1 convex independent points ξ0, . . . , ξd in supp(Xs). Recalling the definition of H in (59),
it follows that H(ξ0, . . . , ξd) is regular. Since the set of regular matrices is open we find δ > 0
such that even H(y0, . . . , yd) is regular for all yi ∈ Uδ(ξi), i ∈ {0, . . . , d}, where Uδ(ξi) is the
open ball of radius δ centered at ξi. Now, by independence of X0, . . . , Xd, it follows that

P (Θs is regular) ≥ P
󰀓

Xi
s ∈ Uδ(ξi) ∀ i ∈ {0, . . . , d}

󰀔

=
d

∏
i=0

P (Xs ∈ Uδ(ξi)) .

Since for each i ∈ {0, . . . , d} the intersection of Uδ(ξi) with the support of Xs is non-empty, all
probabilities are strictly positive, and the proof is complete.

Similar to the R(d+1)×(d+1)-valued process process (Θt)t≥0 defined in (60), we define d + 1
independent copies of the complex-valued random measure G(dt, ω, T, u) from equation (55)
and denote them by G0, . . . , Gd, respectively. With this notation and for any (T, u) ∈ R≥0 × U ,
the d + 1 corresponding equations (57) can be written in matrix-vector form as

Θt(ω) ·

󰀳

󰁅󰁅󰁅󰁅󰁃

dφc
t (T, u)

dψc,1
t (T, u)

...
dψc,d

t (T, u)

󰀴

󰁆󰁆󰁆󰁆󰁄
= −

󰀳

󰁅󰁅󰁃

G0(dt; ω, T, u)
...

Gd(dt; ω, T, u)

󰀴

󰁆󰁆󰁄 (62)
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which holds P-a.s. as an identity between complex-valued measures on [0, T]. The next Lemma
gives a ’local’ version of the continuous part of Theorem 40.

Lemma 63. Let X be a quasi-regular affine semimartingale with full support and let τ ∈ (0, ∞) be
a deterministic timepoint. Then there exists an interval Iτ := (τ, τ + ε), where ε = ε(τ) > 0, and
good parameters (Ac, β, α, µ) on Iτ . With respect to these parameters, and with F and R as in (44), the
measure Riccati equations (80) and (81) hold true for each (T, u) ∈ R≥0 × U and t ∈ Iτ ∩ [0, T].

Remark 64. We emphasize that in this lemma the parameters (Ac, β, α, µ) as well as the func-
tions F and R may depend on τ.

Recall that for a semimartingale X there exists a càdlàg, increasing, predictable, R≥0-valued
process 󰁨A starting in 0 and with continuous part Ac, such that the semimartingale character-
istics of X can be ‘disintegrated’ with respect to 󰁨A. For the continuous parts (Bc, C, νc) of the
characteristics, this implies the representation

Bc
t =

󰁝 t

0
bsd 󰁨Ac

s

Ct =
󰁝 t

0
csd 󰁨Ac

s (65)

νc(ω, dt, dx) = Kω,t(dx)d 󰁨Ac
t (ω),

where b and c are predictable processes and Kω,t(dx) a transition kernel from Ω × R≥0, en-
dowed with the predictable σ-algebra, to (Rd,B(Rd)).

Proof. Let X0, . . . , Xd be d + 1 stochastically independent copies of X. Denote the semimartin-
gale characteristics of Xi by (Bi, Ci, νi) and define Gi(ω; t, T, u) as in (55), i = 0, . . . , d. The
semimartingale characteristics (Bi, Ci, νi) can be disintegrated as in (65). Since we consider only
a finite collection of semimartingales, we may assume that the process 󰁨Ac

s(ω) is the same for
each Xi.

By Lemma 61, there exists an interval Iτ = (τ, τ + ε), ε > 0, and a set E ∈ F with P(E) > 0
and such that Θt(ω) is invertible for all (t, ω) ∈ Iτ × E. Multiplying (62) from the left with the
inverse of this matrix yields

󰀳

󰁅󰁅󰁅󰁅󰁃

dφc
t (T, u)

dψc,1
t (T, u)

...
dψc,d

t (T, u)

󰀴

󰁆󰁆󰁆󰁆󰁄
= −Θt(ω)−1 ·

󰀳

󰁅󰁅󰁃

G0(dt; ω, T, u)
...

Gd(dt; ω, T, u)

󰀴

󰁆󰁆󰁄 , (66)

as an identity between complex-valued measures on Iτ for all ω ∈ E. Since P(E) > 0, we can
choose some particular ω∗ ∈ E where (66) holds. Setting

Ac
t := 󰁨Ac

t (ω∗), t ∈ Iτ

we observe that Gi(dt; ω∗, T, u) ≪ dAc
t for each i ∈ {0, . . . , d} and conclude that also the left

hand side of (66) is absolutely continuous with respect to Ac on Iτ . Denote by (bi, ci, Ki) the
disintegrated semi-martingale characteristics of Xi, as in (65). Note that the random measures
Gi(dt; ω, T, u) depend linearly on (bi, ci, Ki), which in light of (66) suggests to apply the linear
transformation Θt(ω)−1 directly to the disintegrated semimartingale characteristics. Evaluating
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at ω∗, we hence define the deterministic functions (βi, αi, µi)i∈{0,...,d} on Iτ by setting

󰀓
β0, β1, . . . , βd

󰀔⊤
t

:= Θt−(ω∗)
−1 ·

󰀓
b0, b1, . . . , bd

󰀔⊤
t
(ω∗)

󰀓
α0

kl , α1
kl , . . . , αd

kl

󰀔⊤
t

:= Θt−(ω∗)
−1 ·

󰀓
c0

kl , c1
kl , . . . , cd

kl

󰀔⊤
t
(ω∗), k, l ∈ {1, . . . , d}

󰀓
µ0, µ1, . . . , µd

󰀔⊤
t

:= Θt−(ω∗)
−1 ·

󰀓
K0, K1, . . . , Kd

󰀔⊤
t
(ω∗).

Using these parameters, the functions F, R can be defined on Iτ as in (44). In combination with
(66) it follows that

󰀳

󰁅󰁅󰁅󰁅󰁃

dφc
t (T, u)

dψc,1
t (T, u)

...
dψc,d

t (T, u)

󰀴

󰁆󰁆󰁆󰁆󰁄
= −Θt(ω∗)

−1 ·

󰀳

󰁅󰁅󰁃

G0(dt; ω∗, T, u)
...

Gd(dt; ω∗, T, u)

󰀴

󰁆󰁆󰁄 = −

󰀳

󰁅󰁅󰁅󰁅󰁃

F(t, ψt(T, u))
R1(t, ψt(T, u))

...
Rd(t, ψt(T, u))

󰀴

󰁆󰁆󰁆󰁆󰁄
dAc

t (67)

for t ∈ Iτ ∩ [0, T], which yields validity of the Riccati equations (80) and (81) on Iτ .

Proof of Thm. 40. We consider first the continuous parts of the Riccati equations, and thereafter
treat their jumps. Applying Lemma 63 to each τ ∈ (0, ∞) we obtain a family of intervals Iτ ,
each with non-empty interior I◦τ , such that (I◦τ )τ∈(0,∞) is an open cover of the positive half-line
(0, ∞). Since R≥0 can be exhausted by compact sets such a cover has a countable subcover S .

To each interval I ∈ S , Lemma 63 associates good parameters (Ac,I , βI , αI , νI). By countabil-
ity of S there exists a continuous common dominating function Ac : R≥0 → R≥0 such that
Ac,I ≪ Ac for all I ∈ S .

We remark that passing from Ac,I to Ac has merely the effect of multiplying all parameters
with the Radon-Nikodym derivative dAc,I

dAc . Hence, we may assume without loss of generality
that Ac,I = Ac for each I ∈ S .

Let now I and 󰁨I be two intervals with non-empty intersection, taken from the countable
subcover S . Denote by (Ac, β, α, µ) and (Ac, 󰁨β,󰁨α, 󰁨µ) the respective parameter sets obtained
for these intervals by application of Lemma 63 and by (F, R) and (󰁨F, 󰁨R) the corresponding
functions defined by (44). We say that these two parameter sets are compatible if they agree
(up to a dAc

t -nullset) on the intersection I ∩ 󰁨I. Once we have shown compatibility for arbitrary
intervals I and 󰁨I it is clear that we can find a single good parameter set (A, β, α, µ), defined
on the whole real half-line R≥0, such that the Riccati equations (80) and (81) hold true. To
condense notation, we introduce the vectors

dΨc
t (T, u) :=

󰀳

󰁅󰁅󰁅󰁅󰁃

dφc
t (T, u)

dψc,1
t (T, u)

...
dψc,d

t (T, u)

󰀴

󰁆󰁆󰁆󰁆󰁄
, R(t, u) :=

󰀳

󰁅󰁅󰁅󰁅󰁃

F(t, u)
R1(t, u)

...
Rd(t, u)

󰀴

󰁆󰁆󰁆󰁆󰁄
, 󰁨R(t, u) :=

󰀳

󰁅󰁅󰁅󰁅󰁃

󰁨F(t, u)
󰁨R1(t, u)

...
󰁨Rd(t, u)

󰀴

󰁆󰁆󰁆󰁆󰁄
.

Applying equation (67) once on the interval I and once on 󰁨I yields

R(t, ψt(T, u))dAc
t = dΨc

t (T, u) = 󰁨R(t, ψt(T, u))dAc
t , t ∈ I ∩ 󰁨I ∩ [0, T]. (68)

Let now T × E be a countable dense subset of R≥0 × U . Taking the union over the countable
set T × E we obtain from (68) that

R(t, ψt(T, u)) = 󰁨R(t, ψt(T, u)) for all (T, u) ∈ T × E and t ∈ (I ∩ 󰁨I ∩ [0, T]) \ N, (69)

where N is a dAc
t -nullset, independent of (T, u).
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The next step is to ‘evaluate’ (69) at T = t and to use that ψt(t, u) = u by taking limits in the
countable set T . Observe that as functions of Lévy-Khintchine-form (cf. (44)) both F and R are
continuous in u. By denseness of T in R≥0 we can find a sequence (Tn) ⊆ T such that Tn ↓ t as
n → ∞.

Together with the right-continuity of ψt(T, u) in T this yields

R(t, u) = lim
n→∞

R(t, ψt(Tn, u)) = lim
n→∞

󰁨R(t, ψt(Tn, u)) = 󰁨R(t, u), (70)

for all u ∈ E . Using continuity of F and R in u, Equation (70) can be extended from the dense
subset E to all of U . It is well-known that a function of Lévy-Khintchine-form determines its
parameter triplet uniquely, cf. (?, Thm. 8.1). Hence, we may conclude that

βi
t = 󰁨βi

t, αi
t = 󰁨αi

t, µi
t = 󰁨µi

t,

for each i ∈ {0, . . . , d} and t ∈ I ∩ 󰁨I with exception of the dAc
t -nullset N. This is the desired

compatibility property and shows the existence of good parameters (Ac, β, α, ν).
We now turn to the continuous parts of the semimartingale characteristics (B, C, ν) and

show (41a), (41b) and (41c). To this end, fix (T, u) ∈ R≥0 × U and let (b, c, K) be the continuous
semimartingale characteristics of X, disintegrated with respect to the increasing predictable
process 󰁨Ac

t (ω), as in (65). For each ω ∈ Ω, write

󰁨Ac
t (ω) =

󰁝 t

0
as(ω)dAc

t + St(ω)

for the Lebesgue decomposition of 󰁨Ac
t (ω) with respect to Ac

t . Note that our argument does not
require measurability of ω 󰀁→ as(ω) or ω 󰀁→ St(ω). Furthermore, define

g(ω, t, T, u) := 〈ψt, bt(ω)〉+ 1
2
〈ψt, ct(ω)ψt〉+ (71)

+
󰁝

D

󰀓
e〈ψt ,ξ〉 − 1 − 〈ψt, h(ξ)〉

󰀔
Kt(ω, dξ),

which can be considered as the disintegrated analogue of (55). Combining (62) with the Riccati
equations, we obtain that

Θt(ω; x) · R(t, ψt(T, u))dAc
t = g(ω, t, u, T)at(ω)dAc

t + g(ω, t, u, t)dSt(ω) (72)

for all (T, u) ∈ R≥0 × U and t ∈ [0, T]. By the uniqueness of the Lebesgue decomposition we
conclude that

󰀻
󰀿

󰀽
at(ω)g(ω, t, T, u) = Θt(ω) · R(t, ψt(T, u)), dAc

t − a.e

g(ω, t, T, u) = 0, dSt(ω)− a.e.
(73)

As in the first part of the proof, we consider a countable dense subset T × E of R≥0 × U . Tak-
ing the union over all (T, u) in T × E and repeating the density arguments of (70) we find an
dAc

t -nullset N1 and a dSt(ω)-nullset N2, such that
󰀻
󰀿

󰀽
at(ω)g(ω, t, t, u) = Θt(ω) · R(t, u), for all t ∈ R≥0 \ N1, u ∈ E

g(ω, t, t, u) = 0, for all t ∈ R≥0 \ N2, u ∈ E .
(74)

As functions of u, both sides are of Lévy-Khintchine-form. In addition, E is dense in U , which
allows us to conclude from the first equation that

at(ω)bt(ω) = Θt(ω) · (β0
t , . . . , βd

t )

at(ω)ct(ω) = Θt(ω) · (α0
t , . . . , αd

t )

at(ω)Kt(ω) = Θt(ω) · (µc,0
t , . . . , µc,d

t )
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for all t ∈ R≥0 \ N1 and from the second equation that

bt(ω) = 0, ct(ω) = 0, Kt(ω) = 0, dSt(ω)− a.e.

Integrating with respect to 󰁨Ac
t (ω) and adding up yields(41).

To conclude the proof, we finally turn to the discontinuous part. Note that Lemma 53 al-
ready provides us with parameters γ, a set Jν and (not shown here) the validity of (41c) and
(45). Taking the continuous increasing function Ac from the first part of the proof and inserting
jumps of strictly positive hight at each time t ∈ Jν we obtain an increasing function A with
continuous part Ac and jump set JA = Jν. Note that the heights of the jumps are arbitrary; for
example the values of the summable series (2−n)n∈N can be taken. Together, (A, γ, α, β, µ) is
now a good parameter set in the sense of Definition 38 and all parts of Theorem 40 have been
shown.

2.2 Examples

Now it is the time to study some of the important examples of affine processes - we focus on
applications in climate and financial mathematics.

• Lévy processes - processes with independent and stationary increments (also called PIIS) are
a classical example.

• Stationarity is of course not needed - such that processes with independent increments are
affine (PII). But they are not always semimartingales.

• We already know the class of Ornstein-Uhlenbeck processes and the class of CIR-processes
(Feller processes).

Example 75 (The Heston model). In 1993, Heston propose a model for a stock S with stochastic
volatility, extending the Black-Scholes framework. The model is given by X = log S and

dXt = (µ + δYt)dt +
󰁳

YtdWt

dYt = (κ − λYt)dt + σ
󰁳

YtdZt

with correlated Brownian motions (W, Z). This is an affine model with a lot of success, in
particular it can model the smile.

Example 76 (Constructing stochastically discontinuous affine processes from stochastically
continuous ones). Consider an affine semimartingale X which is stochastically continuous. We
assume that D denotes the state space of the affine semimartingale and that φ and ψ are the
characteristics of X as in (32).

Let {t1 < · · · < tN} ⊂ R≥0 be some time points and ai ∈ Rd, bi ∈ Rd×d such that
ai + bi · x ∈ D for all x ∈ D, i = 1, . . . , N. Then

󰁨Xt :=
N

∑
i=1

1{t≥ti}(ai + bi · Xt), t ≥ 0 (77)

is an affine semimartingale in the sense of Definition 31. Note that 󰁨X is in general not stochasti-
cally continuous, as it jumps with positive probability at the time points ti, i = 1, . . . , N.

