1. A Discrete Market

Let $\Omega = \{\omega_1, \ldots, \omega_5\}$, \mathbb{P} a strictly positive probability measure on Ω with $\mathcal{F} = 2^{\Omega}$. Consider the risky asset $(S_t^1)_{t=0,\ldots,2}$ with the following evolution

- (a) Compute the filtration (\mathcal{F}_t) generated by S^1 . Compare \mathcal{F}_2 and $\sigma(S_2^1)$.
- (b) Compute the set of equivalent martingale measures. For this part, and the remaining exercise (3) assume $S^0 = 1$.
- (c) Let $C = (S_2^1 25)^+$ be a European Call-option with strike 25. Compute the set of arbitrage-free (3) prices $\{\mathbb{E}^{\mathbb{Q}}[C] : \mathbb{Q} \text{ equivalent martingale measure}\}$ for C.
- (d) We extend the market by a second risky asset S^2 . Assume the following evolution for S^2 :

Construct an arbitrage for the extended market.

Points for Question 1: 12

(3)

(3)

2. Characterization of Martingales

Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t=0,...,T})$ be a filtered probability space, and let $(X_t)_{t=0,...,T}$ be a process. Show that the following are equivalent:

- (X_t) is a martingale.
- (X_t) is a uniformly integrable martingale.
- There exists $X \in L^1(\mathcal{F}_T)$ such that $X_t = \mathbb{E}[X|\mathcal{F}_t]$ for $t = 0, \dots, T$.

Points for Question 2: 4

3. Exponential

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Further, let X_0, \ldots, X_T be i.i.d. with law $\mathcal{N}(\mu, \sigma^2)$, where $\sigma^2 > 0$. Define the process (M_t) by

$$M_t := \exp\Big(\sum_{0 \le k \le t} X_k\Big).$$

Show that M is a martingale if and only if $\mu = -\frac{1}{2}\sigma^2$.

4. Predictable Martingales

Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t=0,...,T})$ be a filtered probability space with $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_T = \mathcal{F}$. We call a martingale M predictable, if M_t is \mathcal{F}_{t-1} -measurable for $t \in \{1, ..., T\}$ and $M_0 = 0$. Show that every predictable martingale is already zero. Points for Question 4: 3

You can achieve a total of 24 points for this sheet.

Points for Question 3: 5