Thorsten Schmidt	Discrete Time Finance	University of Freiburg
Lars Niemann	Second exercise	25.4.2023

1. Discrete Markets in One Period

Let $\Omega = \{\omega_1, \ldots, \omega_n\}$, $\mathcal{F} = 2^{\Omega}$ and \mathbb{P} be a strictly positive probability measure. Consider a market model (S^0, S^1) in one period. We assume $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $n \ge 2$, that the values $S_1^1(\omega_1), \ldots, S_1^1(\omega_n)$ are pairwise distinct and $(S_0^0, S_1^0) = (1, 1+r)$ for some r > -1. Define $a := \min_i S_1^1(\omega_i)$ and $b := \max_i S_1^1(\omega_i)$. Show, without using the fundamental theorem of asset pricing, that this model does not admit arbitrage if and only if $a < (1+r)S_0^1 < b$. Points for Question 1: 4

2. Structure of Trading Strategies

Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t=0,...,T})$ be a filtered probability space, that carries a (d+1)-dimensional price process. Assume $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Denote by $\Theta := \{\bar{\xi} : \bar{\xi} \text{ is a } (d+1)\text{-dimensional predictable process} \}$ the set of trading strategies.

- (a) Show that Θ is a linear space.
- (b) Show that, for every $t \in \{0, \ldots, T\}$, the maps

$$\Theta \ni \bar{\xi} \mapsto G_t(\bar{\xi}), \quad \Theta \ni \bar{\xi} \mapsto V_t(\bar{\xi})$$

are linear.

- (c) Let $\Theta_{sf} \subseteq \Theta$ be the subset of self-financing strategies. Show that Θ_{sf} is a linear space that contains (1) the constant (in time and $\omega \in \Omega$) processes.
- (d) Suppose the market contains an arbitrage. Show that there exists an arbitrage with initial value (1) equal to zero.

(1)

(1)

(3)

(1)

3. Embedding of L^p -Spaces

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $p \in [1, \infty] \cup \{0\}$, $q \in [1, \infty]$ with q > p. Here $L^0(\mathbb{P})$ is endowed with the metrizable topology of convergence in probability.

(a) Show that

$$L^q(\mathbb{P}) \ni X \mapsto X \in L^p(\mathbb{P})$$

is well-defined, injective and continuous.

(b) Conclude that if $A \subseteq L^p(\mathbb{P})$ is closed, then $A \cap L^q(\mathbb{P}) \subseteq L^q(\mathbb{P})$ is closed.

Points for Question 3: 4

You can achieve a total of 12 points for this sheet.