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1 A short repetition of Measure Theory

This chapter contains a brief summary (without proofs) of the measure theoretic founda-
tions as already known from our Analysis III course (BSc Mathematics) or the bridging

course on measure theory (MSc Data Science).
1.1 o-Algebras and measures
Definition 1.1. Let Q # @. A system &/ of subsets of § is called o-algebra if
(1) Qe d,
(1) Ae o/ = A°e
(11i) Ape ' VneN = [J,en4n € .
o/ is called algebra if only (iii") instead of (iii) is granted:
(iii’)
ABedo — AUBed.

Lemma 1.2. Let QQ # @ be a set and </ a o-algebra over Q. Then the following

statements hold true:
(i) Ape A VneN = (|, cnAn €F
(i) ABeod — A\Bed.

Remark. The pair (Q, &) with a o-algebra </ over S is is called measurable space.

Arbitrary intersections of o-algebras over ) are o-algebras over ) again. For any
systems & of subsets of ), there exists a smallest o-algebra o(&) with & C o(&),

namely the intersection of all those which contain &.

Definition 1.3. If Q is equipped with a topology, then the o-algebra generated by the

open subsets of € is called Borel-o-algebra.

Definition 1.4. Let (2, &) be a measurable space. A map p : o/ — [0, 00] with u(&) =0

is called measure if it is o-additive, meaning that

A, e g VneN, AiNA =aVitj — ﬂ(U An>:ZM(An).

nelN nelN

The triple (2,97, ) is called measure space. If u(Q) = 1, then p is named probability
measure and (2,97, 1) correspondingly probability space. A measure p is called finite if
w(Q) < oco. It is named o-finite if there exist sets Q; € o7 Vi € IN such that pu(§;) < oo
Vie N and Q = J;e Q.




Notation. The following notations are occasionally used variants of AU B”, but also

convey the information that the sets A and B are disjoint:
AUB, A+ B.

Lemma 1.5. Let (£2,.97) be a measurable space, . a measure on (Q,97), A, B, A, € o
Vn € N. Then the following statements are satisfied:

(i) ACB = u(A)+ u(B\ A) = w(B). In particular, A C B = u(A) < u(B)

(monotonicity).

(i) (AN B) + u(AU B) = p(A) + u(B). In particular, (AU B) < u(A) + u(B)
(subadditivity).

(#i1) If Ay, C Apt1 Yn € N, then the continuity from below holds:

m (U An> = lim p(Ay).

nelN

() If Apt1 C Ap Vn € IN and p(A1) < oo, then the continuity from above holds:

m (ﬂ An> = lim p(Ay).

nelN

We now pose the question under which conditions an additive functional (uniquely)

extends to a measure.

Theorem 1.6 (Carathéodory’s existence and uniqueness theorem). Let &7 be a system

of subsets of Q) with the following properties:

(i) e,

(1i) A,Be€ o = B\ A is a finite disjoint union of sets of <,
(tit) A Be o/ = ANBe .

[Such a system of subsets of Q2 is called half ring.] Let u : of — [0, 00| be a function with

the following properties:
(iv) u(@) =0,

(v) A,B € o with AUB € o and ANB =@ = u(AUB) = u(A) + u(B)
(additivity),

(vi) There exist Q; € o with p(;) < 0o and ; C Qi1 Vi € N such that | ;o i = Q.



(vii) A, A, € o Vn € N with A C e An

— pA) £ Y (An).
nelN

Then there exists a unique extension of u to a measure on o(</).

Remark. The system of sets
{(a, )] "R | a,b € RU{—00,+00},a < b}

satisfies the conditions (i)-(iit).
Remark. A probability measure u is uniquely described by its values on a N-stable gen-

erator & of the o-algebra.

Proof. As p is normed (i.e. p(2) = 1) and additive, these values provide all the values
on

e ffa

i=1

AiorAfeé"VigK,KelN}.

The set & satisfies (i)-(ii7):

(i) We can assume that @ € &, as the goal is to describe p by its values on &, and
we already know that u(@) = 0. Using K = 1 and A; = Q (which is valid, as
Q=0 e &), Qe & follows from the definition of &”.

.. K ‘ AL ‘ ,
(”) Let A = mizl Ai, B = mjzl B] SE finite intersection of sets for which
the set or its complement are in &

L K K L
— B\A=BnA°=|()B m(UAg):U Asn () By
j=1 i=1 i=1 j=1

—_——
e&’

(ii) Let A=, A;, B=}, B; € &' Then,
K L

ANB= ﬂ ﬂ(AlﬂBJ)
i=1j=1

is a finite intersection of subsets of €2 such that for every set, the set itself or its

complement is in &; hence, AN B € &’.

