1. Complete Markets

For each part of this exercise, you may use all previous parts without proof.
Let $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t=0, \ldots, T}\right)$ be a filtered probability space with $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{T}=\mathcal{F}$. Let $\left(\bar{S}_{t}\right)_{t=0, \ldots, T}$ be a $(d+1)$-dimensional price process (including the numeraire).
(a) Let $A \in \mathcal{F}$ be an atom and $H \in L^{0}(\Omega, \mathcal{F}, \mathbb{P})$. Show that H is constant on A.
A set $A \in \mathcal{F}$ is called atom, if $\mathbb{P}(A)>0$ and for every measurable subset $B \subseteq A$ one has either $\mathbb{P}(B)=0$ or $\mathbb{P}(B)=\mathbb{P}(A)$.
(b) Let $\left(A_{k}\right)_{k=1, \ldots, n}$ be pairwise disjoint subsets of Ω with $\mathbb{P}\left(A_{k}\right)>0$ for $k=1, \ldots, n$. Show that $\left(\mathbb{1}_{A_{k}}\right)_{k=1, \ldots, n} \subseteq L^{p}(\Omega, \mathcal{F}, \mathbb{P})$ are linearly independent for every $p \in[0, \infty]$.
(c) Let $\left(A_{k}\right)_{k=1, \ldots, n}$ be a partition of Ω into atoms. Show that $\left(\mathbb{1}_{A_{k}}\right)_{k=1, \ldots, n} \subseteq L^{p}(\Omega, \mathcal{F}, \mathbb{P})$ forms a basis for every $p \in[0, \infty]$.
(d) Conclude that, for $p \in[0, \infty]$, we have

$$
\begin{equation*}
\operatorname{dim} L^{p}(\Omega, \mathcal{F}, \mathbb{P})=\sup \left\{n \in \mathbb{N}: \exists \text { partition }\left(A_{k}\right)_{k=1, \ldots, n} \text { of } \Omega: \mathbb{P}\left(A_{k}\right)>0\right\} \tag{2}
\end{equation*}
$$

(e) For $T=1$, assume the market $\left(\bar{S}_{t}\right)_{t=0, \ldots, T}$ is complete. Show that $\operatorname{dim} L^{0}(\Omega, \mathcal{F}, \mathbb{P}) \leq d+1$.
(f) For $T \geq 2$, assume the market $\left(\bar{S}_{t}\right)_{t=0, \ldots, T}$ is complete. Show that the restricted market $\left(\bar{S}_{t}\right)_{t=0, \ldots, T-1}$ is also complete.
(g) For $T \geq 2$, assume the market $\left(\bar{S}_{t}\right)_{t=0, \ldots, T}$ is complete. Show that $\operatorname{dim} L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}(\cdot \mid A)) \leq d+1$, for every atom A of \mathcal{F}_{T-1}. Here, $\mathbb{P}(\cdot \mid A)$ is the (elementary) conditional probability of \mathbb{P} given A.
(h) Let $\left(A_{k}\right)_{k=1, \ldots, n}$ be a partition of Ω with $\mathbb{P}\left(A_{k}\right)>0$ for $k=1, \ldots, n$. Show, for $p \in\{0, \infty\}$, that the map

$$
\begin{equation*}
L^{p}(\Omega, \mathcal{F}, \mathbb{P}) \ni X \mapsto\left(X \mathbb{1}_{A_{k}}\right)_{k} \in \prod_{k} L^{p}\left(\Omega, \mathcal{F}, \mathbb{P}\left(\cdot \mid A_{k}\right)\right) \tag{1}
\end{equation*}
$$

is well-defined and injective.
Hint. Let $\mathbb{Q} \ll \mathbb{P}$. Then, for $p \in\{0, \infty\}$, the map $L^{p}(\Omega, \mathcal{F}, \mathbb{P}) \ni X \mapsto X \in L^{p}(\Omega, \mathcal{F}, \mathbb{Q})$ is well-defined.
(i) Assume the market $\left(\bar{S}_{t}\right)_{t=0, \ldots, T}$ is complete. Show that $\operatorname{dim} L^{0}(\Omega, \mathcal{F}, \mathbb{P}) \leq(d+1)^{T}$.

Hint. You may use without proof the following fact: let $\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}$ be finite dimensional vector spaces over \mathbb{R}. Then, $\operatorname{dim}\left(\prod_{k} \mathcal{X}_{k}\right)=\sum_{k} \operatorname{dim} \mathcal{X}_{k}$.

Points for Question 1: 12

You can achieve a total of 12 Bonus points for this sheet. This means, they are not relevant for the total number of points achievable, but they do add to the number of achieved points.