Indeed, by the affine property of X and using iterated conditional expectations, we obtain
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for tk ≤ t < tk+1,

E
󰁫
e〈u,󰁨Xt〉|Ftk

󰁬
= E

󰁫
exp

󰀓
〈u,

k

∑
i=1

(ai + bi · Xt)〉
󰀔
|Ftk

󰁬

= e∑k
i=1〈u,ai〉E

󰁫
exp

󰀓
〈

k

∑
i=1

ub⊤i , Xt〉
󰀔
|Ftk

󰁬

= exp
󰀓 k

∑
i=1

〈u, ai〉+ φtk (t, u′) + 〈ψtk (t, u′), Xtk 〉
󰀔

, (78)

since X is affine; here we set u′ := ∑k
i=1 ub⊤i . The affine characteristics of 󰁨X are directly ob-

tained from Equation (78). ⋄

Example 79 (Benth & Benth weather modeling). The authors suggest to use the following
model for the time evolution of temperatures:

dTt = ds(t) + κ(T(t)− s(t))dt + σdLt, (80)

with a Lévy process L. This variant of the OU - process has the following explicit solution:

Tt = s(t) + (T(0)− s(0))eκt +
󰁝 t

0
σ(u) eκ(u−t) dLu.

Example 81 (Affine term structure models). One very prominent example of affine models
arise in the interest-rate markets: the so-called affine term structure models. The bond market
is a high-dimensional market, where to each bond we associated its maturity. The price of a
bond with maturity T and discounting rate r is given by

P(t, T) = EQ

󰁫
e−

󰁕 T
t rsdsFs

󰁬
. (82)

If the driving process X is affine and

rt = a + b⊤Xt,

then (X,
󰁕 ·

0 rsds) is again affine and hence

P(t, T) = exp
󰀓

A(t, T) + B(t, T)⊤Xt

󰀔
, 0 ≤ t ≤ T. (83)

We will meet this markets a bit later in the lecture.

One of the main feature of affine processes is that the Fourier transform is of exponential-
affine form, i.e. in a tractable form. It turns out that this allows, by variants of Plancherel’s
theorem, one is able to solve the pricing problem in an efficient manner, i.e. to compute

EQ[F(XT)] =
󰁝

󰁥F(u) E[exp(iuXt)]du, (84)

where 󰁥F is the Fourier transform of the function F.

3 Polynomial processes

A further, even more flexible and surprising class of processes are polynomial processes. The
property which characterize this class is that expectations of polynomials of the process are
given as polynomials of the initial value. Let us formalize this a little bit and discuss recent
results in this class.
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We introduce the set Pk of polynomials over Rd with real coefficients and of most degree k,

Pk =
󰁱

x 󰀁→
k

∑
|l|=0

αlxl | αl ∈ R
󰁲

.

In this definition we use the so-called multi-index notation. Of course all polynomials of order
smaller than k in, say dimension 2, are given by

α0 + α1x1 + α2x2 + α12x1x2 + . . .

So if l = (l1, . . . lk) ∈ Nk, we denote

αl xl = αl1,...,lk xl1
1 · · · xlk

k .

Definition 85. The semimartingale X is a k-polynomial process, if for all l ∈ {0, . . . , k}, f ∈ Pl

we have E[󰀂 Xt 󰀂k
1] < ∞ ∀ t ≥ 0 and for any 0 ≤ s ≤ t there exists a q f

s,t ∈ Pl such that we have

E[ f (Xt) | Fs] = q f
s,t(Xs). (86)

Finally, if X is has the k-polynomial property for all k ∈ N, we say it has the polynomial prop-
erty.

Up to now it is unclear how this definition can be applied in the semimartingale setting
without further assumptions. The main problem seems to be to bring the notion to the level
of characteristics. Such arguments typically can be done via a suitable generalization of the
Markov property.

Under suitable assumptions one can show that a k-polynomial semimartingale satisfies the
following properties: Assume there is a deterministic A which dominates the semimartingale
characteristics and denote the local characteristics by (b, c, K).

(i) bt,i = bi(t, Xt−) for some bi ∈ P1,
(ii) ct,ij = cij(t, Xt−) for some measurable function cij,
(iii) K(ω, t; dξ) = K(t, Xt−, dξ), where K is some transition kernel K
(iv) the functions cij and K satisfy for all i, j ∈ {1, . . . , d} and x ∈ Rd,

cij(u, x) +
󰁝

Rd
ξiξ jK(u, x; dξ) = aij(u, x),

where all aij ∈ P2,

As example we consider diffusion processes only. In the one-dimensional case, the polyno-
mial processes extend over the affine processes in the form that the square of the volatility can
be a polynomial of degree 2 !

Example 87 (Jacobi process). Consider the SDE

dXt = b0 + b1Xtdt + σ
󰁴

Xt · (1 − Xt)dWt. (88)

This SDE has a unique solution and lives on the state space [0, 1].
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4 Continuous-time financial markets

For the following we consider a filtered probability space (Ω, F , F, P) satisfying the usual con-
ditions. As in discrete time, we consider d + 1 traded assets with price process S = (S0, . . . , Sd).
The numéraire is assumed to be strictly positive, S0 > 0.

We directly introduce the discounted price process

Xi =
Si

S0 (89)

and (only now!) assume that X = (X1, . . . , Xd) is a semimartingale.

Example 90. Construct a price process which is not a semimartingale (but X still being a semi-
martingale): we do not need to assume that price processes are semimartingales, since we will
only work on the discounted assets.

In view of Proposition 1.1, we call a X-integrable process H a self-financing trading strategy.
It is called admissible if there exists λ ≥ 0 such that (H · X) ≥ −λ, i.e. when the (discounted)
gains process is bounded from below.

Definition 91 (Simple trading strategies). A simple trading strategy is of the form

H =
n

∑
i=1

hi1󰌼τi−1,τi󰌼

with stopping times 0 = τ0 ≤ · · · ≤ τn < ∞ and Fτi−1 -measurable hi, i = 1, . . . , n.
We call the simple strategy admissible if Sτn and h1, . . . , hn are uniformly bounded.

By induction, one can show that if H is simple and an arbitrage strategy, that then there ex-
ists already a simple buy-and-hold strategy K = h1󰌼σ1,σ2󰌼 which is admissible and an arbitrage.

Of course, existence of an equivalent local martingale measure implies that there are no
simple arbitrages. Show that absence of simple arbitrages does not imply the existence of an
equivalent martingale measure by constructing an appropriate example.

4.1 No Free Lunch

The first fundamental theorem of asset pricing dates back the David Kreps and Jia-An Yan.
Assume that X is locally bounded. We begin by extending Lemma 11 to the continuous-time
setting.

Lemma 92. Let Q ≪ P. The locally bounded process X is a local Q-martingale iff

EQ[(H · X)∞] = 0 (93)

for each admissible simple trading strategy H.

Proof. Since X is locally bounded, there exists a sequence (Tn)n≥1 of stopping times such that
each XTn is bounded.

It is straightforward to show that S being a local Q-martingale implies (93) for admissible
simple trading strategies.

For the converse, it is sufficient to show that each XTn is a Q-martingale, i.e. that there exist
stopping times 0 ≤ S1 ≤ S2 ≤ Tn such that

EQ[XS2 | FS1 ] = XS1 .



56 II – Continuous-time Finance

But this is equivalent to the requirement that for each Rd-valued FS1 -measurable bounded
function h

EQ[h · (XS2 − XS1)] = 0,

which holds since h1󰌼S1,S2󰌼 is a simple strategy.

We consider simple trading strategies and introduce

Ksimple = {(H · X)∞ ∈ L∞(Ω, F , P) : H simple and admissible}

the vector space of claims replicable by simple strategies at zero initial cost. Moreover, we
define

Csimple = Ksimple − L∞
+(Ω, F , P)

the convex cone of contingent claims superreplicable at zero initial cost. By C∗ we denote the
closure of Csimple with respect to the weak-star topology of L∞(Ω, F , P).

In this section we denote by M e(X) = M e the set of equivalent local martingale measures,
i.e. the set of those equivalent measures under which X is a local martingale.

Definition 94. The financial market S satisfies the condition of no free lunch (NFL) if

C∗ ∩ L∞
+(Ω, F , P) = {0}. (95)

We refer to the appendix on details on the weak∗-topology.
The NFL condition is tailor-made such that the following fundamental theorem holds.

Theorem 96 (Kreps-Yan). A locally bounded process X satisfies (NFL), iff there exists an equivalent
local martingale measure (ELMM):

(NFL) ⇐⇒ M e(X) ∕= ∅

Proof. We first prove that (ELMM) ⇒ (NFL). For any f ∈ Csimple and any EMM Q we have
by Lemma 92 that EQ[ f ] ≤ 0. Since f 󰀁→ EQ[ f ] is weak-star continuous this also extends to C∗.
If (NFL) would not hold, then we would find a Q ∈ M e(X) and f ∈ C∗, f ≥ 0 not vanishing
almost surely, which would imply EQ[ f ] > 0, a contradiction.

The converse (NFL) ⇒ (ELMM) follows the lines of the proof in discrete time with some
modifications. The first step is the Hahn-Banach argument: we claim that for f ∈ L∞

+ , f ∕= 0 there
exists g ∈ L1

+ which, viewed as a linear functional on L∞ satisfies gC∗ ≤ 0 and ( f , g) > 0.
To see this, apply the separation theorem to the weak∗-closed convex set C∗ and the compact

set { f } to obtain g ∈ L1 and α < β such that gC∗ ≤ α and ( f , g) > β.
Since 0 ∈ C, it follows that α ≥ 0. As C∗ is a cone and g is a linear functional, we have that

g is zero or negative on C∗ and, in particular, non-negative on L∞
+ such that we obtain g ∈ L1

+.
Since β > 0, we have proved the above claim and step 1 is finished.

The second step is an exhaustion argument: denote by G the set of all g ∈ L1
+ such that gC ≤

0. Since 0 ∈ G, G is non-empty.
Let S be the family of (equivalence classes of) subsets of Ω formed by the supports {g > 0}

of the elements g ∈ G. Note that S is closed under countable unions, as for a sequence (gn) ∈
G we may find strictly positive scalars (αn), such that ∑n αngn ∈ G. Hence there is g0 ∈ G such
that, for {g0 > 0} we have

P(g0 > 0) = sup{P(g > 0) : g ∈ G}.

We now claim that P(g0 > 0) = 1. Indeed, if P(g0 > 0) < 1, then we could apply step 1 to
f = 1{g0=0} to find g1 ∈ G with

E[ f g1] = 〈 f , g1〉 =
󰁝

g0=0
gsdP > 0.
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Hence, g0 + g1 would be an element of G with support bigger that P(g0 > 0), a contradiction.
Finally, we normalise g0 such that 󰀂 g0 󰀂= 1 and let Q be the measure with Radon-Nikodym

derivative dQ
dP = g0.

By definition of g0, we have EQ[(H · X)∞] ≤ 0 for all simple and admissible strategies H.
But, since −H is also admissible, we obtain that EQ[(H · X)∞] = 0

We conclude from Lemma 92 that Q is a local martingale measure for X and the proof is
finished.

As a next step, we drop the assumption of locally boundedness of S, to elaborate the diffi-
culties in this more general setup. Note that local boundedness is typically not the case: simply
consider the case of discrete time - here no stopping will imply boundedness.

We will need to replace ELMM by a weaker condition: we say that X satisfies (ESM), if there
exists and equivalent separating measure, i.e. there exists an equivalent measure Q ∼ P, such
that

EQ[(H · X)∞] ≤ 0

for all H that are X-integrable and there exist some λ > 0 such that (H · X) ≥ −λ.
We then obtain the following theorem.

Theorem 97. Fix p ∈ [1, ∞) and q such that p−1 + q−1 = 1. Suppose C ⊂ Lp is a convex cone with
C ⊇ −Lp

+ and

C ∩ Lp
+ = {0}. (98)

If C is closed in σ(Lp, Lq), then there exists Q ∼ P with dQ
dP ∈ Lq(P) and EQ[Y] ≤ 0 for all Y ∈ C.

Proof. As for the Kreps-Yan theorem we may utilize the Hahn-Banach argument: chose f ∈
Lp
+\{0}, which is disjoint from C by (98). We obtain some g ∈ Lq separating { f } from C,

i.e. E[gY] ≤ 0 for all Y ∈ C. Since C ⊃ −Lp
+, we obtain g ≥ 0. Moreover, since we have strict

separation g ∕≥ 0, such that we can normalize to E[g] = 1.
The exhaustion argument works identically, such that we find a Z > 0 almost surely, Z ∈ Lq,

E[ZY] ≤ 0 for all Y ∈ C. Through normalization we obtain E[Z] = 1, such that dQ := ZdP does
the job.

4.2 The general case

There are a number of no-arbitrage principles around and we beging by recalling or introduc-
ing them. We introduce the trading strategies with bounded risk as

K1 = {(H · X)∞ : H 1-admissible},

the gains from trade by admissible trading

K = {(H · X)∞ : H admissible},

and set
C = (K − L0

+) ∩ L∞.

Then we are able to introduce the following definitions

(i) The process X satisfies no arbitrage (NA), if

(K − L0
+(Ω, F , P)) ∩ L0

+ = {0}.

This is equivalent to
((K − L0

+) ∩ L∞) ∩ L∞
+ = C ∩ L∞

+ = {0}.
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(ii) The process X satisfies no free lunch with vanishing risk (NFLVR), if

C ∩ L∞
+ = {0},

where C̄ denotes the norm closure of C in L∞.

(NFL) The process X satisfies NFL, if

C∗ ∩ L∞
+ = {0}.

(iii) The process X satisfies no unbounded profit with bounded risk (NUPBR), if K1 is a bounded
subset of L0.

Some remarks are due. First, coming from (NFL), we replaced the technical weak-* closure
by the norm closure1 in L∞ for (NFLVR). It is very intuitive, to understand what a free lunch 1 Compare Equation ??. We define

󰀂 f 󰀂∞ := esssupω∈Ω | f (ω)|. A random
variable in L∞ is a random variable
which is bounded (almost surely).

with fanishing risk is. By our definition, f ∈ L∞
+\{0} is a FLVR, if there exists a sequence

( fn) = (Hn · X)∞ (lying in K) and a sequence of gn ≤ fn, such that

lim 󰀂 f − gn 󰀂∞= 0.

In particular the negative parts ( f−n ) and (g−n ) have to converge to zero, which explains the
notion vanishing risk.

Second, an unbounded profit with bounded risk is a sequence ( fn) = (Hn · X)∞ (lying in K1)
if ( fn) are unbounded in probability, i.e.

lim
m→∞

sup
n

P( fn > m) > 0.

Of course we have
(NFL) ⇒ (NFLVR) ⇒ (NA).

It can additionally be shown that

NFLVR ⇔ (NA) + (NUPBR).

and it is a deep insight of Delbaen and Schachermayer that under (NFLVR), C = C∗, i.e. the
cone C is already weak-* closed (and hence, NFL holds) and we obtain the fundamental theo-
rem of asset pricing.

Theorem 99. Under (NFLVR), the cone C is weak-* closed, hence

(NFLVR) ⇔ (ESM).

For a detailed proof we refer to Delbaen & Schachermayer (2006) and Cuchiero & Teich-
mann (2015).

5 Markets with transaction costs

In this section we extend the approach to incorporate a central feature of financial markets:
transaction costs and bid-ask-spreads. If we want to buy a stock it turns out that the price (the
ask-price) is actually higher than the price for which I can sell the stock (the bid-price). Also
transaction costs could be incorporated in such a way.

