Thorsten Schmidt	Discrete Time Finance	University of Freiburg
Lars Niemann	First exercise	18.4.2023

1. Properties of the Expected Value

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Prove the following assertions:

- (a) For a random variable $X \in L^0_+(\mathbb{P})$ the following are equivalent:
 - X = 0• $\mathbb{E}[X] = 0$ (2)
- (b) For a random variable $X \in L^1(\mathbb{P})$ the following are equivalent:
 - X = 0
 - $\mathbb{E}[X\mathbb{1}_A] = 0$ for every $A \in \mathcal{F}$

Points for Question 1: 3

(1)

(1)

(2)

(2)

2. The Radon-Nikodym Derivative

Let \mathbb{P} and \mathbb{Q} be two probability measures on a measurable space (Ω, \mathcal{F}) . We write $\mathbb{Q} \ll \mathbb{P}$ if $\mathbb{Q}(A) = 0$ for every $A \in \mathcal{F}$ with $\mathbb{P}(A) = 0$. In this case one can show that there exists a non-negative function $d\mathbb{Q}/d\mathbb{P} \in L^1(\mathbb{P})$ such that $\mathbb{Q}(A) = \mathbb{E}^{\mathbb{P}}[\mathbb{1}_A(d\mathbb{Q}/d\mathbb{P})]$ for all $A \in \mathcal{F}$. We call $d\mathbb{Q}/d\mathbb{P}$ the Radon-Nikodym derivative of \mathbb{Q} with respect to \mathbb{P} . If $\mathbb{Q} \ll \mathbb{P}$ and $\mathbb{P} \ll \mathbb{Q}$, we denote this by $\mathbb{Q} \sim \mathbb{P}$. Now let \mathbb{P} and \mathbb{Q} be two probability measures on a measurable space (Ω, \mathcal{F}) such that $\mathbb{Q} \ll \mathbb{P}$.

- (a) Show that $d\mathbb{Q}/d\mathbb{P}$ is P-a.s. unique.
- (b) Show that $X \in L^1(\mathbb{Q})$ if and only if $X(d\mathbb{Q}/d\mathbb{P}) \in L^1(\mathbb{P})$. Show that in this case we have

$$\mathbb{E}^{\mathbb{Q}}[X] = \mathbb{E}^{\mathbb{P}}[X(d\mathbb{Q}/d\mathbb{P})]$$

and that this equality also holds for every X > 0.

(c) Show that $\mathbb{P} \ll \mathbb{Q}$ if and only if $d\mathbb{Q}/d\mathbb{P} > 0$ P-a.s.. Show that in this case we have $d\mathbb{P}/d\mathbb{Q} =$ (2) $(d\mathbb{Q}/d\mathbb{P})^{-1}.$

Points for Question 2: 5

3. A First Example

Let $\Omega = [90, 110] \subseteq \mathbb{R}$ and let $\mathcal{F} = \mathcal{B}(\Omega)$ be the Borel σ -field. We interpret $\omega \in \Omega$ as the outcome of a risky asset. Consider a call option with strike K = 100 given by

$$X(\omega) := (\omega - K)^{+} := (\omega - K) \mathbb{1}_{[100, 110]}(\omega)$$

- (a) Determine $\sigma(X)$ and decide whether $[90, 95] \in \sigma(X)$.
- (b) Equip (Ω, \mathcal{F}) with the normalized Lebesgue measure $\mathbb{P} = \frac{1}{20}\lambda$. Suppose you paid 2 Euro for the (2)payoff X. How high is the probability that you make profit with this investment?

Points for Question 3: 4

You can achieve a total of **12** points for this sheet.