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Overview

These lecture notes form the core of an advanced master class held at
the University of Freiburg in the summer term 2018. They cover stochas-
tic integration and no-arbitrage theory in great generality. Nevertheless,
they are reasonably short and self-contained thanks to some recent and
elementary proofs of e.g. the Bichteler–Dellacherie theorem and the fun-
damental theorem of asset pricing. Some supplementary results are left

as exercises and marked by E , and some auxiliary results are collected
in the appendix.

The notes are preliminary and incomplete: they don’t cover the full
extent of the lecture, and references to the literature are largely missing.
Some parts are indebted to lecture notes of Josef Teichmann; this is grate-
fully acknowledged. Of course, the author takes full responsibility for any
mistakes and would be glad to hear about any that you find.
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1 Stochastic integration

This section is devoted to the construction of the stochastic integral. We
use an analytic approach based on the Emery topology, which is closely
related to the notions of good integrators and L0-valued vector measures.
The advantage is that it is quick, fully general, and does not presuppose
any semimartingale theory. The disadvantage is that it does not provide
an explicit description of the integrands. An alternative approach is to
define the stochastic integral separately for local martingales and finite
variation processes [SC02]. A mixture of these approaches is presented in
[Pro05], where integration with caglad integrands is treated using the no-
tion of good integrators, whereas integration with predictable integrands
is treated as in [SC02].

Setting. Let (Ω,F , (Ft)t∈[0,1],P) be filtered probability space satisfying
the usual conditions, let d ∈ N, and let · denote the Euclidean scalar
product on Rd. All processes are defined on Ω × [0, 1], and all stopping
times take values in [0, 1] ∪ {∞}, unless stated otherwise.

1.1 Good integrators

1.1.1 Prerequisites. Section 3.2 on gauges and Section 3.3 on conver-
gence in probability are needed now.

1.1.2 Definition. Let H,X : Ω× [0, 1]→ Rd with H caglad adapted and
X cadlag adapted.

(i) H is elementary predictable, in symbols H ∈ Ed, if it can be written
as

H = h01J0K +

n∑
i=1

hi1LTi,Ti+1K,

where n ∈ N, 0 = T0 = T1 < T2 ≤ · · · ≤ Tn+1 = 1 are stopping
times, and hi are essentially bounded Rd-valued FTi -measurable ran-
dom variables.
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(ii) The elementary indefinite integral of H ∈ Ed against X is the real-
valued cadlag adapted process

H •X = h0 ·X0 +

n∑
i=1

hi · (Xti+1 −Xti),

and the elementary definite integral is the real-valued random vari-
able

(H •X)1 = h0 ·X0 +

n∑
i=1

hi · (XTi+1 −XTi).

(iii) X is a good integrator if the elementary definite integral is continu-
ous:

(Ed, ‖ · ‖∞) 3 H 7→ (H •X)1 ∈ (L0,V·W0),

where ‖H‖∞ = ess supω∈Ω supt∈[0,1] supj∈{1,...,d} |H
j
t (ω)|.

1.1.3 Remark.

• The good integrator property is a very weak continuity requirement,
as the ‖ · ‖∞ topology is strong and the V·W0 topology weak.

• In the deterministic case the cadlag property of X corresponds to
the cadlag property of cumulative distribution functions.

• The generalization to infinite time horizons works as follows: a pro-
cess X : Ω × [0,∞) → Rd is a good integrator if its restriction to
Ω× [0, t] is a good integrator for each t ∈ [0,∞).

• The notion of good integrators remains the same if elementary inte- E
grands are replaced by simple integrands, i.e., elementary predictable
processes H as in Definition 1.1.2 such that Ti and hi take only
finitely many values.

• Good integrators are stable under stopping. Any local good integra- E
tor is a good integrator. Good integrators under P are also good in-
tegrators under Q� P. Good integrators with respect to (Ft)t∈[0,1]

are also good integrators with respect to any sub-filtration (Gt)t∈[0,1]

they are adapted to.

• Finite variation processes are the only good integrators with respect E
to the larger set of elementary integrands consisting of all processes
H = 1J0K +

∑n
i=1 h

i
1LTi,Ti+1K such that hi is FTi+1 -adapted.

1.2 Topologies on good integrators

1.2.1 Definition. Let X : Ω × [0, 1] → Rd be cadlag adapted, and let
H ∈ Ed.

(i) The good integrator and semimartingale (Emery) gauges of X and
H are

VXWId = sup
K∈Ed
‖K‖∞≤1

V(K •X)1W0, VXWSd = sup
K∈Ed
‖K‖∞≤1

V|K •X|∗1W0.