Hence in our market we face to price processes: the bid price, S and the ask price S̄ where
we assume

Si
t ≤ S̄i

t
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for all t ≥ 0 and i = 0, . . . , d. As usual, S0 > 0 and Si ≥ 0 is assumed.
As previously, trading strategies are given by predictable processes, but now we assume

– for simplicity – that they are of finite variation. We decompose the trading strategy Hi =

Hi,↑ − Hi,↓ into an increasing process Hi,↑ and a decreasing process −Hi,↓. For intuition, we
consider the discrete-time setting.

Example 100 (Discrete-time market). Self-financing is ensured when gains and expenses from
rebalancing at any time sum up to 0, i.e.,

d

∑
i=0

󰀓
S̄i

t−1∆Hi,↑
t − Si

t−1∆Hi,↓
t

󰀔
= 0

for all t = 1, . . . , T. If we sum these terms up we obtain of course stochastic integrals, such that
this is equivalent to

S̄− · H↑ − S− · H↓ = 0. (9.19)

However, the continuous-time counterpart raises difficulties since the stochastic integral is only
defined for càdlàg processes. But note that

(S̄i
− · Hi,↑)t =

t

∑
s=1

S̄i
s−1

󰀓
Hi,↑

s − Hi,↑
s−1

󰀔

=
t

∑
s=1

󰀓
Hi,↑

s S̄i
s − Hi,↑

s−1S̄i
s−1 − Hi,↑

s (S̄i
s − S̄i

s−1)
󰀔

= Hi,↑
t S̄i

t − Hi,↑
0 S̄i

0 − H↑ · S̄.

Definition 101. A predictable process H of finite variation is a self-financing trading strategy, if

S̄− · H↑ − S− · H↓ = 0, (9.20)

where the integrals are defined as

(S̄− · H↑)t := 〈H↑
t , S̄t〉 − 〈H↑

0 , S̄0〉 − (H↑ · S̄)t,

(S− · H↓)t := 〈H↓
t , St〉 − 〈H↓

0 , S0〉 − (H↓ · S)t.

Observe that this equation reduces to the usual self-financing condition if S = S̄, i.e., if bid
and ask prices coincide. Moreover, note that we no longer have a direct value of a portfolio
and we consider the liquidation value instead. It is obtained by selling the positive part of the
portfolio at the bid price and buying the negative part at the ask price, i.e.

Vt = VH
t := H+

t St − H−
t S̄t =

d

∑
i=0

󰀓
Hi,+

t Si − Hi,−
t S̄i

t

󰀔
. (102)

Definition 103. An arbitrage is a self-financing trading strategy starting with initial value V0 =

0 with liquidation value VT ≥ 0 and P(VT > 0) > 0.

The idea of the FTAP is to construct a fictitious process X which is directly between S and S̄.
In this regard we call C a consistent price process if C is adapted and

Si ≤ Ci ≤ S̄i i = 0, 1 . . . , d.

An investment in C is at least as attractive as investing in the true market with transaction costs
since the investor buys at lower prices and sells at higher prices.

Theorem 104 (FTAP umder bid-/ask-spreads). The following statements are equivalent:
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(i) There are no arbitrage opportunities.

(ii) There exists a consistent price system such that there are no arbitrage opportunities for this price
process.

Proof. We roughly sketch the idea of the proof. Start with a market with no arbitrage opportu-
nities and define

K := {HT − ξ : H self-financing with V0 = 0 and ξ ∈ L0
+(R

d)}. (105)

K is the cone of attainable terminal portfolio holdings with zero initial investments when we
may remove assets at T. We define the solvency cone as those final positions which can be liqui-
dated at less then zero cost, i.e.

M :=
󰁱

H ∈ L0(Rd) : vH := H+
T ST − H− S̄T ≥ 0 and EP[vH ] = 1

󰁲
.

Absence of arbitrage now implies that

K ∩ M = ∅.

Let us assume that we are able to apply the Hahn-Banach separation theorem, yielding a
random vector g such that E[gξ] ≤ 0 for any ξ ∈ K and E[gξ] > 0 for any ξ ∈ M.

Now consider the unit vector e0 = (1, 0, . . . , 0) ∈ R1+d. Note that

e01F

E[S0
T1C]

∈ M

for any F ∈ F , since a positive position always liquidates at a positive value. Hence, E[g01F] >

0 for F with P(F) > 0, i.e. g0 > 0 almost surely. Normalizing, we may even assume E[g0] = 1.
Then we can define the equivalent probability measure Q ∼ P by dQ = g0dP.

The density processes Zi
t = E[gi|Ft], i = 0, . . . , d allow us to define the candidate for the

consistent price system C by

Ci
t :=

S0
t Zi

t
Z0

t

for 0 ≤ t ≤ T and i = 0, . . . , d. The corresponding discounted price process is denoted by
X = C(S0)−1.

Observe that Z0Xi = Zi is by definition a martingale, such that X is a Q-martingale, i.e. the
frictionless market with price process X satisfies (NA).

Finally, we need to verify that C is a consistent price system. To this end, fix i ∈ {1, . . . , d},
t ∈ [0, T] and F ∈ Ft. We consider the self-financing strategy H starting at 0 which buys Si at t
on F. This gives

HT =

󰀣
−1C

S̄i
t

S0
t

, 0, . . . , 0,1F, 0, . . . , 0

󰀤
.

By definition HT ∈ K, and hence

E
󰁫
1F

󰀓
Zi

T − Z0
T

S̄i
t

S0
t

󰀔󰁬
≤ 0.

Since Z is a martingale,

E
󰁫
1F

󰀓
Zi

t − Z0
t

S̄i
t

S0
t

󰀔󰁬
≤ 0.

such that Zi
t − Z0

t
S̄i

t
S0

t
≤ 0 since F was arbitrary. Since Z0 and S0 are non-negative, this is equiva-

lent to

Ci
t =

S0
t Zi

t
Z0

t
≤ S̄i

t.
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Considering a selling strategy instead shows Si
t ≤ Ci

t and the first part of the proof is finished.
For the reverse part, consider a self-financing strategy H for the market with bid ask-spreads.

We can construct an associated self-financing strategy G on the corresponding price system C
by Gi = Hi for i = 1, . . . , d and adjusting G0 such that G is self-financing. The difference of
G0 − H0 is of course increasing, such that

VG
T ≥ VH

T .

Now suppose VH
T ≥ 0. Then we also have VG

T ≥ 0 and by absence of arbitrage for the consis-
tent price system VG = VH = 0.





III
Term-structure modelling

In this chapter we study interest rate modelling and credit risk. References in this field are
Filipović (2009) and McNeil et al. (2015) and towards semimartingale modelling Gehmlich &
Schmidt (2018), Fontana & Schmidt (2018), Fontana et al. (2020).

1 Interest rate markets - the classical theory

In this section we meet different type of interest rates and the associated market conventions.
The basic observation in interest rate theory is that 1 EUR today has a different value than 1
EUR at a future timepoints, say in 1 year. To make this tradeable we consider the following
simple product.

Definition 1. A zero-coupon bond with nominal N and maturity T promises the owner the
payment of N units of currency at time T.

For simplicity we consider always zero-coupon bonds with nominal N = 1. The price of
the zero-coupon bond at time t ≤ T is denoted by P(t, T). The bond with maturity T will also
be called T-bond. We throughout assume that P(t, T) > 0 (which means no credit risk) for all
t ≤ T and that T 󰀁→ P(t, T) is differentiable for all t ≥ 0.

Example 2. Assume a bank offers you for your investment of 1 today the payment of 1.04 in
2 years. Then the associated yield (annualized) equals (1.04 − 1)/2. This is a so-called simple
yield. Can we fix the yield today for a future period, say from S to T? The answer is yes: we
mimic the following payment scheme:

• Invest 1 EUR at S

• Get x EUR at T > S

by the following trading strategy:

• Sell 1 S-bond at t.

• Buy P(t, S)/P(t, T) T-bonds at t.

This trading strategy has zero cost at t, the cash-flow of −1 at S and P(t, S)/P(t, T) at T.

The associated simple rates to the above example lead to the following definition.

Definition 3. The simple forward rate for the time interval [S, T] at time t ≤ S is given by

F(t, S, T) :=
1

T − S

󰀕
P(t, S)
P(t, T)

− 1
󰀖

.

The spot forward rate is
F(t, T) := F(t, t, T).
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Example 4. In comparison to yearly compounding one could also consider monthly, daily or
even finer compounding. In principle we observe that getting finer and finer leads to

󰀓
1 +

R
n

󰀔nT
→ eRT

which is called continuous compounding.

Definition 5. The continuously compounded forward rate for the time interval [S, T] at time t ≤ S
is given by

R(t, S, T) :=
1

T − S
log

P(t, S)
P(t, T)

and the continuously compounded spot rate is

R(t, T) := R(t, t, T).

Finally, we define instantaneous rates which make the time variation of the rates best visible
by letting T ↓ S. We compute

f (t, T) := lim
ε→0

1
ε

󰀓
log P(t, T)− log P(t, T + ε)

󰀔

→ −∂T log P(t, T).

By integration we obtain that
󰁝 T

t
f (t, s)ds = −

󰀃
log P(t, T)− log P(t, t)

󰀄
= − log P(t, T)

such that all bond-prices can be represented by forward rates in the following way

P(t, T) = exp
󰀕
−

󰁝 T

t
f (t, s)ds

󰀖
. (6)

This leads us to the following definition.

Definition 7. Assume that

P(t, T) = e−
󰁕 T

t f (t,u)du, 0 ≤ t ≤ T,

then f (t, T) is called the (instantaneous) forward rate for maturity T at time t ≤ T and the
(instantaneous) spot rate is given by

rt := f (t, t).

Exercise 8. Compute F(t, S, T) and R(t, S, T) from the forward rates.

1.1 The money market account

Seen in an idealized way, the money market account B is obtained by continuously investing in
the short rate,

dBt = Btrtdt B(0) = 1.

The solution is of course Bt = exp
󰁕 t

0 r(s)ds. This may be proxied by a roll-over strategy,

Bn
t =

n

∏
i=1

1
P(tn

i−1, tn
i )

=
n

∏
i=1

exp
󰀕 󰁝 tn

i

tn
i−1

f (tn
i−1, s)ds

󰀖

→ exp
󰀕 󰁝 t

0
rsds

󰀖
.
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1.2 Interest rate products

On the market we find fixed coupon bonds, floating range notes and swaps which we will
discuss now.

Definition 9. A fixed coupon bond with tenor structure T1 < · · · < Tn = T, coupon sizes
c1, . . . , cn and nominal N guarantees the payment of ci at Ti and N at T.

For any payment stream A given by At = ∑n
i=1 ci1{t≥Ti} we obtain the pricing formula

πA
t =

󰁝 Tn

t
P(t, s)dA(s) =

n

∑
i=1

1{Ti≤t}P(t, Ti)ci.

Consequently the price of the fixed coupon bond is

Pc
t =

n

∑
i=1

ci1{t≤Ti}P(t, Ti) + 1{t≤T}P(t, T)N.

Example 10. Can we also price random payments? Consider the investment of 1 in a T1-bond,
yielding ξ1 := P(0, T1)

−1 at 1. Pay out ξ1 − 1 at T1 and invest 1 in a T2-bond and so on. This
gives the payment of FTi−1 -measurable but random payments at Ti.

Definition 11. A floating range note (FRN) with tenor structure T0 < T1 < · · · < Tn = T and
notional N offers the payment of N(Ti − Ti−1)F(Ti−1, Ti) at Ti, i = 1, . . . , n and the payment of
N at T.

T0 is called reset date. As in the above example we obtain that the price of the floating range
note equals

pFRN
t = P(t, T0)N.

Exercise 12. Consider a deterministic term structure, i.e. deterministic forward rates f (t, T)
and prove that the value of the payment stream given by

At =
n

∑
i=1

(Ti − Ti−1)F(Ti−1, Ti)1{t≥Ti} + 1{t≥T}

coincides with pFRN
t .

1.3 Interest rate swaps

The holder of a payer swap pays fixed rates in exchange for floating rates, and vice versa for a
receiver swap.

Definition 13. The holder of a payer interest rate swap with tenor structure T0 < T1 < · · · <
Tn = T and notional N

• pays N(Ti − Ti−1)κ

• receives N(Ti − Ti−1)F(Ti, Ti−1)

at times Ti, i = 1, . . . , n.
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Note that no notional is exchanged in a swap agreement. We compute the price of the payer
swap

Πp
t = N

󰁫 n

∑
i=1

P(t, Ti)(Ti − Ti−1)
󰀓

F(Ti, Ti−1)−
n

∑
i=1

κ
󰀔󰁬

= N
󰁫

P(t, T0)− P(t, T)− κ
n

∑
i=1

P(t, Ti)(Ti − Ti−1)
󰁬
.

The value of the receiver swap equals
Πr

t = −Πp
t .

Definition 14. The swap rate for the tenor structure T0 < T1 < · · · < Tn = T is the rate κ

leading to zero value of the associated swap.

We compute the swap rate to

Rswap
t =

P(t, T0)− P(t, Tn)

∑n
i=1(Ti − Ti−1)P(t, Ti)

, t ≤ T0.

Exercise 15. The swap rate can be seen as a weighted sum of the forward rates. Compute the
weights.

1.4 Duration and convexity

Duration and convexity measure the first and second order sensitivity of bonds with respect to
parallel shifts of the yield curve. In this regard define the yield yi = R(t, Ti) such that the value
of a fixed coupon bond equals

Pc
t =

n

∑
i=1

1{Ti≥t}cie−yi(Ti−t).

Define the associated duration by

Dt :=
1
Pc

t

n

∑
i=1

1{Ti≥t}ciTie−yi(Ti−t).

Then for t ≤ T1

∂s

n

∑
i=1

cie−(yi+s)(Ti−t)
󰀏󰀏󰀏
s=0

= −DPc
t .

The second derivative is called convexity

Ct :=
1
Pc

t

n

∑
i=1

1{Ti≥t}ci(Ti − t)2e−yi(Ti−t).

And we obtain the important second-order expansion by the Taylor formula:

∆Pc
t ≈ −DtPc

t ∆y +
1
2

CtPc
t (∆y)2.

2 What we need ...

We shortly reframe our knowledge on no-arbitrage theory in the setting considered here.
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2.1 From no-arbitrage theory

As is customary in financial literature we will mainly use the claim that the existence of an
equivalent martingale measure (EMM) is sufficient for absence of arbitrage. Note that we con-
sider typically an infinite-dimensional market and the right concept is no asymptotic free lunch
with vanishing risk (NAFLVR), see for example Klein et al. (2016).

To obtain arbitrage-free prices of contingent claim we proceed as follows: specify an EMM Q
and price a T-claim X (a FT-measurable random variable such that the following expectation
exist) by

πX
t := S0

t EQ

󰀗
X
S0

T
|Ft

󰀘
.

Then the market enlarged by πX , (S0, . . . , Sd, πX) is free of arbitrage. Recall Bayes’ theorem:

Theorem 16. Consider a measure 󰁨P such that P ≪ 󰁨P. Let Λ := dP/d󰁨P. For any random variable
X with E|X| < ∞ and any σ-field G ⊂ F

E[X|G ] =
󰁨E[XΛ|G ]
󰁨E[Λ|G ]

P-a.s. (17)

As a next step, define

πt :=
1
S0

t
EQ

󰀗
dQ
dP

|Ft

󰀘
.

Then Bayes’ rule implies that

πX
t = S0

t EQ

󰁫 X
S0

T
|Ft

󰁬
= S0

t

E
󰁫

X
S0

T

dQ
dP |Ft

󰁬

E
󰁫

dQ
dP |Ft

󰁬

=
EQ

󰁫
XπT |Ft

󰁬

πt
.

We also find that π is a martingale, i.e.

πt := EQ

󰁫 1
S0

T

dQ
dP

|Ft

󰁬
.

It plays a role of the Girsanov density in our financial context and is often called state-price
density process.