Therefore, the claim follows from Theorem 1.6. O



1.2 Dynkin systems and the m — \ theorem

Definition 1.7. A system of sets 2 C P() is called Dynkin system over Q if
(i) Qe P
(ii)) Ac 9 — A€ P

(iii) If A, € 9 are pairwise disjoint sets Vn € IN,

U A, €D.
nelN

Remark. Let 2 be a Dynkin system over Q. (i) and (i1) imply that ) € 2 and therefore,
(iii) holds true in particular for finite unions of disjoint sets. If E C D C Q with
E,D € 9, then D € 2 by (ii), D¢ and E are disjoint and therefore,

D\ E = (D°UE)¢ = (D°+ E) € 9.

As for g-algebras, arbitrary intersections of Dynkin systems over 2 are Dynkin systems
over §) again. For any systems & of subsets of §2, there exists a smallest Dynkin system
P2(&) with & C 2(&), that is

2= () 2

2 Dynkin system
ECY

Proposition 1.8. Let & C P(Q2) be stable under intersection. Then P(&) = o(&).
Proof. Apparently, every o-algebra is a Dynkin system, so (&) C o(&). For the other
direction, o(&) C Z(&), it is sufficient to prove that Z(&) is a o-algebra, that is, it
must be stable under intersection (because then, for Aj, Ay € 2, we have A1 U Ay =
A1+ (A2\ (A1 NAy)) € 2). Let D € (&) be fixed and consider

D:={ACQ|ANDe 2(&)}.

We want to show that 2(&) is contained in D. We observe that D is itself a Dynkin

system:
(a) Q€ D because QN D =D € 9(&).
(b) Ae D = A°ND =D\ (AND) € (&) by the previous remark, as AND C D,
so A®e 9.
(¢) Let A, € D be pairwise disjoint sets. A4, N D € 2(&) are pairwise disjoint sets for
n € IN, so

(U An>mD: U (4. nD) e 2(4),

nelN nelN



ie. Upenw An € D.

For all E € &, we have & C E , because by requirement, & is stable under intersection.
Hence, 2(&) C E, as 2(&) is the smallest Dynkin system which contains &, and E
is some Dynkin system which contains &. In particular, D N E € E for the fixed D
from above, so E € D. As E € & was arbitrary, this implies & C D, so D(8) C D
(because D is a Dynkin system) for every D € 2(&). Therefore, 2(&) is stable under

intersection. O]

Often, an N-stable system of sets is called m-system, whereas a Dynkin system is also

referred to as A-system.

Corollary 1.9 (Dynkin’s m — A theorem). If & is a w-system and £ is a \-system that
contains &, then o(&) C L.

1.3 Measurable maps and measure integral

Definition 1.10. Let (Q, <), (', <7’) be measurable spaces. A map [ :Q — Q' is called

measurable (or of -/’ -measurable) if

fFliAYe g VA € o'
where f~1(A") == {w e Q| f(w) € A’}

Lemma 1.11. Let (2, ), (Y, /") be measurable spaces and & C o' with (&) = o’
(meaning & is a generator of </'). Then:

fUEY e  VE € &' — f 1 A)ead VA €'
This means that it is sufficient to check measurability on a generator of the o-algebra.
Notation. For the sake of readability, we define R := R U {—o00,+o00} and
ZR)={BCR|BNRe%BR)} ={BUE|Bec%BMR),EC {—00,+00}}.

Proposition 1.12. Let (,.%7) be a measurable space and f, : Q@ — R an o/-B(R)-

measurable function Vn € N. Then, the functions

inf f,, sup fn, liminf f,,, limsup f,
ne€lN nelN n—o0 n—00

are also o/ -B(R)-measurable.

Monotone limits play a crucial role for the construction of the measure integral.



Definition 1.13. Let A C Q). The function

1 weAd

]1,4:9—){0,1}, W =
0 w¢d

is called indicator function. If Ay € of and ¢, € R VEk € {1,...,n} for somen € N,

then Y y_, cila, is called of -elementary function.

Measure integral for elementary functions

Let f be an elementary function, i.e. f =Y, ;cxla, with measurable sets Ay C Q.

Then the elementary integral is defined as

/f dp = cpp(Ap).
k=1

If there is an alternative representation f = Zz;l .1 Al > one can easily prove that

> cun(Ar) = chp(Ap).
k=1 k=1

Hence, this integral is well-defined.