VHWX = VHWX,I = VH •XWI , VHWX,S = VH •XWS .

(ii) Id and Sd denote the sets of cadlag adapted processes X, which are
finite for V·WId and V·WSd , respectively.

1.2.2 Lemma.
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(i) V·WId = V·WSd and Id = Sd is exactly the set of good integrators.

(ii) Id = Sd is a complete topological vector space under V·WId = V·WSd .

(iii) For any X ∈ Id = Sd, Ed is a topological vector space under
V·WX,I = V·WX,S .

Proof.

(i) We follow [Bic02, Lemma 2.3.2]. For any λ > 0 and H ∈ Ed define

T = inf{t ∈ [0, 1]; |H •X|t > λ}, K = 1J0,T K.

Then

P[|H •X|∗1 > λ] ≤ P[|H •X|T ≥ λ] = P[|HK •X|1 ≥ λ].

This implies

inf{λ > 0;P[|H •X|∗1 > λ] ≤ λ} ≤ inf{λ > 0;P[|HK •X|∗1 ≥ λ] ≤ λ}
= inf{λ > 0;P[|HK •X|∗1 > λ] ≤ λ}.

As HK ∈ Ed satisfies ‖HK‖∞ ≤ 1, taking the supremum over all
H ∈ Ed shows that VXWSd ≤ VXWId . The reverse inequality is
trivial.

(ii) Id = Sd is a topological vector space by Lemma 3.2.4 because
the gauge V·WSd = V·WId is subadditive, balanced, and finite. We
show completeness following [Éme79, Théorème 1]. Let (Xn)n∈N be
Cauchy in Id. Then Xn converges uniformly in probability to some
cadlag adapted X by (i) and by the completeness of the set of cadlag
adapted processes with respect to uniform convergence in probabil-
ity. To verify that X ∈ Id, note that {Xn;n ∈ N} is bounded in Id,
i.e.,

lim
r→0

sup
n∈N

VrXnWI = lim
r→0

sup
n∈N

sup
H∈E
|H|≤1

V(rH •Xn)1W0 = 0.

As V(rH •Xn)1W0 → V(rH •X)1W0, this implies

lim
r→0

sup
H∈E
|H|≤1

V(rH •X)1W0 = 0,

and we have shown that X ∈ Id.
(iii) The V·WId -finiteness of X implies the V·WX,I-finiteness of any H ∈ Ed

because
lim
r→0

VrHWX,Id = lim
r→0

VrH •XWI = 0.

Thus, V·WX,I is subadditive balanced and finite on Ed, and Lemma 3.2.4
implies that Ed is a topological vector space.

1.3 Stochastic integrals

1.3.1 Definition. For any X ∈ Id, L1(X) denotes the closure of Ed with
respect to V·WX , and L(X) = L1

loc(X).

1.3.2 Theorem. Let X ∈ Id.
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(i) The elementary definite stochastic integral extends uniquely to a con-
tinuous linear mapping

L1(X) 3 H 7→ (H •X)1 ∈ L0,

which is called the definite stochastic integral.

(ii) The elementary indefinite stochastic integral extends uniquely to an
isometry

L1(X) 3 H 7→ H •X ∈ I,
which is called the indefinite stochastic integral.

Proof. We follow [Bic02, Theorem 3.7.10].

(i) Continuity of the elementary definite integral follows from (ii) be-
cause evaluation at time one (I = S 3 Y 7→ Y1 ∈ L0) is continuous.
The extension exists because L0 is complete.

(ii) The gauges on Ed and Id are defined such that the elementary inte-
gral is isometric, and the extension exists because Id is complete as
shown in Lemma 1.2.2.

1.3.3 Remark.

(i) What is lacking at this point is a characterization of L1(X) as a set
of predictable processes determined by some integrability conditions.
This requires some additional theory: either semimartingale theory
[SC02] or Daniell’s theory of integration1 [Bic02]. Both approaches
were read together in class.

(ii) The integral is as general as possible because the set of integrals is E
Emery-closed, i.e., for any X ∈ Id, the set {H •X;H ∈ L1(X)} is
closed in I thanks to the isometric property of the integral.

(iii) The integral is more general than the component-wise integral: there E
are X ∈ I2 and H = (H1, H2) ∈ L(X) with H1 /∈ L(X1) and
H2 /∈ L(X2).

