1. Complete Markets

For each part of this exercise, you may use all previous parts without proof.

Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t=0,...,T})$ be a filtered probability space with $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_T = \mathcal{F}$. Let $(\overline{S}_t)_{t=0,...,T}$ be a (d+1)-dimensional price process (including the numeraire).

- (a) Let $A \in \mathcal{F}$ be an atom and $H \in L^0(\Omega, \mathcal{F}, \mathbb{P})$. Show that H is constant on A. $A \text{ set } A \in \mathcal{F} \text{ is called atom, if } \mathbb{P}(A) > 0 \text{ and for every measurable subset } B \subseteq A \text{ one has either}$ $\mathbb{P}(B) = 0 \text{ or } \mathbb{P}(B) = \mathbb{P}(A).$
- (b) Let $(A_k)_{k=1,...,n}$ be pairwise disjoint subsets of Ω with $\mathbb{P}(A_k) > 0$ for k = 1,...,n. Show that (1) $(\mathbb{1}_{A_k})_{k=1,...,n} \subseteq L^p(\Omega, \mathcal{F}, \mathbb{P})$ are linearly independent for every $p \in [0, \infty]$.
- (c) Let $(A_k)_{k=1,\dots,n}$ be a partition of Ω into atoms. Show that $(\mathbb{1}_{A_k})_{k=1,\dots,n} \subseteq L^p(\Omega, \mathcal{F}, \mathbb{P})$ forms a (1) basis for every $p \in [0, \infty]$.
- (d) Conclude that, for $p \in [0, \infty]$, we have

$$\dim L^p(\Omega, \mathcal{F}, \mathbb{P}) = \sup\{n \in \mathbb{N} : \exists \text{ partition } (A_k)_{k=1,\dots,n} \text{ of } \Omega : \mathbb{P}(A_k) > 0\}.$$

- (e) For T = 1, assume the market $(\overline{S}_t)_{t=0,\dots,T}$ is complete. Show that dim $L^0(\Omega, \mathcal{F}, \mathbb{P}) \le d+1$. (1)
- (f) For $T \ge 2$, assume the market $(\overline{S}_t)_{t=0,...,T}$ is complete. Show that the restricted market $(\overline{S}_t)_{t=0,...,T-1}$ (2) is also complete.
- (g) For $T \ge 2$, assume the market $(\overline{S}_t)_{t=0,\dots,T}$ is complete. Show that dim $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}(\cdot \mid A)) \le d+1$, (1) for every atom A of \mathcal{F}_{T-1} . Here, $\mathbb{P}(\cdot \mid A)$ is the (elementary) conditional probability of \mathbb{P} given A.
- (h) Let $(A_k)_{k=1,\dots,n}$ be a partition of Ω with $\mathbb{P}(A_k) > 0$ for $k = 1,\dots,n$. Show, for $p \in \{0,\infty\}$, that (1) the map

$$L^{p}(\Omega, \mathcal{F}, \mathbb{P}) \ni X \mapsto (X \mathbb{1}_{A_{k}})_{k} \in \prod_{k} L^{p}(\Omega, \mathcal{F}, \mathbb{P}(\cdot \mid A_{k}))$$

is well-defined and injective.

Hint. Let $\mathbb{Q} \ll \mathbb{P}$. Then, for $p \in \{0, \infty\}$, the map $L^p(\Omega, \mathcal{F}, \mathbb{P}) \ni X \mapsto X \in L^p(\Omega, \mathcal{F}, \mathbb{Q})$ is well-defined.

(i) Assume the market $(\overline{S}_t)_{t=0,...,T}$ is complete. Show that $\dim L^0(\Omega, \mathcal{F}, \mathbb{P}) \leq (d+1)^T$. (2) Hint. You may use without proof the following fact: let $\mathcal{X}_1, \ldots, \mathcal{X}_n$ be finite dimensional vector spaces over \mathbb{R} . Then, $\dim(\prod_k \mathcal{X}_k) = \sum_k \dim \mathcal{X}_k$.

Points for Question 1: 12

(1)

(2)

You can achieve a total of **12 Bonus** points for this sheet. This means, they are not relevant for the total number of points achievable, but they do add to the number of achieved points.