Lemma 1.14. Let (2, %7) be a measurable space and f : Q@ — R an o/ -B(R)-measurable
function with f > 0. Then the following statements hold true.

(i) There exists a sequence (fn)new of elementary functions with fp, < fpy1 Vn € N

and lim,_ o fr, = f.

(13) There exist sets Ay, € o ¥Yn € N and a sequence (cx)renw of non-negative real

numbers such that f =, . crla, .

That is: Any measurable function f > 0 is the monotone limit of elementary functions
fn /T

The crucial idea is to define the integral for general non-negative, measurable functions

f by monotone approximation: For non-negative elementary functions f,, * f,

J gt [ gen =g [ 5o

=limp— 0o fn

To ensure that this integral is well-defined, we have to verify that

fi [ g =t f g0



if g, is another sequence of elementary functions with g, ' f. This is the content of

the next lemma.

Lemma 1.15. Let (2,97, u) be a measure space and f : Q — R a measurable, bounded
function with f > 0. If

e 0
f = Z an]lAn = Zﬁn]an
n=1 n=1

with constants o, Brn, > 0 Vn € N, then

Z anp(Ayp) = Z Brp(Bn).

nelN nelN

We summarize the important findings and state formally the definition.

Definition 1.16. Let f > 0 be a non-negative measurable function. By Lemma 1.14,

[ is the monotone limit of non-negative elementary functions fr, =Y p_; cxla,, that is
f= ZneN ckla,, and we define

/f dp = T}Lngo/fn dpp =" cnpa(An).

nelN

By Lemma 1.15, this integral is well-defined.

A measurable (not necessarily non-negative) function f :  — R is called (finitely)

integrable if f*:= f -1 s>y and f~ := —f - I;;() are integrable, i.e.

/f+du<ooand /f_d,u<oo.

This is the case if and only if [ |f| du < co (which we call absolute integrability). In

/fdu:=/f+du—/fdu-

Lemma 1.17 (Properties of the integral). (¢) The integral is linear on the finitely in-

this case, we define

tegrable functions, i.e.

/(af+ﬁg) dMZOé/fdthﬁ/ng

for all finitely integrable functions f,g and o, B € R.

(1i) The integral is monotone, i.e.

gﬁf:>/gd,u§/fd,u



for all integrable functions f,g.

(7it) Theorem of monotone convergence: If (fn)new is a sequence of finitely integrable

or non-negative measurable functions with fn, < frn11 Vn € N, then

/ lim f, dpg = lim /fn du.
n—oQ n—oo

(iv) Theorem of dominated convergence: If (fn)neN s a sequence of measurable func-
tions with | f,| < f Vn € N for some function f with [ f du < oo, such that the

pointwise limit g := lim,,_ .~ f, exists, then

/g d/ﬁ:nlggo/fn dp.

(v) Fatou’s Lemma: If f, f, are finitely integrable and f < f, Vn € NN, then the

function liminf, . f, is finitely integrable, and

hnrr_1>1£f/fn du > /hnrr_lgoréf fn du.

1.4 Image measure and transformation formula

Definition 1.18. Let (Q, 7, 1) be a measure space, (¥, 47") a measurable space and
X : Q= Q a measurable map. The image measure X on (U, /") is defined as

X (A = (X HA)) VA e o
We have seen already that u is actually a measure on (S, o/").

Theorem 1.19 (Transformation formula). Let (Q, .o/, u) be a measure space, (', .o")

a measurable space and X : Q — ' a measurable map. Then:

(@) If f': Q = R is o'-B(R)-measurable and non-negative, then

/f’ duX:/f’oX dp.

(id) If f': ¥ — R is finitely absolutely integrable w.r.t. u*X, then so is f' o X and

vice-versa. In this case, we also have:

/f’ duX:/f’oX dp.



1.5 Product spaces and Kolmogorov’s consistency theorem

Definition 1.20. Let I be an arbitrary index set and (2;)icr a family of sets. We define

Q:HQi::{w:I%UQi

iel el

w(i) e Vie I}.

Its elements w are sometimes written as w = (w;)ier. Let mp : Q@ — Q;, w — w; be the

coordinate map (i.e. the projection onto the i-th coordinate).

Definition 1.21. Let (;, <%) be a measurable space for every i € I. The smallest o-
algebra over Q with respect to which the function m; is measurable Vi € I is called the

product-o-algebra. This means that the product-o-algebra is

Q) =0 (77 (Ai) | A e A VieT).

i€l

Theorem 1.22. Let (Q;, <%, p;) be o-finite measure spaces ¥i € {1,...,n} for some

n € IN. Then there exists a unique o-finite measure Q- p; on the product space

(H %, 4271)
i=1 i=1
with the property
i=1 =1

for all sets A; € o Vi € {1,...,n}. We call this measure the product measure.