(iv) The integral is associative, equivariant with respect to stopping, in-
variant under shrinkage of filtration, and invariant under absolutely
continuous changes of measure. Moreover, the jumps of the integral
are the integrand times the jumps of the integrator. These state-
ments are obvious for elementary integrands and follow for general
integrands by taking limits.

(v) The integral coincides with the Lebesgue–Stieltjes integral if X has E
finite variation.

The following lemma provides a large class of integrands, which is suf-
ficient for many purposes, including the definition of quadratic variation,
Itô’s formula, and stochastic differential equations.

1.3.4 Lemma. For each X ∈ Id, the space of Rd-valued caglad adapted
processes with the topology of uniform convergence in probability is con-
tinuously embedded in L1(X).

Proof. We claim that the topology of uniform convergence in probability
on Ed is stronger than the L1(X) topology on Ed. To prove the claim let

Hn ∈ Ed satisfy Hn up−→ 0, and let ε > 0. Choose r ∈ (0,∞) such that

1The integrals in Daniell’s theory are not Emery-closed for d ≥ 2, contrarily to what is
stated between equations (3.10.2) and (3.10.3) in [Bic02].
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VrXWI ≤ ε. Choose N ∈ N such that for all n ≥ N : P[|Hn|∗1 > r] ≤ ε.
Then one has for all n ≥ N and K ∈ E with |K| ≤ 1 that

P[|HnK •X|1 > 2ε] ≤ P[|HnK •X|1 > ε]

≤ P[|Hn|∗1 > r] + P[r|K •X|1 > ε] ≤ 2ε.

This implies for all n ≥ N that VHnWX ≤ 2ε. Thus, VHnWX → 0. This
proves the claim. Now the lemma follows from the fact that the set of
caglad adapted processes is the closure of Ed with respect to uniform
convergence in probability.

1.4 Semimartingales are good integrators

1.4.1 Prerequisites. Section 3.1 on discrete-time martingales is needed
now.

1.4.2 Definition. A cadlag adapted process X : Ω × [0, 1] → Rd is a
semimartingale if X = M + A for a local martingale M ∈ Md

loc and a
finite variation process A ∈ Vd. It is called special if A can be chosen
predictable.

1.4.3 Remark. The semimartingale and good integrator properties are E
stable under stopping and localization.

1.4.4 Lemma. Let X : Ω× [0, 1]→ Rd be cadlag adapted.

(i) If X has finite variation, then X is a good integrator.

(ii) If X is a square integrable martingale, then X is a good integrator.

(iii) If X is a martingale, then X is a good integrator.

In particular, all semimartingales are local good integrators.

Proof. Let H ∈ Ed be as in Definition 1.1.2.

(i) Variation estimate: if X has finite variation and X0 = 0, then

Var(H •X) = Var

(
n∑
i=1

hi · (XTi+1 −XTi)

)

≤
n∑
i=1

d∑
j=1

|hji |Var
(
Xj,Ti+1 −Xj,Ti

)
≤ ‖H‖∞

d∑
j=1

Var(Xj).

(ii) Ito’s inequality: if X is a square-integrable martingale, then

E[(H •X)2
1] = E

[
(h0 ·X0 +

n∑
i=1

hi · (XTi+1 −XTi))
2

]

= E

[
(h0 ·X0)2 +

n∑
i=1

(hi · (XTi+1 −XTi))
2

]

≤ E

[
‖h0‖2Rd‖X0‖2Rd +

n∑
i=1

‖hi‖2Rd‖XTi+1 −XTi‖
2
Rd

]

≤ d‖H‖2∞E

[
‖X0‖2Rd +

n∑
i=1

‖XTi+1 −XTi‖
2
Rd

]
= d‖H‖2∞E

[
‖X1‖2Rd

]
.
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(iii) Burkholder’s inequality: if X is a real-valued martingale (d = 1),
then

∀α > 0 : αP[|H •X|∗1 ≥ α] ≤ 18E[|X1|].

This follows from Theorem 3.1.1.(v) by approximating the supre-
mum over all t by a supremum over finitely many stopping times.
Thus, one obtains for general d that

αP[|H •X|∗1 ≥ α] = αP
[∣∣∣∣ H

‖H‖∞
•X

∣∣∣∣∗
1

≥ α

‖H‖∞

]

≤ α
d∑
j=1

P
[∣∣∣∣ Hj

‖H‖∞
•Xj

∣∣∣∣∗
1

≥ α

‖H‖∞d

]
≤ 18‖H‖∞d

d∑
j=1

E[|Xj
1 |].

1.4.5 Remark. The proof of Lemma 1.4.4 shows: E

(i) If X is a local martingale and H is locally bounded, then H •X is
a local martingale.