Example 18. We determine the T-bond price by the state price density. Note

P(t, T) = E
󰁫1 πT

πt
|Ft

󰁬
= EQ

󰁫 S0
t

S0
T
|Ft

󰁬
.

If the numèraire S0 is the bank account S0
t = exp

󰀓 󰁕 t
0 rsds

󰀔
we obtain

P(t, T) = EQ
󰁫

exp
󰀓
−

󰁝 T

t
rsds

󰀔
|Ft

󰁬
. (19)
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2.2 The stochastic Fubini Theorem

It will be a central tool in the following Heath-Jarrow-Morton approach to use
󰁝 T

t

󰁝 t

0
b(s, u)dWs du =

󰁝 t

0

󰁝 T

t
b(s, u)du dWs,

a problem which requires a stochastic version of the Fubini theorem. It is quite surprising that
very strong assumptions are needed for the stochastic Fubini theorem to hold (in contrast to
the classical Fubini theorem).

Let us first recall the monotone class theorem from the lecture on stochastic processes (Theo-
rem I.3.2 there)

Theorem 20 (Monotone class theorem). Let H be a set of bounded functions S → R, s.t.

(i) H is a R-vector space,
(ii) 1 ∈ H ,
(iii) for a sequence ( fn) ≥ 0 in H , with fn ↑ f where f is bounded it holds that f ∈ H .

If a set C ⊆ H of bounded functions S → R, is closed under multiplication, then H contains all
bounded σ(C )-measurable functions.

Recall that the monotone class theorem is an important tool when we want to deal with
classes of stochastic processes, for example predictable ones, adapted ones, etc.

The integrand (b, u) in the above equation is allowed to depend on an additional parameter.
We consider a general measurable space A, A where this parameter can lie in. Recall that
we denoted by P the σ-algebra of predictable processes, i.e. the σ-algebra generated by all
adapted processes which are càg (left continuous).

We further introduce a convergence which is slightly weaker than convergence in the Emery
topology.

Definition 21. A sequence of processes Xn and a process X for which sup[0,t] |Xn − X| is mea-
surable for all n is said to converge uniformly on compacts in probability (ucp), if

P
󰀓

sup
[0,t]

|Xn − X| > K
󰀔
→ 0

for all K, t > 0.

Note that for càdlàg processes the supremum is measurable, but in general it might not
be. This convergence is metrizable and the space of càdlàg (continuous) processes is complete
under this topology. As an exercise, give an example of processes which converge in u.c.p.
but not in the semimartingale (Emergy) topology. A further exercise would be to deduce ucp
convergence from semimartingale convergence.

We have the following theorem on dominated convergence of stochastic integrals (see Theo-
rem 2.32 in ?).

Theorem 22. Let X be a semimartingale and (Hn) a sequence of predictable processes converging a.s. to
H. If there exists G ∈ L(X), such that |Hn| ≤ G for all n, then Hn, H ∈ L(X) and

Hn · X
ucp−−→ X.

We are now able to prove our first step towards the Fubini theorem.

Proposition 23. Let X be a semimartingale with X0 = 0 and let H(a, t, ω) = Ha
t (ω) be A ⊗ P-

measurable and bounded. Then there is a function Z ∈ A ⊗ B(R+) ⊗ F such that for each a ∈ A,
Za = Z(a, ., .) is a càdlàg, adapted version of Ha · X.
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Proof. We use the monotone class theorem. In this regard, let H be the class of bounded A ⊗
P-measurable functions such that the claim holds.

Consider K bounded predictable, f bounded, A -measurable and H = K f , then
󰁝 t

0
H(a, s, ·)dXs =

󰁝 t

0
f (a)K(s, ·)dXs = f (a)

󰁝 t

0
K(s, ·)dXs, (24)

and H ∈ H . Moreover, H is a vector space and 1 ∈ H . Theorem 22 also shows that it is a
monotone class. Hence, the monotone class theorem yields the result.

Theorem 25. Let X be a semimartingale, H(a, t, ω) = Ha
t (ω) be A ⊗P-measurable and bounded and

let µ be a finite measure on (A, A ). Let Za be the càdlàg version of Ha · X from Proposition 23.
Then,

Y =
󰁝

A
Zaµ(da)

is a càdlàg version of H · H where Ht =
󰁕

A Ha
t µ(da).

Proof. First we stop and therefore may assume that X ∈ H 2. The finite variation part of the
semimartingale X satisfies the claim by the classical Fubini theorem, such that we may assume
X is a martingale with E[X]∞ < ∞.

Consider Ha
t (ω) = f (a)K(t, ω), where K is bounded and predictable, and f is bounded and

A -measurable. Then K ∈ L(X) and
󰁕
| f |dµ < ∞. Hence Za = f K · X and

󰁝

A
Za

t µ(da) =
󰁝

A
f (a)K · Xµ(da)

=
󰀓 󰁝

A
f (a)µ(da)K

󰀔
· X = H · X.

By linearity this holds for the vector space generated by all processes of the form K f .
For the monotone class theorem, consider Hn → H and let Za

n,t = Ha
n · X be the càdlàg

version according to Proposition 23. Then, by Jensens’ inequality applied to the probability
measure µ(A)−1µ,

1
µ(A)

󰀕
E
󰁫 󰁝

A
sup

R

|Za
n,t − Za

t | µ(da)
󰁬󰀖2

≤ E
󰁫 󰁝

A
sup

R

(Za
n,t − Za

t )
2 µ(da)

󰁬

=
󰁝

A
E
󰁫

sup
R

(Za
n,t − Za

t )
2
󰁬

µ(da)

≤ 4
󰁝

A
E
󰁫
(Za

n,∞ − Za
∞)2

󰁬

= 4
󰁝

A
E
󰁫
[Za

n − Za]∞
󰁬

µ(da),

using Doobs maximal inequality and that for a martinale M, M2 − [M] is again a martingale.
Since Za = Ha · X and Za

n = Ha
n · X,

= 4
󰁝

A
E
󰁫 󰁝 ∞

0
(Ha

n,s − Ha
s )

2 d[X]s
󰁬
µ(da) → 0

by appropriate and repeated use of dominated convergence.

3 The Heath-Jarrow-Morton approach

In the late 1980’s Heath et al. (1992) started looking at dynamic models for the whole term
structure. The starting point are the forward rates. We assume that they are Itô-processes of the
form

f (t, T) = f (0, T) +
󰁝 t

0
a(s, T)ds +

󰁝 t

0
b(s, T)⊤dWs.
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We remark that W is a d-dimensional Brownian motion, such that if we integrate with a d-
dimensional process b, we need to write b⊤dW to obtain a one-dimensional integral. We will
continue this kind of notation in this section.

We will need the following assumptions

f (0, ·) is B-measurable, (26)

a, b are Prog ⊗B-measurable, (27)
󰁝 T

0

󰁝 T

0
|a(s, t)|ds dt < ∞ for all T ≥ 0, (28)

sup
s,t≤T

󰀂 b(s, t) 󰀂< ∞ for all T ≥ 0. (29)

To study absence of arbitrage1 we study equivalent measures of the form 1 The arbitrage-theory of bond markets
in general is more subtle, compare for
example Cuchiero et al. (2020) and
Klein et al. (2016).

dQ = E∞(γ⊤ · W) dP

for some γ ∈ L(W). Then W∗ := W −
󰁕 ·

0 γsds is a Q-Brownian motion. We obtain the following,
sufficient condition for absence of arbitrage:

(B−1
t P(t, T))0≤t≤T is Q-local martingale for all T > 0. (30)

We are interested in the Q-dynamics of f (t, T) where we use the representation

f (t, T) = f (0, T) +
󰁝 t

0
a∗(s, T)ds +

󰁝 t

0
b(s, T)⊤dW∗(s).

Theorem 31. Assume that (26)–(29) hold. Then, the no-arbitrage condition (30) holds if and only if

−
󰁝 T

t
a(t, u)du +

1
2
󰀂 B(t, T) 󰀂2= −B(t, T)⊤γ(t) (32)

for all T, dP ⊗ dt-a.s. with

B(t, T) = −
󰁝 T

t
b(t, u)du.

In this case

a∗(t, T) = b(s, T)
󰁝 T

s
b(s, u)⊤du. (33)

The equation (33) is called HJM-drift condition. We will also show that discounted bond-
prices are stochastic exponentials, i.e.

B−1
t P(t, T) = P(0, T)Et

󰀃
B(·, T)⊤ · W∗󰀄.

The proof will be in several steps.

Lemma 34. The zero coupon bond is an Itô-process satisfying

dP(t, T)
P(t, T)

=
󰀃
rt + α(t, T)

󰀄
dt + B(t, T)dWt

where

α(t, T) := −
󰁝 T

t
a(t, u)du +

1
2
󰀂 B(t, T) 󰀂2 .
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Proof. We first consider

log P(t, T) = −
󰁝 T

t
f (t, u)du

= −
󰁝 T

t

󰀗
f (0, u) +

󰁝 t

0
a(s, u)ds +

󰁝 t

0
b(s, u)⊤dWs

󰀘
du

= −
󰁝 T

t
f (0, u)du −

󰁝 t

0

󰁝 T

t
a(s, u)du ds −

󰁝 t

0

󰁝 T

t
b(s, u)⊤du dWs

= −
󰁝 T

0
f (0, u)du −

󰁝 t

0

󰁝 T

s
a(s, u)du ds −

󰁝 t

0

󰁝 T

s
b(s, u)⊤du dWs

+
󰁝 t

0
f (0, u)du +

󰁝 t

0

󰁝 t

s
a(s, u)du ds +

󰁝 t

0

󰁝 t

s
b(s, u)⊤du dWs

where we apply the stochastic Fubini theorem, Theorem 25. Moreover note that by the classical
Fubini theorem, 󰁝 t

0

󰁝 t

s
a(s, u)du ds =

󰁝 t

0

󰁝 u

0
a(s, u)ds du

and similarly for the other integrals in the last line. Summarizing, the last line equals
󰁕 t

0 r(u)du.
Hence,

log P(t, T) = −
󰁝 T

0
f (0, u)du −

󰁝 t

0

󰁝 T

s
a(s, u)du ds +

󰁝 t

0
v(s, T)dWs +

󰁝 t

0
r(u)du.

Applying the Itô-formula yields that

dP(t, T) = P(t, T)
󰁫󰀓

r(t)−
󰁝 T

t
a(t, u)du +

1
2
󰀂 v(t, T) 󰀂2

󰀔
dt + v(t, T)dWt

󰁬

and we conclude.

We are ready to prove the main result.

Proof. We derive the dynamics of the discounted bond prices by the Itô-formula and Lemma
34,

d
󰀃

B−1
t P(t, T)

󰀄
= P(t, T)

󰀓
α(t, T)dt + B(t, T)⊤dWt

󰀔
.

Girsanov’s theorem yields that W∗ = W −
󰁕 t

0 γ⊤(s)ds is a Q-Brownian motion. Hence,

d
󰀃

B−1
t P(t, T)

󰀄
= P(t, T)

󰀓
(α(t, T) + B(t, T)⊤γ(t))dt + B(t, T)⊤dW∗

t

󰀔
.

This process is a local martingale if and only α(t, T) + B(t, T)⊤γ(t)) vanishes (being equivalent
to (32)) and B(·, T) ∈ L(W) (which is implied by (29)).

To obtain the HJM-drift condition we differentiate once more: note that α(t, T)+ B(t, T)⊤γ(t))
is differential (w.r.t. T) such that we obtain by differentiation

0 = ∂Tα(t, T) + ∂T B(t, T)γ⊤(t)

= −a(t, T) + b(t, T)⊤
󰁝 T

t
b(t, u)du − b⊤(t, T)γ(t)

= −a(t, T) + b(t, T)⊤
󰁝 T

t
b(t, u)du,

and we obtain the drift condition. On the converse it is straightforward to check that the drift
condition implies absence of arbitrage.
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4 Credit risk modelling

In this section we start with static modelling of credit risk with a fixed time horizon. If there
is frequently updated information on the underlying credits, an intensity based approach as
studied in the following chapter seems more appropriate. This is the case in credit derivatives
pricing and hedging. On the other side, if one studies a large portfolio of creditors with infre-
quent information updates, the static viewpoint can be useful as it is the case in typical credit
risk management situations. It also turns out to be much simpler.

4.1 Intoduction to credit risk

In his landmark paper Merton (1974) applied the framework of Black & Scholes (1973) to the
pricing of a corporate bond. A corporate bond promises the repayment F at maturity T. Since
the issuing company might not be able to pay the full amount of money back, the payoff is
subject to default risk.

Let Vt denote the firrm’s value at time t. If, at time T, the firm’s value VT is below F, the
company is not able to make the promised repayment so that a default event occurs. In Merton’s
model it is assumed that there are no bankruptcy costs and that the bond holder receives the
remaining VT , thus facing a financial loss. If we consider the payoff of the corporate bond in
this model, we see that it is equal to F in the case of no default (VT ≥ F) and VT otherwise, i.e.,

1{VT≥F}F + VT1{VT<F} = F − (F − VT)
+.

If we split the liabilities into smaller bonds with face value 1, then we can replicate the pay-
off of this bond by a portfolio of a riskless bond p0(t, T) with face value 1 (long) and 1/F puts
with strike F (short).

Let (Ω, F , F, P) be a filtered probability space where F satisfies the usual conditions. We
consider a setup similar to the Black-Scholes model: the short rate r is constant, such that the
bank account equals B(t) = ert and risk-neutral bond prices are given by

P(t, T) = e−r(T−t).

Moreover, we assume that V is the unique strong solution of the stochastic differential euqa-
tion

dVt = Vt
󰀃
µdt + σdWt

󰀄
, V(0) = v0

with σ, v0 > 0. Note that V is not a traded asset. There exist many equivalent martingale
measures (in fact every equivalent measure is also a martingale measure) and we describe
them by the means of the Girsanov theorem. Fix a finite time horizon T. Every equivalent
measure Q admits a density of the form

ZT = ET(a · W)

with some progressively measurable process a such that E[ZT ] = 1. A sufficient criterion for
this is Novikov’s criterion. Under the measure Q

W∗
t := Wt −

󰁝 t

0
asds, 0 ≤ t ≤ T

is a Brownian motion. We obtain that V satisfies

dVt = Vt
󰀃
(µ + σat)dt + σdW∗

t
󰀄
, V0 = v0

which is notably more complicated than the dynamics under P. One key insight of arbitrage-
free pricing is that, changing to an equivalent martingale measure implies vanishing drift. Un-
fortunately only for all traded and discounted assets, which is not the case for V. We therefore
make the following assumption:
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(A1) Under Q, the drift of V under Q equals a constant

µ∗ := µ + σat, 0 ≤ t ≤ T

P-a.s.

The Girsanov density is then given by at ≡ (µ∗ − µ)/σ which turns out to be a constant as
well. The additional yield over the risk-free rate is an important quantity, which is called credit
spread.

Definition 35. For a defaultable T-bond with price process p(·, T) the process s = (s(t, T))0≤t≤T

given by

s(t, T) = − 1
T − t

log
p(t, T)
P(t, T)

is called credit spread.

Recall that P(t, T) was the price of a risk-free bond with maturity T.

Proposition 36. Under (A1), the price of the defaultable bond at time t ≤ T equals

p(t, T) = e−r(T−t)Φ(d2) +
Vt

F
e(µ

∗−r)(T−t)Φ(−d1)

with

d2 =
(µ∗ − σ2/2)(T − t) + ln(Vt/F)

σ
󰁳
(T − t)

,

and

d1 =
(µ∗ + σ2/2)(T − t) + ln(Vt/F)

σ
󰁳
(T − t)

.

Moreover,

s(t, T) = − 1
T − t

log
󰀓

Φ(d2) +
Vt

Fe−µ∗(T−t)
Φ(−d1)

󰀔
.

