Thorsten Schmidt	Discrete Time Finance	University of Freiburg
Lars Niemann	Fifth exercise	23.05.2023

1. Randomized Bolzano–Weierstraß

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. For $n \in \mathbb{N}$, let $X_n \colon \Omega \to \mathbb{R}$ be a random variable. Further, consider a sequence $(x_n) \subseteq \mathbb{R}$ with $\alpha := \liminf |x_n| < \infty$.

- (a) Show, by means of an example, that the sequence (x_n) is not necessarily bounded.
- (b) Set $\sigma_1 := 1$, and define further

$$\sigma_m := \inf\{n > \sigma_{m-1} : | |x_n| - \alpha| \le 1/m\}.$$

Prove that the sequence (x_{σ_m}) is bounded.

- (c) Conclude that (x_n) has a convergent subsequence.
- (d) Construct an example such that $\liminf_{n \to \infty} |X_n|$ is \mathbb{P} -a.s. finite, but there exists no deterministic (2) convergent subsequence of (X_n) .

Points for Question 1: 6

(1)

(2)

(1)

(2)

2. Change of numeraire

Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t=0,...,T})$ be a filtered probability space, that carries a (d+1)-dimensional price process $\overline{S} = (S^0, S)$. Let \mathcal{M}_e be the set of equivalent martingale measures. Assume $\mathcal{F}_0 = \{\emptyset, \Omega\}$, and that $S_t^1 > 0$. We define another discounted price process \overline{Y} by $\overline{Y}_t := \overline{S}/S_t^1$ and denote the corresponding set of equivalent martingale measures by $\widetilde{\mathcal{M}}_e$.

(a) Show the equivalence

$$\mathcal{M}_e \neq \emptyset \iff \tilde{\mathcal{M}}_e \neq \emptyset.$$

- (b) Show that $\tilde{\mathcal{M}}_e$ is the set of measures $\tilde{\mathbb{Q}}$ such that $d\tilde{\mathbb{Q}}/d\mathbb{Q} = \frac{S_T^1/S_T^0}{S_0^1/S_0^0}$ for some $\mathbb{Q} \in \mathcal{M}_e$. (2)
- (c) Suppose the market is free of arbitrage. Show that $\mathcal{M}_e \cap \tilde{\mathcal{M}}_e \neq \emptyset \iff S_T^1/S_T^0$ is almost surely (2) constant.

Points for Question 2: 6

You can achieve a total of **12** points for this sheet.