Example. Let O = R = Qo, 4 = B(R) = b, pn = X\ = pa. Then the product
measure \? satisfies \2([a1,b1] % [az,b2]) = M[a1,b1]) - A([az, b2]).

One nice property of the integral with respect to product measures is that it can be

iteratively boiled down to integrals over the marginals.

Theorem 1.23 (Fubini). Let (1,9, 11) and (Qa, 9%, p2) be o-finite measure spaces
and f: Q1 x Qo = R a (F ® 9)-B(R)-measurable function. If f is non-negative or
absolutely integrable, then the maps

Ql — E, w1 — f(wl,LUQ) d/,LQ(CUQ) and QQ — E, w2 f(wl,wg) d,ul(wl)
Qg Q1

are measurable, and

/Qf du—/gl (/QQﬂwl,m) dm(w)) dpis (1)



= /Q2 ( o fwi,w2) dm(wl)> dpz(w2)

Definition 1.24. A topological space is called Polish, if there exists a complete metric

inducing its topology and a countable base of the topology.

Example. A well-known example of a Polish space is the set of all continuous functions

on the unit interval, C(]0,1]), equipped with the topology of uniform convergence:

dsup = C([0,1]) x C([0,1]) = R, (f,9) = [|f = glloc = sup |f(z) —g(2)].

z€[0,1]

Proposition 1.25 (Ulam’s lemma). Let (2, 7) be a Polish space and B(Q2) the Borel-
o-algebra on this topological space. Let p be a probability measure on (2, B(Y)). Let
E € B(Q) and € > 0. Then there exists a compact set K C E with u(E'\ K) < ¢.

Definition 1.26. Let I be an index set, (;, %%) a measurable space for every i € I and
- (H 2. @m) |
i€l i€l
A family of probability measures {uy | J C I is finite} on
() : (H , ®ﬂ>
iceJ e

is called projective family if for every finite set J C I and every K C J, we have

J
™ .
pr = < (image measure of py under ),

where 7T‘I]< 1 Qs = Qx, (Wi)ieg = (wi)iek is the coordinate projection from Qy to Q.

Theorem 1.27 (Consistency theorem of Kolmogorov). Suppose that we have Polish
spaces (Q, ) for every n € N and a projective family {py | J C IN is finite} where u s

s a probability measure on

(H %, X) 93(@)

keJ keJ

for all finite J C IN. Then, there exists a unique probability measure i on

(H 0, Q) @(rn))

nelN nelN

such that puy = p™ for the projections 7y : [[ew Qn = ey Qs (Wn)new = (Wi)nes-

10



Definition 1.28. Let (1, %) and (Qqa, 9%) be measurable spaces. A map K : Qq x oty —
[0,1] is called probability kernel if the following properties hold:

(1) Ywi € Qq, the map K(wi,-) is a probability measure on (g, o).

(i) YAg € o, the map K(-, Ag) is o4-P([0,1])-measurable (where H([0,1]) is the
Borel-o-algebra on [0,1]).

Theorem 1.29. Let (21, 9%, P1) be a probability space, (Qa, 2%) a measurable space and
K : Oy x oy — [0,1] a probability kernel. Then, there exists a unique probability measure
P on the product space (1 x Qo, A & o) with

IP(Al X AQ) = K(wl,Ag) dIP1<wl) VAl S JZfl,Ag S %
Aq

Moreover, for every bounded, measurable function f : Q1 x Qo — R, we have:

/f dIP://f(WMWQ) K (w1, dwz) dPy(wr)

J/

bounded, measurable function from €; to R

This is a generalization of Fubini’s theorem.

1.6 Lebesgue decomposition and densities

Definition 1.30. Let (2, .97) be a measurable space and u,v measures on it.

(1) p is called (absolutely) continuous with respect to v (notation: p < v) if for every
A € o with v(A) =0, we also have u(A) = 0.

(1) p and v are called equivalent if v < p and p < v.

(#i1) u and v are called singular (notation: p L v) if there exists a set A € o with
H(A) = v(49) = 0

(tv) v has a density f with respect to u if there exists a measurable function f with

)= [ £oradu= [ 1 au

v
.

In this case, we write:

f

Proposition 1.31. Let v be a o-finite measure. If fi and fo both are densities of v

w.r.t. |, then
n({fr # f2}) = 0.