Here Φ denotes the cumulative distribution function of the standard normal distribution.
The defaultable bond is therefore cheaper than the default-free bond because it carries addi-
tional risk.

A main criticism of the Merton model is that s(t, T) → 0 as t → T which is easy to see.
However, its practical implementation in the KMV approach became famous.

A further problem is that defaults can only happen at T. This was improved by so-called
first-passage time approaches, as pioneered in Black & Cox (1976). Including jumps also allows
for a default coming unforeseen and we discuss this approach as proposed in Zhou (2001).

Because change of measure for processes with jumps is not part of this course, we assume
that we directly work under the risk-neutral measure Q.

Consider i.i.d. U1, U2, . . . and a Poisson process N with intensity λ and a Brownian motion
W∗, all being independent. The firm value is the unique strong solution of

dVt = Vt−
󰀃
µ∗dt + σdW∗

t + dJt
󰀄
, t ≥ 0 (37)

where J(t) = ∑Nt
i=1 Ui is a compound Poisson process. First, observe that

∆Vt = Vt−∆Jt.

We denote the jumping times of N by s1, s2, . . . and obtain that

Vsi = Vsi−(Ui − 1).
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Consequently, V has multiplicative jumps, and (U − 1) denote the size of the jump factor and
the SDE (37) has the solution

V(t) = V(0)
Nt

∏
i=1

(Ui − 1) exp
󰀓
(µ∗ − σ2

2
)t + σW∗

t

󰀔
, t ≥ 0.

As in the Merton model we consider default at T when VT < K. The bond prices are com-
puted in the following proposition.

Proposition 38. Assume Ui = 1 + eηi with i.i.d. and normally distributed η1, η2, . . . . Assume the
bond-holder receives zero at default. Then

p(t, T) = e−(r+λ)(T−t)
∞

∑
k=0

F(k, T − t)

where for k = 0, 1, 2, . . . the function F is given by

F(k, t) =
(λt)k

k!
Φ
󰀕
(µ∗ − σ2/2)t + k log(E[U1]− 1)− kσ2

η /2 − log(F/Vt)󰁴
σ2t + kσ2

η

󰀖
.

Proof. We compute the bond-price for t = 0, the general expression following from the inde-
pendent and stationary increments of W and J. As N(T) is Poisson distributed with parameter
λT, we have that

Q(NT = k) = e−λT (λT)k

k!
.

Consequently, by the risk-neutral pricing rule

p(0, T) = EQ

󰁫
e−rT1{VT≥F}

󰁬
= e−rT ∑

k≥0
e−λT (λT)k

k!
· D(k)

with

D(k) = Q
󰀕

V0

k

∏
i=1

(Ui − 1)e(µ
∗−σ2/2)T+σWT ≥ F

󰀖

= Q
󰀕 k

∑
i=1

ηi + (µ∗ − σ2/2)T + σWT ≥ log(F/V0)

󰀖
.

The term on the l.h.s. is normally distributed with variance kσ2
η + σ2T and mean kE[η1] + (µ∗ −

σ2/2)T. As U1 = 1 + exp(η1) we obtain, using the Laplace transform of the normal distribution
that

E[U1] = 1 − E[eη1 ] = 1 + eE[η1]+1/2σ2
η ,

such that

E[η1] = log(E[U1]− 1)−
σ2

η

2
.

Note that Q(a + bξ ≥ x) = Φ((a − x)/b) for ξ ∼ N (0, 1) and, summarizing

D(k) = Φ
󰀕
(µ∗ − σ2/2)T − log(F/V0) + k log(EU1 − 1)− kσ2

η /2
󰁴

kσ2
η + σ2T

󰀖
.
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A first-passage time model is of the form

τ = inf{t ≥ 0 : Λ(t) ≥ Θ}.

Exercise 39. Find the corresponding expression for the Merton model.

4.2 Reduced-form credit modelling

An interesting alternative model approach to credit is the so-called reduced-form modelling
of credit. In contrast to the Merton model, where an explicit mechanism leading to default is
specified, here a probabilistic model is used which is then calibrated to data.

A doubly-stochastic model for credit risk is of the form

τ = inf{t ≥ 0 : Λt ≥ Θ},

here Λ and Θ are independent (therefore doubly stochastic), and Λ is increasing.

Example 40 (Intensity-based approach). This approach leads to the simplest setting. Given a
non-negative, progressively measurable process λ, we set

Λt :=
󰁝 t

0
λsds,

and assume that Θ is independent of Λ and standard exponential.
Then,

P(τ > T|τ > t, F Λ
T ) = 1{τ>t}P(τ > T|τ > t, F Λ

T )

= 1{τ>t}P(Θ > ΛT | Θ > Λt, F Λ
T )

= 1{τ>t}P(Θ′ > ΛT − Λt| F Λ
T )

= 1{τ>t}eΛT−Λt .

Now we continue with a more general setting. Introduce the default indicator process

Ht = 1{t≤τ}

since this is an increasing process, hence a submartingale, its Doob-Meyer decomposition exists
and we denote it by

Ht = Mt − Hp
t

with a martingale M and an increasing, predictable process Hp.
The goal is now to provide a sufficiently large class of predictable processes for Hp which

captures stylized facts. In particular we would be interested in Hp having predictable jumps.

Definition 41. We call a random time U announced if there exists an F-stopping time S with
S < U almost surely and U is FS-measurable.

Any announced time is predictable. Announced times are a highly tractable class of pre-
dictable times.

We say that H is in the intensity-based setting, if

Hp
t =

󰁝 t∧τ

0
hsds.



76 III – Term-structure modelling

Example 42 (Beyond stochastic continuity). The intensity-based setting is a case very often
considered. It neglects however, that many jumps occur at predictable times. This restriction
was relaxed in Gehmlich & Schmidt (2018), where it was assumed that

Hp
t =

󰁝 t∧τ

0
hsds + ∑

Ui≤t∧τ

Γi,

where Ui is announced at Si and Γi is FSi -measurable.

We extend the HJM-setting to the defaultable setting under zero recovery by starting from the
following assumption:

P(t, T) = 1{τ>t} exp
󰀕
−

󰁝 T

t
f (t, u)du

󰀖
, 0 ≤ t ≤ T ≤ T∗. (43)

As previously, we assume that the processes f are Itô processes of the form

f (t, T) = f (0, T) +
󰁝 t

0
a(s, T)ds +

󰁝 t

0
b(s, T) · dWs, (44)

We will need the following technical assumptions. Let us assume we work on a filtered
probability space (Ω, F , F, Q∗), where Q∗ is a candidate for a risk-neutral measure, i.e. equiva-
lent to the objective measure.

(B1) The process h is non-negative, predictable and integrable on [0, T∗]:
󰁝 T∗

0
|hs|ds < ∞, Q∗-a.s.,

(B2) the initial forward curves f (ω, 0, t) are F0 ⊗B-measurable, and integrable on [0, T∗]:
󰁝 T∗

0
| f (0, u)|du < ∞, Q∗-a.s.,

(B3) the drift parameters a(ω, s, t) are R-valued, and O ⊗ B-measurable. The parameter a is
integrable on [0, T∗]:

󰁝 T∗

0

󰁝 T∗

0
|a(s, t)|ds dt < ∞, Q∗-a.s..

(B4) the volatility parameter b(ω, s, t) is Rn-valued, O ⊗B-measurable, and bounded on [0, T∗]:

sup
s,t≤T∗

󰀂 b(s, t) 󰀂< ∞, Q∗-a.s.

The following result gives the desired drift condition rendering the measure Q∗ an equiva-
lent local martingale measure. Set

ā(t, T) =
󰁝 T

t
a(t, u)du, b̄(t, T) =

󰁝 T

t
b(t, u)du.

Theorem 45. Assume that (B1) - (B4) hold. Then Q∗ is an ELMM if and only if the following two
conditions hold:

f = r + h, (46)

ā(t, T) =
1
2
󰀂 b̄(t, T) 󰀂2, (47)

0 ≤ t ≤ T ≤ T∗, dQ∗ ⊗ dt-almost surely on {t < τ}.



III.4. Credit risk modelling 77

In principle this means that the HJM condition (compare (30)) needs to hold and the risky
short rate f (s, s) is the sum of risk-free short-rate r and default intensity h.

The proof bases on the Ito-formula and the Fubini theorem, as previously. The main novelty
is the following step:

Proof of Theorem 45. Set F(t, T) := exp
󰀓
−
󰁕 T

t f (t, u)du
󰀔

and E(t) := 1{τ>t} such that

P(t, T) = Et F(t, T).

Then, by integration by parts,

dP(t, T) = F(t, T) dEt + Et−dF(t, T) + d[E, F(., T)]t (48)

=: (1′′) + (2′′) + (3′′)

and we compute the terms next. Regarding (1′′), we obtain

Et +
󰁝 t∧τ

0
hsds =: M1

t (49)

is a martingale. Regarding (2′′), we have that

dF(t, T) = F(t, T)
󰀓

f (t, t)− ā(t, T) +
1
2
󰀂 b̄(t, T) 󰀂2

󰀔
dt − F(t, T)b̄(t, T)dWt (50)

by Theorem 31.
Inserting (49) and (50) into (48), we obtain that on {t < τ},

dP(t, T)
P(t−, T)

=
󰀓
− h(t) + f (t, t) +

1
2
󰀂 b̄(t, T) 󰀂2 −ā(t, T)

󰀔
dt + dM2

t

with a local martingale M2. The discounted price process (X−1
t P(t, T))0≤t≤T is a local martin-

gale if and only if the predictable part in the semimartingale decomposition vanishes. Letting
t = T one recovers

0 =
󰁝 t

0
( f (s, s)− h(s)− rs)ds

for 0 ≤ t ≤ T∗, on {t < τ}, which is equivalent to f (s, s) = h(s) + rs, such that first (46) and
then (47) follow. The converse is easy to see.

4.3 An extension of the HJM-approach

Now we are in the position to extend the HJM approach in an appropriate way to obtain
arbitrage-free defaultbale term structure models under weak assumptions. Consider a measure
Q∗ ∼ P. Our intention is to find conditions which render Q∗ an equivalent local martingale
measure. From now on, only occasionally the measure P will be used, such that all appearing
terms (like martingales, almost sure properties, etc.) are to be considered with respect to Q∗ if
not stated otherwise.

We return to the general setting of Example 42: recall that Ht = 1{τ>t} was the default
indicator process and Hp its compensator. To keep the arising technical difficulties at a mini-
mum, we assume that Hp can be decomposed in an absolutely continuous and a (predictable)
pure-jump part, such that

Hp
t =

󰁝 t∧τ

0
hsds +

󰁝 t∧τ

0

󰁝

R
xΓ(ds, dx), t ≥ 0, (51)
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with a non-negative, predictable process h and with a predictable integer-valued random mea-
sure.

We recall definition 41 of announced times. The intuition behind this definition is as follows:
at the announcement time S the market receives new information about a future date U (i.e.
S < U) at which default may happen with positive probability. For example, at time S the
market realises that a country has difficulties to pay some of its obligations which are due at
the coupon payment date U. Note that any deterministic, positive time is announced and that
an announced time is always predictable.

To ensure that the subsequent analysis is meaningful, we make the following technical as-
sumptions. We assume that (B1) holds and introduce

(C1) the random measure Γ(ds, dx) is given by

Γ([0, t], dx) =
N

∑
i=1

1{Ui≤t}δΓi (dx),

where each risky time Ui is announced, say by Si, and Γi : Ω → (0, 1) is FSi -measurable,
1 ≤ i ≤ N.

Assumption (C1) implies that the set U of (default) risky times is finite. This is a reasonable
assumption while working on a finite time interval. If Γi = 1, default happens with probability
one at time Ui, a case which we exclude for simplicity of exposition.

Regarding defaultable bond prices we will start from a forward-rate framework and allow
for discontinuities in the term structure at risky times. Consider current time t ∈ [0, T∗) and
a bond with maturity T ∈ (t, T∗]. If the risky time Ui was announced before time t, investors
will obtain an additional premium for the event {τ = Ui} only when T ≥ Ui. For T < Ui the
investors are not exposed to this risk and hence will not receive an additional premium. This
naturally leads to a discontinuity in the term structure T 󰀁→ P(., T) at Ui. Motivated by this, we
consider a family of random measures (µt)t≥0, defined by

µt(du) := ∑
Si≤t

δUi (du)

and assume that defaultable bond prices are given by

P(t, T) = 1{τ>t} exp
󰀕
−

󰁝 T

t
f (t, u)du −

󰁝 T

t
g(t, u)µt(du)

󰀖
, 0 ≤ t ≤ T ≤ T∗. (52)

The processes f and g are assumed to be Itô processes of the form

f (t, T) = f (0, T) +
󰁝 t

0
a(s, T)ds +

󰁝 t

0
b(s, T) · dWs, (53)

g(t, T) = g(0, T) +
󰁝 t

0
α(s, T)ds +

󰁝 t

0
β(s, T) · dWs, (54)

with an n-dimensional Q∗-Brownian motion W. By B we denote the Borel σ-algebra generated
by the open sets in R≥0 and by O we denote the optional σ-algebra generated by all F-adapted
càdlàg processes. We will need the following technical assumptions.

(C2) the initial forward curves f (ω, 0, t) and g(ω, 0, t) are F0 ⊗ B-measurable, and integrable
on [0, T∗]:

󰁝 T∗

0
| f (0, u)|+ |g(0, u)|du < ∞, Q∗-a.s.,

(C3) the drift parameters a(ω, s, t) and α(ω, s, t) are R-valued, and O ⊗ B-measurable. The
parameter a is integrable on [0, T∗]:

󰁝 T∗

0

󰁝 T∗

0
|a(s, t)|ds dt < ∞, Q∗-a.s.,
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while α is bounded on [0, T∗]:

sup
s,t≤T∗

|α(s, t)| < ∞, Q∗-a.s.,

(C4) the volatility parameter b(ω, s, t) is Rn-valued, O ⊗B-measurable, and bounded on [0, T∗]:

sup
s,t≤T∗

󰀂 b(s, t) 󰀂< ∞, Q∗-a.s.,

while β(ω, s, t) is Rn-valued, O ⊗B-measurable, and square integrable on [0, T∗]:

󰁝 T∗

0

󰁝 T∗

0
󰀂 β(s, t) 󰀂2 ds dt < ∞, Q∗-a.s.,

(C5) we assume that the dual predictable projection ν of the integer-valued random measure
µ(dt, du) = ∑n

i=1 δ(Si ,Ui)
(dt, du) satisfies ν(dt, du) = ν(t, du)dt with a kernel ν(ω, t, du), and

󰁝 T∗

0

󰁝 T∗

0
|e−g(t,u) − 1| ν(t, du)dt < ∞, Q∗-a.s.

Moreover Q∗(τ = Si) = 0 for all i ≥ 1.

Remark 55. Assumption (C5) requires that announcing times are totally inaccessible, i.e. come
as a surprise. Moreover, there is no default by news, i.e. τ does not coincide with an announc-
ing time. Both assumptions have been made to simplify the exposition but could be relaxed
without big difficulties at the cost of lengthier formulas.

The following result gives the desired drift condition rendering the considered measure Q∗

an equivalent local martingale measure. Set

ā(t, T) =
󰁝 T

t
a(t, u)du,

b̄(t, T) =
󰁝 T

t
b(t, u)du,

ᾱ(t, T) =
󰁝 T

t
α(t, u)µt(du),

β̄(t, T) =
󰁝 T

t
β(t, u)µt(du).

Theorem 56. Assume that (B1) and (C1)-(C5) hold. Then Q∗ is an ELMM if and only if the follow-
ing two conditions hold:

󰁝 t

0
f (s, s)ds + ∑

Ui≤t
g(Ui, Ui) =

󰁝 t

0
(rs + hs)ds − ∑

Ui≤t
log(1 − Γi), (57)

ā(t, T) + ᾱ(t, T) =
1
2
󰀂 b̄(t, T) + β̄(t, T) 󰀂2 +

󰁝 T

t

󰀓
e−g(t,u) − 1

󰀔
ν(t, du), (58)

0 ≤ t ≤ T ≤ T∗, dQ∗ ⊗ dt-almost surely on {t < τ}.

