1. Useful Facts

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $\mathcal{A}, \mathcal{B} \subseteq \mathcal{F}$ σ -algebras. Show:

(a) For $Z \in L^1(\mathcal{F})$ with $\sigma(Z, \mathcal{A})$ independent of \mathcal{B} we have

$$\mathbb{E}[Z|\sigma(\mathcal{A},\mathcal{B})] = \mathbb{E}[Z|\mathcal{A}].$$

(b) Let $Z_1, \ldots, Z_n \in L^1$ be i.i.d. random variables for some $n \in \mathbb{N}$. Then

$$\mathbb{E}\left[Z_j \big| \sum_{k=1}^n Z_k\right] = \frac{1}{n} \sum_{k=1}^n Z_k$$

holds for every $j = 1, \ldots, n$.

Points for Question 1: 4

(2)

(2)

(3)

2. Insider Information

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and Y_1, \ldots, Y_T i.i.d. random variables in L^1 which are not \mathbb{P} -a.s. constant and satisfy $\mathbb{E}[Y_1] = 0$. We observe the filtration defined by $\mathcal{F}_t := \sigma(Y_1, \ldots, Y_t)$ for $t = 0, \ldots, T$ and the price processes $X_t^0 = 1, X_0^1 := 1$,

$$X_t^1 := X_0^1 + \sum_{s=1}^t Y_s$$

for t = 1, ..., T. Furthermore, we enlarge the filtration with the insider information X_T^1 , i.e. for t = 0, ..., T let

$$\hat{\mathcal{F}}_t := \sigma(\mathcal{F}_t, X_T^1).$$

- (a) Show that X^1 is a martingale with respect to (\mathcal{F}_t) , but not with respect to $(\hat{\mathcal{F}}_t)$. (3)
- (b) Show that the process defined by

$$\hat{X}_t := X_t^1 - \sum_{s=0}^{t-1} \frac{X_T^1 - X_s^1}{T - s}$$

for t = 0, ..., T is a martingale with respect to the enlarged filtration.

(c) Compute a self-financing strategy $\bar{\xi}$, which maximizes the expected gain $\mathbb{E}[G_T]$ for (2)

$$G_T = \sum_{s=1}^T \xi_s^1 \Delta X_s^1$$

over all self-financing strategies with respect to $(\hat{\mathcal{F}}_t)$ with $|\xi_t^1| \leq 1$ for every $t = 1, \ldots, T$.

Points for Question 2: 8

You can achieve a total of 12 points for this sheet.