1. Doob-Meyer Decomposition

Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t=0,...,T})$ be a filtered probability space with $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_T = \mathcal{F}$. Let (Y_t) be an integrable, adapted process and denote by Y = M - A its Doob-Meyer decomposition. For every stopping time τ , show that $Y^{\tau} = M^{\tau} - A^{\tau}$ is the Doob-Meyer decomposition of the stopped process Y^{τ} . Points for Question 1: 4

2. Essential Supremum

Let $\Omega = [0,1] \subseteq \mathbb{R}$, and let $\mathcal{F} = \mathcal{B}(\Omega)$ be the Borel σ -algebra on Ω . Equip (Ω, \mathcal{F}) with $\mathbb{P} := \lambda$, the Lebesgue measure. Set $\Phi := \{\mathbb{1}_{\{x\}} : x \in \Omega\}.$

- (a) Compute the pointwise supremum $\sup\{\phi(\omega) : \phi \in \Phi\}$ for $\omega \in \Omega$.
- (b) Compute the essential supremum of Φ .

Points for Question 2: 4

(2)

(2)

(1)

(1)

(1)

3. Embedding in continuous time

Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t=0,...,T})$ be a filtered probability space, and let $(X_t)_{t=0,...,T}$ be a process. We define the function $Y: [0,T] \times \Omega \to \mathbb{R}$ by

$$Y(t,\omega) := X_n(\omega), \quad t \in [n, n+1).$$

Further, we define a family of σ -fields $(\hat{\mathcal{F}}_t)_{t \in [0,T]}$ by

$$\hat{\mathcal{F}}_t := \mathcal{F}_n, \quad t \in [n, n+1).$$

(a) Show that, for fixed $\omega \in \Omega$, the function

$$[0,T] \ni t \mapsto Y(t,\omega)$$

is right-continuous.

- (b) Compute, for $t \in (0, T]$, the quantity
- $Y_t \lim_{s \uparrow t} Y_s. \tag{1}$
- (c) We define the filtration \mathbb{F}_+ by

$$\mathcal{F}_{t+} := \bigcap_{\epsilon > 0} \hat{\mathcal{F}}_{t+\epsilon}, \quad t \in \{0, \dots, T\}.$$

Compare \mathbb{F}_+ and (\mathcal{F}_t) .

(d) We define the filtration \mathbb{F}_{-} by

$$\mathcal{F}_{t-} := \bigcup_{s < t} \hat{\mathcal{F}}_s, \quad t \in \{0, \dots, T\}.$$

Compare \mathbb{F}_{-} and (\mathcal{F}_t) .

Points for Question 3: 4

You can achieve a total of **12** points for this sheet.