Thorsten Schmidt	Discrete Time Finance
Lars Niemann	Sixth exercise

1. Replication

Let $\Omega=\left\{\omega_{1}, \ldots, \omega_{4}\right\}, \mathcal{F}=2^{\Omega}$ and let \mathbb{P} a strictly positive probability measure on (Ω, \mathcal{F}). Set $S_{t}^{0}:=$ $(1+r)^{t}$ for $r=\frac{1}{4}$ and $t \in\{0, \ldots, 2\}$ and suppose the risky asset S^{1} has the evolution

(a) Consider the option $C=\max _{t=0,1,2} S_{t}^{1}-S_{2}^{1}$.

Compute the arbitrage-free price of the discounted claim $H:=C / S_{2}^{0}$.
(b) Compute a replicating strategy for H.

Points for Question 1: 6

2. The Space L^{0}

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Define the mapping $d: L^{0} \times L^{0} \rightarrow \mathbb{R}_{+}$by $d(X, Y):=\mathbb{E}[|X-Y| \wedge 1]$. Show that:
(a) d defines a metric.
(b) For a sequence $\left(X_{n}\right) \subseteq L^{0}$ and $X \in L^{0}$ the following are equivalent:

- $d\left(X_{n}, X\right) \rightarrow 0$.
- $\left(X_{n}\right)$ converges to X in probability.
(c) $\left(L^{0}, d\right)$ is a topological vector space.

Points for Question 2: 6

You can achieve a total of $\mathbf{1 2}$ points for this sheet.

