Thorsten Schmidt	Discrete Time Finance	University of Freiburg
Lars Niemann	Eighth exercise	27.6.2023

1. The discrete case

Consider a market model $\overline{S} = (S^0, S^1, \dots, S^d)$ in one period with $\Omega = \{\omega_1, \dots, \omega_n\}$, and a strictly positive reference measure \mathbb{P} . Let $\overline{X} := \overline{S}/S^0$. Suppose that the market is free of arbitrage, i.e., for

$$\mathcal{K} := \{ \xi \cdot (X_1 - X_0) \colon \xi \in \mathbb{R}^d \}$$

we have $\mathcal{K} \cap L^0_+ = \{0\}.$

- (a) Show that \mathcal{K} can be identified as a subspace of \mathbb{R}^n .
- (b) Let $C := \{x \in L^0_+ : \mathbb{E}[x] = 1\}$. Show that C is nonempty, convex and compact.
- (c) Conclude that there exists $y \in \mathcal{K}^{\perp}$ such that $y \cdot x > 0$ for every $x \in C$. Further, show that $y(\omega_k) > 0$ (2) for every $k \in \{1, \dots, n\}$.
- (d) Show that there exists an equivalent martingale measure for the market.

Points for Question 1: 8

(2)

(2)

(2)

(2)

(2)

2. Absolutely continuous measures

For a financial market with reference measure \mathbb{P} , we denote by $\mathcal{M}_e(\mathbb{P})$ and $\mathcal{M}_a(\mathbb{P})$ the set of equivalent martingale measures and absolutely continuous martingale measures, respectively.

- (a) Construct a market with $\mathcal{M}_a(\mathbb{P}) \neq \emptyset$ that contains an arbitrage.
- (b) Assume $\mathcal{M}_e(\mathbb{P}) \neq \emptyset$, and let $H \in L^{\infty}(\mathbb{P})$ be a bounded claim. Show that

$$\sup\{\mathbb{E}^{\mathbb{Q}}[H]:\mathbb{Q}\in\mathcal{M}_a(\mathbb{P})\}=\sup\{\mathbb{E}^{\mathbb{Q}}[H]:\mathbb{Q}\in\mathcal{M}_e(\mathbb{P})\}.$$

Points for Question 2: 4

You can achieve a total of 12 points for this sheet.