In comparison to the classical HJM drift condition in the default-risk free case, ā(t, T) = 1
2 󰀂

b̄(t, T) 󰀂2, a number of additional terms appear here. First, Equation (57) under g(., .) = 0 and
U = ∅ is the condition in intensity-based dynamic term structure models, compare Equation
(46). The additional terms incorporate additional returns due to the extra default risk at risky
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times. It turns out, that if ∆Hp ∕= 0, then a classical HJM-approach with g(., .) = 0 allows for
arbitrage profits.

The additional term in (58),
󰁕 T

t

󰀓
e−g(t,u) − 1

󰀔
ν(t, du), appears as compensation for jumps

in the term structure at news news arrival times S1, S2, . . . and can be linked to similar expres-
sions in classical HJM-Models with jumps.

The following simple example illustrates the extension of our approach over intensity-based
models and builds up intuition on condition (57).

Example 59. Consider a non-negative integrable and progressive process λ, constants 0 < u1 <

· · · < uN , positive random variables λ′
1, . . . , λ′

N , with λ′
i being Fui -measurable, and set

Λt =
󰁝 t

0
λ(s)ds + ∑

ui≤t
λ′

i.

Let ζ be a standard exponential random variable, independent from Λ, and set

τ = inf{t ≥ 0 : Λt ≥ ζ}.

Here, we have ∆Hp
ui > 0 because ui is a risky time: by the memoryless-property of exponential

random variables,

Q∗(τ = ui|τ ≥ ui) = Q∗(λ′
i ≥ ζ) = E∗[1 − exp(−λ′

i)]. (60)

If Λ is deterministic and the short-rate vanishes, we obtain the following term-structure

P(t, T) = 1{τ>t}Q∗(τ > T| τ > t) = 1{τ>t} exp
󰀓
−

󰁝 T

t
λ(s)ds − ∑

ui∈(t,T]
λ′

i

󰀔
,

which clearly falls into the class of models considered here. A simple computation yields

Hp
t =

󰁝 t∧τ

0
λ(s)ds + ∑

i:ui≤(t∧τ)

(1 − e−λ′
i ) (61)

and it is easily checked that the drift conditions (57)-(58) hold. ⋄

The proof of Theorem 56 will make use of the following lemma in which we derive the
canonical decomposition of the second integral in (52), denoted by

I(t, T) :=
󰁝 T

t
g(t, u)µt(du), 0 ≤ t ≤ T. (62)

Lemma 63. Assume that (A1), (A2), and (B1), (B2) hold. Then, for each T ∈ [0, T∗] the process
(I(t, T))0≤t≤T is a special semimartingale and

I(t, T) =
󰁝 t

0
ᾱ(s, T)ds +

󰁝 t

0
β̄(s, T) · dWs +

󰁝 t

0

󰁝 T

0
g(s, u)1{s<u}µ(ds, du)−

󰁝 t

0
g(s, s)µU(ds)

with µU(ds) = ∑n
i=1 δUi (ds).

Proof. We start with the observation that, by the definition of µt,

I(t, T) =
󰁝 t

0

󰁝 T

t
g(t, u)µ(ds, du)

=
󰁝 t

0

󰁝 T

0
1{u>t}g(t, u)µ(ds, du)

=
󰁝 t

0

󰁝 T

0
1[0,u)(t)g(t, u)µ(ds, du). (64)
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The semimartingales (1[0,u)(t)g(t, u)) have the following canonical decompositions,

1[0,u)(t)g(t, u) = g(0, u) +
󰁝 t

0
1[0,u](v) dg(v, u) +

󰁝 t

0
g(v, u)d(1[0,u)(v))

= g(0, u) +
󰁝 t

0
1[0,u](v)α(v, u)dv +

󰁝 t

0
1[0,u](v)β(v, u) · dWv − g(u, u)1{u≤t} (65)

and we obtain that

(64) =
󰁝 t

0

󰁝 T

0
g(0, u)µ(ds, du) +

󰁝 t

0

󰁝 T

0

󰁝 t

0
1[0,u](v)α(v, u)dv µ(ds, du)

+
󰁝 t

0

󰁝 T

0

󰁝 t

0
1[0,u](v)β(v, u) · dWv µ(ds, du)−

󰁝 t

0

󰁝 T

0
g(u, u)1{u≤t}µ(ds, du)

=: (1′) + (2′) + (3′) + (4′).

With (C3) it is possible to interchange the appearing integrals as the integral with respect to µ

is a finite sum. Hence,

(2′) =
󰁝 t

0

󰁝 t

0

󰁝 T

0
1[0,u](v)α(v, u)µ(ds, du)dv

=
󰁝 t

0

󰁝 v

0

󰁝 T

0
1[0,u](v)α(v, u)µ(ds, du)dv +

󰁝 t

0

󰁝 t

v

󰁝 T

0
1[0,u](v)α(v, u)µ(ds, du)dv

=
󰁝 t

0

󰁝 v

0

󰁝 T

0
1[0,u](v)α(v, u)µ(ds, du)dv +

󰁝 t

0

󰁝 T

0

󰁝 s

0
1[0,u](v)α(v, u)dv µ(ds, du)

with an analogous expression for (3′). Note that the first term in the last line equals
󰁕 t

0 ᾱ(v, T)dv.
By (65),

󰁝 s

0
1[0,u](v)α(v, u)dv +

󰁝 s

0
1[0,u](v)β(v, u) · dWv = 1[0,u)(s)g(s, u)− g(0, u) + g(u, u)1{u≤s}

such that (64) is equal to
󰁝 t

0
ᾱ(v, T)dv +

󰁝 t

0
β̄(v, T) · dWv +

󰁝 t

0

󰁝 T

0
1[0,u)(s)g(s, u)µ(ds, du)−

󰁝 t

0

󰁝 T

0
1[s,t](u)g(u, u)µ(ds, du).

By Assumption (C1),
󰁝 t

0

󰁝 T

0
1[s,t](u)g(u, u)µ(ds, du) = ∑

Ui≤t
g(Ui, Ui) =

󰁝 t

0
g(s, s)µU(ds)

which is a special semimartingale and we conclude.

The previous lemma allows us to obtain the semimartingale representation of

G(t, T) := exp(−I(t, T)), 0 ≤ t ≤ T.

Proposition 66. Assume that the above assumptions hold. Then,

dG(t, T)
G(t−, T)

=

󰀕
− ᾱ(t, T) +

1
2
󰀂 β̄(t, T) 󰀂2 +

󰁝 T

t

󰀓
e−g(t,u) − 1

󰀔
ν(t, du)

󰀖
dt

− β̄(t, T) · dWt +
󰀓

eg(t,t) − 1
󰀔

µU(dt) + dM1
t ,

with a local martingale M1.

Proof. The Itô-formula together the representation of G given in Lemma 63 yields that

G(t, T) = G(0, T) +
󰁝 t

0
G(s−, T)

󰀓
− ᾱ(s, T) +

1
2
󰀂 β̄(s, t) 󰀂2

󰀔
ds −

󰁝 t

0
G(s−, T)β̄(s, T) · dWs

+
󰁝 t

0

󰁝 T

0
G(s−, T)

󰀓
e−g(s,u)1{u>s} − 1

󰀔
µ(ds, du) +

󰁝 t

0
G(s−, T)

󰀓
eg(s,s) − 1

󰀔
µU(ds). (67)

Using Assumption (C5), we compensate µ(ds, du) by ν(s, du)ds and obtain the result.
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Proof of Theorem 56. Set F(t, T) := exp
󰀓
−
󰁕 T

t f (t, u)du
󰀔

, E(t) := 1{τ>t} such that

P(t, T) = E(t)F(t, T)G(t, T).

Then, by integration by parts,

dP(t, T) = F(t, T)G(t−, T)dE(t) + E(t−)d(F(t, T)G(t, T)) + d[E, F(., T)G(., T)]t (68)

=: (1′′) + (2′′) + (3′′)

and we compute the according terms in the following. Regarding (1′′), we obtain from (51),
that

E(t) +
󰁝 t∧τ

0
hsds +

󰁝 t∧τ

0

󰁝

R
x Γ(ds, dx) =: M2

t (69)

is a martingale. Regarding (2′′), we have that

d(F(t, T)G(t, T)) = G(t−, T)dF(t, T) + F(t, T)dG(t, T) + d 〈Gc(., T), Fc(., T)〉t,

where Fc(., T) and Gc(., T) are the continuous local martingale parts of F(., T) and G(., T),
respectively. Computing the dynamics of F(t, T) gives

dF(t, T) = F(t, T)
󰀓

f (t, t)− ā(t, T) +
1
2
󰀂 b̄(t, T) 󰀂2

󰀔
dt − F(t, T)b̄(t, T)dWt. (70)

Together with Proposition 66 this leads to

d(F(t, T)G(t, T))
F(t, T)G(t−, T)

= M3
t +

󰀓
eg(t,t) − 1

󰀔
µU(dt)

+

󰀕
f (t, t)− ā(t, T) +

1
2
󰀂 b̄(t, T) + β̄(t, T) 󰀂2 −ᾱ(t, T)

󰀖
dt (71)

− (b̄(t, T) + β̄(t, T)) · dWt +
󰁝 T

t

󰀓
e−g(t,u) − 1

󰀔
ν(t, du)dt,

where we used that 󰀂 b̄(t, T) 󰀂2 + 󰀂 β̄(t, T) 󰀂2 +2b̄(t, T) · β̄(t, T)⊤ =󰀂 b̄(t, T) + β̄(t, T) 󰀂2 and a
local martingale M3. In view of (3′′), we obtain from (67) that

∆G(t, T)
G(t−, T)

=
󰁝 T

t
(e−g(t,u) − 1)µ({t}, du) + (eg(t,t) − 1)µU({t}).

By Assumption (B4), ∆E(t)µ({t}, R) = −∑i≥1 1{τ=t}1{Si=t} = 0. Hence, using (69),

∑
0<s≤t

∆E(s)∆G(s, T) =
󰁝 t

0
G(s−, T)(eg(s,s) − 1)µU({s})dE(s)

=
󰁝 t

0
G(s−, T)(eg(s,s) − 1)µU({s})dM2

s

−
󰁝 t∧τ

0

󰁝

R
G(s−, T)(eg(s,s) − 1)µU({s})x Γ(ds, dx);

(72)

where we used that for an integrable function f : R → R,
󰁕

f (s)µT({s})ds = 0 as µ is concen-
trated on a finite set. Note that (eg(t,t)µU({t}))t≥0 is predictable due to Assumption (A2) and
µU({s})Γ(ds, dx) = Γ(ds, dx).
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Inserting (69), (71) and (72) into (68), we arrive that on {t < τ},

dP(t, T)
P(t−, T)

= −h(t)dt −
󰁝

R
x Γ(dt, dx)

+
󰀓

f (t, t) +
1
2
󰀂 b̄(t, T) + β̄(t, T) 󰀂2 −ā(t, T)− ᾱ(t, T)

󰀔
dt

+
󰁝

R
(eg(t,t) − 1)µU(dt)

+
󰁝 T

t

󰀓
e−g(t,u) − 1

󰀔
ν(t, du)dt

−
󰁝

R
(eg(t,t) − 1)x Γ(dt, dx) + dM4

t

with a local martingale M4. The process (X−1
t P(t, T))0≤t≤T is a local martingale if and only if

the predictable part in the semimartingale decomposition vanishes. Letting t = T one recovers

0 =
󰁝 t

0
( f (s, s)− h(s)− rs)ds + ∑

i:Ui≤t

󰀓
eg(Ui ,Ui) − 1 − Γieg(Ui ,Ui)

󰀔

for 0 ≤ t ≤ T∗, on {t < τ}, which is equivalent to f (s, s) = h(s) + rs and

1 − e−g(Ui ,Ui) = Γi

on {Ui ≤ T∗ ∧ τ} such that (57) and (58) follow. The converse is easy to see.

Example 73 (Announced random times). Consider a Poisson process with intensity 1 whose
first N jumping times S1 < S2 < · · · < SN denote the arrival times of news. There is a
independent sequence (σi)i≥1 of positive random variables with distribution function Fσ and
set

Ui := Si + σi.

Then, Ui are announced by Si and we are just in a setting suggested by (B4). Assume for sim-
plicity that Fσ(x) = 1 − e−x, i.e. σ1 is standard exponentially distributed and let

τ = inf{t ≥ 0 : t + ∑
Ui≤t

1 ≥ Θ}

with a standard exponential random variable Θ, independent of all other appearing random
variables. Then there is no deterministic risky time, i.e. Q∗(τ = t) = 0 for all t ≥ 0. However,
each Ui is a risky time because

Q∗(τ = Ui|Si, σi, τ ≥ Ui) = 1 − e−1,

similar to Equation (60).



84 III – Term-structure modelling

4.4 Affine models

The aim of this section is to give an affine specification of our credit risky setting. In this case,
however, the risky times need to be deterministic, by Theorem 40.

We assume that U = {u1, . . . , uN} is the set of deterministic jump times, and – for sim-
plicity – a vanishing short rate rt = 0. The idea is to consider an affine process X and study
arbitrage-free doubly stochastic term structure models where the compensator Hp of the de-
fault indicator process H = 1{·≤τ} is given by

Hp
t =

󰁝 t

0

󰀓
φ0(s) + ψ0(s)⊤ · Xs

󰀔
ds +

n

∑
i=1

1{t≥ui}
󰀓

1 − e−φi−ψ⊤
i ·Xui

󰀔
. (74)

To ensure that Hp is non-decreasing we will require that φ0(s) + ψ0(s)⊤ · Xs ≥ 0 for all s ≥ 0
and φi + ψ⊤

i · Xui ≥ 0 for all i = 1, . . . , N.
Consider a state space in canonical form X = Rm

≥0 × Rn for integers m, n ≥ 0 with m + n = d
and a d-dimensional Brownian motion W. Let µ and σ be defined on X by

µ(x) = µ0 +
d

∑
i=1

xiµi, (75)

1
2

σ(x)⊤σ(x) = σ0 +
d

∑
i=1

xiσi, (76)

where µ0, µi ∈ Rd, σ0, σi ∈ Rd×d, for all i ∈ {1, . . . , d}. We assume that the parameters µi, σi,
i = 0, . . . , d are admissible in the sense of Theorem 10.2 in Filipović (2009). Then the continu-
ous, unique strong solution of the stochastic differential equation

dXt = µ(Xt)dt + σ(Xt)dWt, X0 = x, (77)

is an affine process X on the state space X by Theorem 41.
We call a bond-price model affine if there exist functions A : R≥0 × R≥0 → R, B : R≥0 ×

R≥0 → Rd such that

PM(t, T) = 1{τ>t}e−A(t,T)−B(t,T)⊤ ·Xt , (78)

for 0 ≤ t ≤ T ≤ T∗. The following proposition gives sufficient conditions such that the affine
model is arbitrage-free.