11



Theorem 1.32 (Lebesgue-decomposition). Let p and v be o-finite measures on some

measurable space (2,.2/). Then, v possesses a unique decomposition
V="V, + Vg
where v, K p, vs L, v, has a density w.r.t. pu and

dy,
—2 =00 ) =0.
: ( dp OO>

Corollary 1.33 (Theorem of Radon-Nikodym). Let (€2, .e/) be a measurable space and

w, v o-finite measures on it. Then,

v L |4 < v has a density w.r.t. p.

2 Stochastic independence

From now on, we always assume (€2, <7, IP) is a probability space.

Definition 2.1. A familiy of set systems (;)icr with ¢; C &7 Vi € I is called stochas-
tically independent if

P (ﬂ ci) =] P(Ci) ¥ finite S C I and C; € %; Vi € S.

i€S €S

Theorem 2.2. Let (%;)icr be a stochastically independent family of set systems with
¢; C o/ Vi € I, which are stable under intersection. Then, the family (c(6;))icr is also

stochastically independent.
Proof. Let S = {i1,...,in} C I be finite and [ € {1,...,n} fixed. We define:
9 = {A € o | IP(Am ﬂci].) =P(4)-[[P(C)
J#l J#l
for all C;; € 0(%;;) Vj <l and C;; € €, Vj > l}

We now want to prove that Z; is a Dynkin system, which we will do by induction on [.
Initialization step: We show that & is a Dynkin system. Let C; ; € %, i Vi > 1.

(a) As @j; are independent, we have:

]P(Qm N cij> — ]P(ﬂ Cij> =[®@)

j#1 j#1 j#1

12



Therefore, ) € 2.

(b) Let D € ;. We have:

D°n(\Cy = <Qmﬂcij>\<z)mﬂcij>

j#1 j>1 j>1
As
IP<QO N cij> = 1P<ﬂ Ci],) =[] PG,
i>1 7>1 7>1
IP<Dﬂ N cij> =P(D)- [ P(Cy),
j>1 j>1

and D N[5, Ci; € QN(Y;5; Ci;, we obtain:

j>1

p(pn e, ) =a-pm) T[Pe,) =P TTPC,),

§>1 §>1 §>1
Therefore, D¢ € 9.

(c) Let A, € 21 be pairwise disjoint sets Vn € IN. We have:

(U () -yone)

nelN 7>1 nelN i>1
—_———

pairwise disjoint

= 1P<< U An> N (ﬂ c)) =y P (An N CZ-J.) by o-additivity

nelN i>1 nelN i>1

=Y P4, - [[P(Cy)

nelN ji>1
= ]P< U An> JI®@) by o-additivity
7>1

Therefore, | J,, .y An € Z1.

As we have shown that Z; is a Dynkin system, and we know that it contains %;,, we
know that o(%;,) = 2(%6;,) C 1. The induction step follows analogously. O

Definition 2.3. Let I be an arbitrary indez set, (0, o/, P) a measure space and (§;, <)
a measurable space for everyi € 1. Let X; : Q — §; be random variables for every i € 1.
The family (X;)ier is called stochastically independent if (X;l(;z/i))

independent.

e U stochastically

13



Theorem 2.4. Let & be a N-stable generator of <7 for all i € I. Then (X;)ier is
stochastically independent if (X;l(éi-))ie] is stochastically independent.

Proof. We know that X; '(B) N X; *(C) = X; /(BN C), so X; (&) is stable under

intersection (for every ¢ € I). Thanks to theorem 2.2, it therefore suffices to shows that

The inclusion o(X; (&) C X; ' (c(&)) is easy:

2 (2

& Co(&) = X&) C X7 0(&) = o(X7H(&)) C X (o(&)):
—_——

o-algebra

To show the other inclusion, we define

7= (B co(£)| X'(B) € o(X;(£))

and aim to show that & is a Dynkin system over 2;.
(a) We have Q; € 0(&;) and X; ' () = Q € o(X; (&), so Q; € 2.

(b) Let B € 2. We have

X7H(BY) = (X7H(B))" € o(X7 (&),

3 3

so B¢ € 9.

(c¢) Let By, € 2 be pairwise disjoint sets Vn € IN. We have

Xﬂ(U Bn) = | X '(By) € o(X; (&),

nelN neN

so Upenw Bn € 2.

We deduce

Prop. 1.8
—

& CPDCo(&) = D(&)C P Colé) 7 =o0(&;)

and therefore, X;l(d(éoi)) C U(Xfl(éai))- U

14
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