Übungen zur Vorlesung "Lineare Algebra I"

Blatt 11

Abgabetermin: Donnerstag, 18.01.2024, bis 10.30 Uhr in den Briefkästen im Math. Institut. (Geben Sie auf jedem Lösungsblatt Ihren Namen und Ihre Übungsgruppe an. Sie dürfen maximal zu zweit abgeben.)

Aufgabe 1 (4 Punkte)

Es sei V ein K-Vektorraum, $r \geq 2$ und $U_1, \ldots, U_r \subset V$ Untervektorräume. Zeigen Sie, dass

$$U_i \cap \sum_{\substack{j=1\\j\neq i}}^r U_j = \{0\}$$
 für alle $i = 1, \dots, r$

genau dann gilt, wenn

$$U_i \cap \sum_{j=1}^{i-1} U_j = \{0\}$$
 für alle $i = 1, \dots, r$.

Aufgabe 2 (4 Punkte)

Es sei K ein Körper, $n \in \mathbb{N}$ und $M(n \times n; K)$ der Raum der Matrizen über K. Wir definieren

$$\operatorname{Sym}(n,K) := \left\{ A \in M(n \times n; K) \mid A^t = A \right\},$$
$$\operatorname{Alt}(n,K) := \left\{ A \in M(n \times n; K) \mid A^t = -A \right\}.$$

Matrizen in Sym(n, K) werden symmetrisch genannt und Matrizen in Alt(n, K) als schiefsymmetrisch oder alternierend bezeichnet.

- (a) Zeigen Sie, dass $\operatorname{Sym}(n,\mathbb{R})$ und $\operatorname{Alt}(n,\mathbb{R})$ Untervektorräume von $M(n \times n;\mathbb{R})$ sind und geben Sie jeweils die Dimension und eine Basis an.
- (b) Zeigen Sie, dass $M(n \times n; \mathbb{R}) = \text{Sym}(n, \mathbb{R}) \oplus \text{Alt}(n, \mathbb{R})$.

Aufgabe 3 (4 Punkte)

Es sei $U_1 \subset U_2 \subset \cdots \subset U_n$ eine Kette von Untervektorräumen eines endlich-dimensionalen K-Vektorraums V. Zeigen Sie, dass es Komplemente U_i' zu U_i gibt (d.h. $V = U_i \oplus U_i'$) für $i = 1, \ldots, n$ mit $U_1' \supset U_2' \supset \cdots \supset U_n'$.

Aufgabe 4 $(4+2^* \text{ Punkte})$

In dieser Aufgabe können zwei Bonuspunkte erreicht werden. Entscheiden Sie, welche der folgenden Abbildungen K-linear sind:

- (a) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ mit f(x, y, z) = (x 2y, 6y 3x) für $K = \mathbb{R}$.
- (b) $g: \mathbb{C} \longrightarrow \mathbb{C}$ mit $g(z) = \overline{z}$ für $K = \mathbb{C}$ (für die Definition von \overline{z} vgl. Blatt 6, Aufgabe 1).
- (c) Die Abbildung g aus Teil (b), diesmal jedoch für $K = \mathbb{R}$.
- (d) $h: \mathbb{Q}^2 \longrightarrow \mathbb{Q}^2$ mit $h(x,y) = (2y, x^2 + 2xy + y^2)$ für $K = \mathbb{Q}$.
- (e) $F : Abb(\mathbb{R}, \mathbb{R}) \longrightarrow \mathbb{R}$ mit F(f) = f(1) für $K = \mathbb{R}$.
- (f) $G: (F_3)^2 \longrightarrow (F_3)^3$ mit $G(x,y) = (2x+y, y-x^3, x+2y)$ für $K=F_3$.

Aufgaben zur Selbstkontrolle

- (i) Es seien $U_1, U_2 \subset V$ Untervektorräume mit $\dim_K(U_1) = n$ und $\dim_K(U_2) = m$. Welche K-Dimension hat $U_1 \oplus U_2$?
- (ii) Was versteht man unter dem Komplement eines Untervektorraums $U \subset V$? Existiert ein solches immer? Ist das Komplement eindeutig?
- (iii) Definieren Sie die direkte Summe $U_1 \oplus U_2 \oplus \cdots \oplus U_n$ von Untervektorräumen $U_1, \ldots, U_n \subset V$.
- (iv) Definieren Sie den Begriff lineare Abbildung.
- (v) Zwischen welchen Räumen und auf welche Weise induziert eine Matrix $A \in M(n \times m; K)$ eine lineare Abbildung?
- (vi) Im Setup von (v): Wie hängt die Matrixmultiplikation mit der Verkettung der induzierten linearen Abbildungen zusammen?