Proposition 79. Assume that φ0 : R≥0 → R, ψ0 : R≥0 → Rd are continuous, ψ0(s) + ψ0(s)⊤ · x ≥ 0
for all s ≥ 0 and x ∈ X and the constants φ1, . . . , φn ∈ R and ψ1, . . . , ψn ∈ Rd satisfy φi + ψ⊤

i · x ≥ 0
for all 1 ≤ i ≤ n and x ∈ X . Moreover, let the functions A : R≥0 × R≥0 → R and B : R≥0 × R≥0 →
Rd be the unique solutions of

A(T, T) = 0

A(ui, T) = A(ui−, T)− φi

−∂+t A(t, T) = φ0(t) + µ⊤
0 · B(t, T)− 1

2
B(t, T)⊤ · σ0 · B(t, T),

(80)

and

B(T, T) = 0

Bk(ui, T) = Bk(ui−, T)− ψi,k

−∂+t Bk(t, T) = ψ0,k(t) + µ⊤
k · B(t, T)− 1

2
B(t, T)⊤ · σk · B(t, T),

(81)

for 0 ≤ t ≤ T. Then, the doubly-stochastic affine model given by (78) is a family of local martingales, i.e.
the market is free of arbitrages.
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Proof. By construction,

A(t, T) =
󰁝 T

t
a′(t, u)du + ∑

i:ui∈(t,T]
φi

B(t, T) =
󰁝 T

t
b′(t, u)du + ∑

i:ui∈(t,T]
ψi

with suitable functions a′ and b′ and a′(t, t) = φ0(t) as well as b′(t, t) = ψ0(t).
We therefore arrive at a model of the structure

P(t, T) = 1{τ>t} exp
󰀓
−

󰁝 T

t
f (t, u)µM(du)

󰀔
, (82)

where µM(du) = du + ∑n
i=1 δui (du). In comparison with the HJM model, (78), yields the follow-

ing: on the one hand, for T = ui ∈ U , we obtain

f (t, ui) = φi + ψ⊤
i · Xt. (83)

Hence, the coefficients a(t, T) and b(t, T) in (53) for T = ui ∈ U compute to a(t, ui) = ψ⊤
i · µ(Xt)

and b(t, ui) = ψ⊤
i · σ(Xt).

On the other hand, for T ∕∈ U we obtain that f (t, T) = a′(t, T) + b′(t, T)⊤ · Xt. Then, the
coefficients a(t, T) and b(t, T) in the dynamics of f (t, T), see Equation (53), can be computed by
Itô’s formula as follows:

a(t, T) = ∂ta′(t, T) + ∂tb′(t, T)⊤ · Xt + b′(t, T)⊤ · µ(Xt)

b(t, T) = b′(t, T)⊤ · σ(Xt).
(84)

For the following, set ā′(t, T) =
󰁕 T

t a′(t, u)du and b̄′(t, T) =
󰁕 T

t b′(t, u)du and note that,

󰁝 T

t
∂ta′(t, u)du = ∂t ā′(t, T) + a′(t, t).

As ∂+t A(t, T) = ∂t ā′(t, T), and ∂+t B(t, T) = ∂t b̄′(t, T), we obtain from (84) that

ā(t, T) =
󰁝 T

t
a(t, u)µM(du) =

󰁝 T

t
a(t, u)du + ∑

ui∈(t,T]
ψ⊤

i · µ(Xt)

= ∂+t A(t, T) + a′(t, t) +
󰀃
∂+t B(t, T) + b′(t, t)

󰀄⊤ · Xt + B(t, T)⊤ · µ(Xt),

b̄(t, T) =
󰁝 T

t
b(t, u)µM(du) =

󰁝 T

t
b(t, u)du + ∑

ui∈(t,T]
ψ⊤

i · σ(Xt)

= B(t, T)⊤ · σ(Xt)

for 0 ≤ t ≤ T ≤ T∗. We now show that under our assumptions, the drift conditions hold. We
first concentrate on (57), which in our setting reads

󰁝 t

0
f (s, s)µM(ds) =

󰁝 t

0
f (s, s)ds + ∑

ui≤t
f (ui, ui)

=
󰁝 t

0
hsds − ∑

ui≤t
log(1 − Γi)

=
󰁝 t

0
(φ0(s) + ψ0(s)⊤ · Xs)ds + ∑

ui≤t
φi + ψ⊤

i · Xui

Since f (s, s) = a′(s, s) + b′(s, s)⊤ · Xs and a′(s, s) = φ0(s) as well as b′(s, s) = ψ0(s), this
condition is clearly satisfied. Next, we observe that for the second drift condition, (58), in our
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setting

󰁝 T

t
a(t, u)du +

󰁝 T

t
a(t, u)duµt(du) =

󰁝 T

t
a(t, u)µM(du) = ā(t, T). (85)

Then the second drift condition follows by (80), (81), and the affine specification (75), and (76).

Example 86. In the one-dimensional case we consider X, given as solution of

dXt = (µ0 + µ1Xt)dt + σ
√

XtdWt, t ≥ 0.

We assume for simplicity that u1 = 1 and N = 1 such that there is a single risky time, 1, and
choose µM(du) = δ1(du). Moreover, let φ0 = 0, ψ0 = 1 as well as φ1 = 0 and ψ1 ≥ 0, such that

Hp =
󰁝 t

0
Xsds + 1{t≥1}(1 − e−ψ1X1).

Hence the probability of having no default at time 1 just prior to 1 is given by e−ψ1X1 , compare
Example 59.

An arbitrage-free model can be obtained by choosing A and B according to Proposition 79
which can be immediately achieved using Lemma 10.12 from Filipović (2009) (see in particular

Section 10.3.2.2 on the CIR short-rate model): denote θ =
󰁴

µ2
1 + 2σ2 and

L1(t) = 2(eθt − 1),

L2(t) = θ(eθt + 1) + µ1(eθt − 1),

L3(t) = θ(eθt + 1)− µ1(eθt − 1),

L4(t) = σ2(eθt − 1).

Then

A0(s) =
2µ0

σ2 log
󰀓2θe

(σ−µ1)t
2

L3(t)

󰀔
, B0(s) = − L1(t)

L3(t)

are the unique solutions of the Riccati equations B′
0 = σ2B2

0 − µ1B0 with boundary condition
B0(0) = 0 and A′

0 = −µ0B0 with boundary condition A0(0) = 0. Note that with A(t, T) =

A0(T − t) and B(t, T) = B0(T − t) for 0 ≤ t ≤ T < 1, the conditions of Proposition 79 hold.
Similarly, for 1 ≤ t ≤ T, choosing A(t, T) = A0(T − t) and B(t, T) = B0(T − t) implies
again the validity of (80) and (81). On the other hand, for 0 ≤ t < 1 and T ≥ 1 we set u(T) =

B(1, T) + ψ1 = B0(T − 1) + ψ1, according to (81), and let

A(t, T) =
2µ0

σ2 log
󰀓 2θe

(σ−µ1)(1−t)
2

L3(1 − t)− L4(1 − t)u(T)

󰀔

B(t, T) = − L1(1 − t)− L2(1 − t)u(T)
L3(1 − t)− L4(1 − t)u(T)

.

It is easy to see that (80) and (81) are also satisfied in this case, in particular ∆A(1, T) = −φ1 =

0 and ∆B(1, T) = −ψ1. Note that, while X is continuous, the bond prices are not even stochas-
tically continuous because they jump almost surely at u1 = 1. We conclude by Proposition 79
that this affine model is arbitrage-free. ⋄



IV
Insurance-Finance Arbitrage

In this chapter we analyse the relation of insurance products to financial markets based on a
fundamental theorem developed in Artzner et al. (2024). The goal is to value finance-related in-
surance claims like equity-linked insurance contracts or variable annuities. The key difference
to financial approaches is that insurance contracts are (typically) not traded and the related
information flow is not publicly available.

We shortly recall Bayes’ rule for the equivalent probability measures Q and P on a measur-
able space (Ω, G ).

Proposition 1 (Bayes). Assume that dQ = LdP with EP[L|F ] > 0. Then, for every random
variable X ≥ 0, it holds that

EQ[X|F ] =
EP[LX| F ]

EP[L|F ]
, P-f.s. (2)

Our first goal is to provide a technical tool for valuing insurance products. This rule should
be arbitrage-free for financial products and should also include statistical information in an
appropriate way. For this we rely on the statistical measure P on (Ω, G ). Financial information
is given by a sub-σ-field F ⊂ G and we assume that there exists an equivalent martingale
measure Q on (Ω, F , P|F ).

Proposition 3. Let Q ∼ P|F . Then, there exists a unique measure Q⊙P on (Ω, G ), such that

(i) Q⊙P = Q on F and

(ii) for alll G ∈ G it holds that Q⊙P(G|F ) = P(G|F ) (P-almost surely).

The first property states that – as wanted – Q⊙P coincides with Q on the financial infor-
mation. Hence, all financial products are automatically valued in an arbitrage-free sense. The
second property is a little bit more subtle. Conditional on all the financial information the
measure Q⊙P coincides with the statistical measure. In particular, for those claims which are
independent from the financial markets, the rule provides the classical insurance valuation by
conditional expectation.

We now generalise this to the conditional level.
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Proposition 4. Assume Q ∼ P|F and let X ≥ 0. Then,

(i) for every σ-field H ⊂ F it holds that:

EQ⊙P[X|H ] = EQ
󰀅
EP[X|F ]|H

󰀆
,

(ii) and for every σ-field H with F ⊂ H ⊂ G ,

EQ⊙P[X|H ] = EP
󰀅
X|H

󰀆
.

Both propositions. We start with existence: Since Q ∼ P|F on (Ω, F ) the Radon-Nikodym
theorem yields the existence of a F -measurable density L such that dQ = L dP. Define Q⊙P
by

d(Q⊙P) = L dP.

We obtain that Q⊙P(G) = EP[1GL]. Then, by construction, (i) of Proposition 3 holds:

Q⊙P(F) =
󰁝

F
LdP =

󰁝

F
dQ = Q(F)

for all F ∈ F .
For G ∈ G we have that

󰁝

F
1Gd(Q⊙P) =

󰁝

F
1GLdP =

󰁝

F
LP(G|F )dP

=
󰁝

F
P(G|F )d(Q⊙P), F ∈ F , (5)

such that Q⊙P(G|F ) = P(G|F ) (Q⊙P-a.s. and hence Q- as well as P-almost surely since all
these measures have the same nullsets) and hence also (ii) of Proposition 3 holds.

For uniqueness consider R, such that (i) and (ii) of Proposition 3 hold. Then, for all G ∈ G ,

R(G) =
󰁝

R(G|F )dR
(ii)
=

󰁝
P(G|F ) dR

(i)
=

󰁝
P(G|F )dQ = Q⊙P(G) (6)

and hence Q⊙P = R.
Now consider H ∈ H ⊂ F , such that H ∈ F . Analogous to (5), Q⊙P(G|H ) = P(G|H ).

With H = Ω,
󰁝
1Gd(Q⊙P) =

󰁝
LP(G|H )dP =

󰁝
P(G|H )dQ (7)

and hence (i) follows by approximation with elementary functions.
Finally, from F ⊂ H ⊂ G it follows by Bayes rule that

EQ⊙P[X|H ] =
EP[LTX| H ]

EP[LT | H ]
= EP[X|H ],

since LT is F -measurable (EP[LT | H ] > 0 holds since P|F and Q are equivalent).

In a typical application we will have two filtrations G = (Gt)t=0,...,T and F = (Ft)t=0,...,T such
that

Ft ⊆ Gt, t = 0, . . . , T.

Here F is publicly available information and G is the information available to the insurance
company, which contains a lot of private information. Possibly it could also allow for arbitrage,
which we will take into account in the following.
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The QP-rule

The above result allows the valuation of an insurance product by the so-called QP-rule. It is
similar to the risk-neutral valuation rule and prices the insurance product by computing the
conditional expectation of the cumulated and discounted payuments under the measure Q⊙P.
Note that by proposition 4 for X ≥ 0

EQ⊙P[X|Ft] = EQ

󰁫
EP[X|FT ] |Ft

󰁬
. (8)

This explains the name QP-rule: first we condition on the evolution of the financial market
until T and compute the expected value under the statistical measure. The result is of course
FT-measurable and is valued like a classical European option by the risk-neutral pricing rule,
i.e. by taking expectations under Q.

Example 9 (Stochastic mortality). Inspired by our knowledge on credit risk, we can now intro-
duce a quite flexible framework for the valuation of life-insurance. As a typical example think
of a pension fund or a life insurance, which promises the (discounted) payment XT at the ma-
turity time T, if the insured is still alive. We introduce its survival time τ as a G-stopping time
(typically not a F-stopping time). A classical model for this is the so-called doubly stochastic
approach:

Let E ∼ Exp(1) be a GT-measurable standard exponential random variable which is inde-
pendent of FT . Moreover, let Λ = (Λt)t=0,...,T be increasing and, F-adapted such that Λ0 = 0.
Set

τ = inf{t ≥ 0 : Λt ≥ E}, (10)

with the convention inf∅ = ∞. Then the first-entry time τ is not a F-stopping time, but GT-
measurable. (Currently τ might not even be a G-stopping time. This, however, can be achieved
for example by considering Gt = σ(FT , τ ∧ t).)

We compute

P(τ > T| FT) = EP
󰀅
1{τ>T}| FT

󰀆

= EP
󰀅
1{ΛT<E}| FT

󰀆

= e−ΛT ,

since ΛT is FT-measurable and E independent of FT . The we obtain

EQ⊙P

󰁫
XT1{τ>T}|Ft

󰁬
= EQ

󰁫
EP[XT1{τ>T}|FT ]| Ft

󰁬

= EQ

󰁫
e−ΛT | Ft

󰁬

as price of the insurance
Often τ is modelled in continuous time with an intensity or mortality rate. This is the F-

adapted, non-negative process λ which satisfies

Λt :=
󰁝 t

0
λsds, t ≥ 0.
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1 The fundamental theorem of insurance-finance markets

Up to now, the QP-rule was just a rule without a foundational explanation. In this section we
will analyse its role from a more economic viewpoint and introduce the trading strategies of
the insurance. If the insurance is able to make a risk-less profit, an insurance-finance arbitrage
exists, which of course should be avoided.

The key is to use an appropriate version of the strong law of large number. The insurance
can build larger and larger portfolios of insurance clients and by this reduce its risk. If the risk
is (in the limit) vanishing, we obtain a very precise rule in the following fundamental theorem.
This result will show, that - under the appropriate assumptions - the QP-rule is actually a rule
which guarantees absence of insurance-finance arbitrage.

To this we consider a time point t ∈ {0, . . . , T − 1}. At this time point an insurance can
be bought which offers a payment (wlog) at maturity T. We call the discounted payment the
insurance benefit

Bt,T ≥ 0.

Of course Bt,T is a GT-measurable random variable. On the other side the insured pays a pre-
mium, which we denote by pt ≥ 0. This premium is Gt-measurable.

For the insurance portfolio we consider insurance clients, numbered 1, 2, . . . which are will-
ing to contract insurances at arbitrary fractions. The payment of course differ from client to
client (in contrast to financial contracts) and we denote the benefit of client i by

Bi
t,T .

Again Bi
t,T is GT-measurable.

Example 11 (Stochastic mortality II). Consider a portfolio of insurance clients with stochastic
mortality. To this, let E1, E2, . . . independent, standard exponential random variables which are
independent of FT and let Λ be F-adapted and increasing with Λ0 = 0. Set

τi := inf{t ≥ 0 : Λt ≥ Ei}, i ≥ 1.

The payoff for the i-th insured is

Bi
t,T = XT1{τi>T}

which can be evaluated with the QP-rule. ⋄.

Define

Gt,T = Gt ∨FT , (12)

where Gt ∨ FT is the from Gt and FT generated σ-algebra. Foundational will be the following
assumption:

Assumption 13. Assume that the following holds:

(i) The random variables Bi
t,T , i = 1, 2, ... are independent conditional on Gt,T ,

(ii) E[Bi
t,T | Gt,T ] = E[B1

t,T | Gt,T ], i = 1, 2, . . . , and

(iii) Var[Bi
t,T | Gt,T ] = Var[B1

t,T | Gt,T ], i = 1, 2, . . . .
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The insurance portfolio

To reduce risk, the insurance forms a portfolio in a suitable way, which we call an allocation. A
allocation at time t is a sequence of random variables ψt = (ψ1

t , ψ2
t , . . . ). Each allocation has only

finitely many non-zero entries (like for example 1, 2, 3, 0, 0, . . . . ). Here, psii
t = 1 means that the

insurance sells on contract to the insurance client i. Summarising, an allocation is associated to
the following payments:

∑
i≥1

ψi
t Bi

t,T .

On the other side, those insurance contracts are sold for a premium. Even if the benefits all
differ (since they depend on client-specific information) we consider a homogenous group,
meaning they all come at the same price, pt. Hence the sum of the premia is given by

∑
i≥1

ψi
t pt =

󰀓
∑
i≥1

ψi
t

󰀔
pt.

And we arrive at the profit and loss of the allocation ψ = (ψt)t=0,...,T given by

VT(ψ) :=
T−1

∑
t=0

∑
i≥1

ψi
t
󰀃

pt − Bi
t,T

󰀄
. (14)

Inspired by large financial markets we think of an insurance strategy as a sequence of allo-
cations. The intuition is that the insurance company can take more and more clients into the
portfolio and hence reduce the risk by diversification. We allow appropriate bounded portfo-
lios, but possibly with infinitely many clients.

To this end, we call a insurance strategy a sequence (ψn)n≥1 of allocations. The strategy is
called admissible, if the following conditions hold:

(i) Uniform boundedness: there exists C > 0, such that

󰀂 ψn
t 󰀂:= ∑

i≥1
ψn,i

t ≤ C (15)

for all n ≥ 1 and 0 ≤ t < T,

(ii) convergence of the total mass: there exists 0 < γt ∈ Ft, such that

󰀂 ψn
t 󰀂→ γt a.s. for all t < T, (16)

(iii) convergence of the limit: there exists a random variable V = Vψ, such that

lim
n→∞

V I
T(ψ

n) = V,

P-a.s.

In addition to the insurance part of the strategy, the insurance can also trade on the financial
market. We assume that this is done in a classical, discrete-time manner (although this can
easily be relaxed).

We assume that the financial market consists of d + 1 assets S = (S0, . . . , Sd) with numeraire
S0 > 0. The discounted price process is denoted by X. A self-financing trading strategy is
given by a d-dimensional, F-predictable process H. The associated gains process is given by

GT(H) :=
T−1

∑
t=1

Ht · ∆Xt =
T−1

∑
t=1

d

∑
i=1

Hi
t · ∆Xi

t,
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where ∆Xt = Xt+1 − Xt. We assume that the financial markets is free of arbitrage. This is,
by the fundamental theorem, equivalent to the existence of a martingale measure which is
equivalent to P|FT , in short

Me(F) ∕= ∅. (17)

The insurance-finance market (B, p, S) therefore consists of three parts: the benefits B, the
premia p and the assets S.

Definition 18. In the insurance-finance market (B, p, S) there exists an arbitrage, if there
exists an admissible insurance strategy (ψn)n≥1 and a self-financing trading strategy H such
that

lim
n→∞

VT(ψ
n) + GT(H) ∈ L+

0 \{0}. (19)

Otherwise we say that the insurance-finance market is free of arbitrage.

Recall that for a family of random variables Ξ,

esssupF Ξ := ess inf{q | q is F -measurable and q ≥ ξ for all ξ ∈ Ξ}. (20)

We denote by

p↑t = esssupFt
pt, and p↓t = ess inf

Ft
pt. (21)

Theorem 22. Consider the insurance-finance market (B, p, S) and assume that Assumption 13
holds.

(i) If there exists Q ∈ Me(F), such that for all t < T

pt ≤ EQ⊙P[Xt,T |Ft], P-a.s., (23)

then there is no insurance-finance arbitrage.

(ii) If there exists t < T, such that

P
󰀕 󰁟

Q∈Me(F)

󰀋
p↓t > EQ⊙P

󰀅
Xt,T

󰀏󰀏Ft
󰀆󰁲󰀖

> 0 (24)

then there exists and insurance-finance arbitrage.

Intuitively, the first assertion shows that - if you use the QP rule for pricing, there is never an
insurance-finance arbitrage. For (ii), note that if you are above a QP-price, there actually might
be Q′ and the associated Q′P-price could be higher and there would be again no arbitrage.
So, we have to make sure that for all martingale measures Q the probability that the price is
higher than the associated QP price has a positive probability. Then, (ii) shows that under this
minimal assumption, there is an insurance-finance arbitrage. Note that this is not an if-and-
only-if result, which to the best of my knowledge is unknown today.
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We start with a technical result, showing that under our assumptions the insurance strate-
gies converge.

Satz 25. Assume that 13, (15) and (16) hold. Then for every admissible insurance strategy (ψn) and
for every Q ∈ Me(F) it holds that

EQ⊙P

󰁫
lim

n→∞ ∑
i≥1

ψn,i
t pt

󰁬
= EQ⊙P[γt pt], for allt < T and (26)

EQ⊙P

󰁫
lim

n→∞

T−1

∑
t=0

∑
i≥1

ψn,i
t Bi

t,T

󰁬
= ∑

t<T
EQ⊙P

󰀅
γtBt,T

󰀆
. (27)

Proof. For (26) we use dominated convergence: by our assumption on uniform boundedness,
Equation (15),

∑
i≥1

ψn,i
t pt ≤ Cpt.

This allows us to interchange limit and summation in the following expression. Together with
our assumption on convergence of the total mass, Equation (16), it follows for 0 ≤ t < T, that

lim
n→∞ ∑

i≥1
ψn,i

t pt = γt pt.

Recall that V I
T(ψ

n) = ∑t<T ∑i≥1 ψn,i
t Bi

t,T . As in Proposition 3, we denote the Radon-Nikodym
density of Q with respect to P|FT by LT . Then,

EQ⊙P

󰁫
lim

n→∞
V I

T(ψ
n)
󰁬
= EP

󰁫
LT lim

n→∞
V I

T(ψ
n)
󰁬

= EP

󰁫
LTEP

󰀅
lim

n→∞
V I

T(ψ
n)|Gt,T

󰀆󰁬
.

For any G ∈ Gt,T , we have
󰁝

G
EP

󰀅
lim

n→∞
V I

T(ψ
n)|Gt,T

󰀆
dP =

󰁝

G
lim

n→∞
V I

T(ψ
n)dP

=
󰁝

lim inf
n→∞

1GV I
T(ψ

n)dP

≤ lim inf
n→∞

󰁝

G
V I

T(ψ
n)dP = lim inf

n→∞

󰁝

G
EP

󰀅
V I

T(ψ
n)|Gt,T

󰀆
dP.

Furthermore,

EP
󰀅
V I

T(ψ
n)|Gt,T

󰀆
= ∑

t<T
∑
i≥1

ψn,i
t EP

󰀅
Xi

t,T |Gt,T
󰀆
= ∑

t<T
∑
i≥1

ψn,i
t EP

󰀅
Xt,T |Gt,T

󰀆

= ∑
t<T

EP
󰀅
Xt,T |Gt,T

󰀆
󰀂 ψn

t 󰀂 .

Hence,

lim inf
n→∞

󰁝

G
EP

󰀅
V I

T(ψ
n)|Gt,T

󰀆
dP = lim inf

n→∞

󰁝

G
∑
t<T

EP
󰀅
Xt,T |Gt,T

󰀆
󰀂 ψn

t 󰀂 dP

=
󰁝

G
EP

󰀅
∑
t<T

γtXt,T |Gt,T
󰀆
dP,

where we used uniform boundedness, (16), and dominated convergence for the last equality.
We obtain that

EQ⊙P

󰁫
lim

n→∞
V I

T(ψ
n)
󰁬
≤ ∑

t<T
EQ⊙P

󰀅
γtXt,T

󰀆
. (28)
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On the other side, for any G ∈ Gt,T , we have
󰁝

G
EP

󰀅
lim

n→∞
V I

T(ψ
n)|Gt,T

󰀆
dP =

󰁝

G
lim

n→∞
V I

T(ψ
n)dP

=
󰁝

lim sup
n→∞

1GV I
T(ψ

n)dP

≥ lim sup
n→∞

󰁝

G
V I

T(ψ
n)dP = lim sup

n→∞

󰁝

G
EP

󰀅
V I

T(ψ
n)|Gt,T

󰀆
dP.

Hence, we obtain as above

EQ⊙P

󰁫
lim

n→∞
V I

T(ψ
n)
󰁬
≥ ∑

t<T
EQ⊙P

󰀅
γtXt,T

󰀆
(29)

and the claim follows.

Proof of Theorem 22. (i) Assume that (23) holds and that we had an insurance-finance arbitrage,
i.e.

lim
n→∞

VT(ψ
n) + GT(H) ∈ L+

0 \{0}

for some insurance portfolio strategy (ψn)n≥1 = (ψn
t )n≥1,t<T and some financial strategy

(ξt)t≤T . First, for any Q ∈ Me(F), EQ⊙P[GT(H)] = EQ[GT(H)] = 0 by Proposition 3 (i). Then,

EQ⊙P

󰁫
lim

n→∞
VT(ψ

n) + GT(H)
󰁬
= EQ⊙P

󰁫
lim

n→∞
VT(ψ

n)
󰁬

(30)

= EQ⊙P

󰁫
lim

n→∞

T−1

∑
t=0

∑
i≥1

ψi
t
󰀃

pt − Xi
t,T

󰀄󰁬
.

With the equations (26), (27) we obtain that

(30) =
T−1

∑
t=0

EQ⊙P

󰁫
γt

󰀃
pt − EQ⊙P[Xt,T |FT ]

󰀄󰁬
.

We consider the specific Q from (23). Then, pt ≤ EQ⊙P[Xt,T |Ft], P-a.s., hence

(30) ≤
T−1

∑
t=0

EQ⊙P

󰁫
γt

󰀓
EQ⊙P[Xt,T |FT ]− EQ⊙P[Xt,T |FT ]

󰀔󰁬
= 0,

a contradiction to the assumption of an insurance-finance arbitrage.
(ii) Assume that (24) holds. We set,

At :=
󰁟

Q∈Me(F)

󰀋
p↓t > EQ⊙P

󰀅
Xt,T

󰀏󰀏Ft
󰀆󰁲

∈ Ft

and, by assumption, P(At) > 0.
This implies that

1At pt ≥ 1At p↓t ≥ 1At esssup
Q∈Me(F)

EQ⊙P
󰀅
Xt,T

󰀏󰀏Ft
󰀆
= 1At esssup

Q∈Me(F)

EQ

󰁫
EP

󰀅
Xt,T

󰀏󰀏Gt,T
󰀆󰀏󰀏󰀏Ft

󰁬
=: πt. (31)

At t we take the uniform allocation ψn
t = 1At (n

−1, ..., n−1, 0, ...) over the first n insurance
seekers, restricted to the set At and ψn

s = 0 for all s ∕= t < T. This is an admissible strategy and
since

∑
i ≥1

1
i2

Var(Xi
t,T |Gt,T) = Var(Xt,T |Gt,T) ∑

i≥1

1
i2

< ∞,
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we are entitled to apply the conditional strong law of large numbers given in Theorem 3.5 in
Majerek et al. (2005). Hence with Assumption 13 and the fact that γt = ∑i≥1 ψn,i

t = 1At ∈ Ft,
we get

∑
i≥1

ψn,i Xi
t,T → 1At EP[Xt,T |Gt,T ] =: H, (32)

P-almost surely as n → ∞. Therefore

lim
n→∞

V I
T(ψ

n) = 1At

󰀃
pt − EP[Xt,T |Gt,T ]

󰀄
≥ 1At

󰀃
p↓t − H

󰀄
.

As πt is the conditional superhedging price of H, we obtain from Theorem 7.2 in Föllmer &
Schied (2004)1 that there is a superhedging strategy ξ = 1At ξ such that 1 Compare Theorem 2.4.4. in Delbaen

& Schachermayer (2006), whose proof
however requires a finite Ω.

1At

󰀃
πt +

T−1

∑
s=t

ξs · ∆Ss
󰀄
≥ H. (33)

Using this financial trading strategy ξ, we find from (31) that

lim
n→∞

V I
T(ψ

n) + VF
T (ξ) ≥ 1At

󰀃
p↓t − H +

T−1

∑
s=t

ξs · ∆Ss
󰀄

(34)

almost surely. Now, using (31) and (33), we obtain

(34) ≥ 1At

󰀃
πt − πt) = 0. (35)

For the final step we have to distinguish if the claim H is replicable or not. For the first case
let

Bt :=
󰀋

esssup
Q∈Me(F)

EQ
󰀅
H
󰀏󰀏Ft

󰀆
= ess inf

Q∈Me(F)
EQ

󰀅
H
󰀏󰀏Ft

󰀆󰀌

and assume P(At ∩ Bt) > 0. By assumption (24), we have p↓t > πt on a set of positive proba-
bility. This allows to drop equality in (35): indeed, since p↓t > πt with positive probability, we
obtain from (34) that

(34) ≥ 1At∩Bt

󰀃
p↓t − H +

T−1

∑
s=t

ξs · ∆Ss
󰀄
> 1At∩Bt

󰀃
πt − πt) = 0, (36)

with positive probability. Hence, limn→∞ V I
T(ψ

n) + VF
T (ξ) ∕= 0 and therefore

lim
n→∞

V I
T(ψ

n) + VF
T (ξ) ∈ L0

+\{0}.

For the second case let

B′
t := At ∩

󰀋
esssup

Q∈Me(F)

EQ
󰀅
H
󰀏󰀏Ft

󰀆
> ess inf

Q∈Me(F)
EQ

󰀅
H
󰀏󰀏Ft

󰀆󰀌

and assume P(At ∩ B′
t) > 0. Again, we can drop equality in (35): indeed, we obtain analo-

gously that

(34) ≥ 1At∩B′
t

󰀃
p↓t − H +

T−1

∑
s=t

ξs · ∆Ss
󰀄
≥ 1At∩B′

t

󰀃
πt − H +

T−1

∑
s=t

ξs · ∆Ss
󰀄
≥ 0. (37)

Since on B′
t, the no-arbitrage interval of the European claim H is a true interval, the upper

bound of the conditional no-arbitrage interval, πt, already yields a (financial) arbitrage (on B′
t).

Hence, 1At∩B′
t

󰀃
πt − H + ξ∆S

󰀄
∈ L0

+\{0} ,and, in addition,

lim
n→∞

V I
T(ψ

n) + VF
T (ξ) ∈ L0

+\{0}.

The existence of an insurance-finance arbitrage is proved.





Bibliography

Artzner, P., Eisele, K.-T. & Schmidt, T. (2024), ‘Insurance - finance arbitrage’, Mathematical Fi-
nance, doi:10.1111/mafi.12412 pp. 1–35.

Bachelier, L. (1900), Théorie de la spéculation, in ‘Annales scientifiques de l’École normale
supérieure’, Vol. 17, pp. 21–86.

Black, F. & Cox, J. C. (1976), ‘Valuing corporate securities: some effects of bond indenture pro-
visions’, 31, 351–367.

Black, F. & Scholes, M. (1973), ‘The pricing of options and corporate liabilities’, Journal of Politi-
cal Economy 81, 637–654.

Cuchiero, C., Klein, I. & Teichmann, J. (2020), ‘A fundamental theorem of asset pricing for
continuous time large financial markets in a two filtration setting’, Theory of Probability & Its
Applications 65(3), 388–404.

Cuchiero, C. & Teichmann, J. (2015), ‘A convergence result for the Emery topology and a vari-
ant of the proof of the fundamental theorem of asset pricing’, Finance and Stochastics 19, 743–
761.

Delbaen, F. & Schachermayer, W. (2006), The Mathematics of Arbitrage, Springer Verlag, Berlin.

Denis, L., Hu, M. & Peng, S. (2011), ‘Function spaces and capacity related to a sublinear expec-
tation: application to g-brownian motion paths’, Potential analysis 34, 139–161.
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