(ii) If X is a locally square integrable local martingale and H is locally
bounded, then H •X is a locally square integrable local martingale.

Note however that there are locally unbounded integrands H and martin-
gales X such that H •X is not a local martingale; cf. Section 3.9.

1.5 Good integrators are semimartingales

1.5.1 Prerequisites. Section 3.4 on Hahn–Banach and Section 3.5 on
the L1 version of Komlos are needed now.

1.5.2 Definition. Let X : Ω× [0, 1]→ Rd be cadlag adapted.

(i) X is a quasimartingale if it has bounded mean variation

MV (X) := sup
π

MV (X,π) := sup
π
E

n∑
i=0

∥∥E[Xti+1 −Xti ]
∥∥
Rd <∞,

where π denotes a partition 0 = t0 ≤ t1 ≤ · · · ≤ tn+1 = 1.

(ii) X is of class (D) if the set of all ST , where T is a finite stopping
time, is uniformly integrable.

1.5.3 Theorem (Bichteler, Dellacherie). Any good integrator is a semi-
martingale.

Proof. We outline the proof of Beiglböck and Siorpaes [BS14].

• The process Jt =
∑
s≤t ∆Ss1{|∆Ss|≥1} of cumulated big jumps has

finite variation and is therefore a semimartingale and a good inte-
grator. It remains to show that the locally bounded good integrator
S − J is a semimartingale. Thus, by localization, we may assume
wlog. that S is bounded.

• [BS14, Lemma 4.1]: Let n ∈ N, let πn be the dyadic partition of
[0, 1] with grid size 2−n, and let H be the elementary predictable
process which equals the sign of E[Sti+1 − Sti |Fti ] on each interval
(ti, ti+1] of πn. Then MV (X,πn) = (Hn •S)1; in financial terms the
mean variation is replicated by trading in S. The elementary integral
(Hn • S)1 is bounded in probability because S is a good integrator.
Thus, for each ε > 0 there is C > 0 such |Hn • S|1 is bounded by
C with probability at least 1 − ε. Equivalently, MV (STn , πn) ≤ C,
where Tn is the first dyadic time such that |Hn • S| ≥ C − ‖∆S‖∞.
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• [BS14, Lemma 4.2]: Some forward convex combinations of (Tn)n∈N
converges in L1 to a stopping time T by the Komlos lemma, and ST

has bounded mean variation. Moreover, T is localizing in the sense
that P[T <∞] becomes small for small ε.

• By Rao’s theorem, the bounded mean variation process ST is the
difference of two submartingales. The proof is elementary and uses
again the L1 version of the Komlos lemma [Kal06, Theorem 23.20].

• Any supermartingale is locally of class (D) [BS14, Lemma 5.2].

• By Doob–Meyer any submartingale of class (D) is a semimartingale.
The proof uses Doob’s decomposition (Theorem 3.1.1.(i)) in discrete
time and extracts a continuous-time limit using the L1 version of
Komlos [BSV12].

1.5.4 Remark. The proofs of Rao’s theorem [Kal06, Theorem 23.20] and
the continuous-time Doob–Meyer decomposition [BSV12] are interesting
and were read in class.

1.6 Riemann sums

1.6.1 Definition.

(i) A random partition is a finite sequence of stopping times 0 = T0 ≤
· · · ≤ Tn+1 = 1.

(ii) A sequence of random partitions tends to the identity if

lim
n→∞

sup
k
|Tnk+1 − Tnk | = 0.

(iii) A cadlag adapted process X sampled at a random partition π is the
cadlag adapted process

Xπ =
∑
k

XTk1JTk,Tk+1M.

In the following we write Xn up−→ X if |Xn −X|∗1 → 0 in probability.

1.6.2 Lemma. Let X ∈ Id, let Y be Rd-valued cadlag adapted, and let
(πn)n∈N be a sequence of random partitions tending to the identity.

(i) Y πn
− •X up−→ Y− •X.

(ii) If Xπn
up−→ X, then Y πn

− •Xπn
up−→ Y− •X.

Proof.

(i) Let Y k
up−→ X for elementary Y k− ∈ Ed. Then

V|(Y− − Y πn
− ) •X|∗1W0 ≤ V|(Y− − Y k−) •X|∗1W0

+ V|(Y k− − (Y k)πn
− ) •X|∗1W0 + V|((Y k)πn

− − Y
πn
− ) •X|∗1W0.

Choose k large to make the first and third summands small. Then
choose n large to make the second summand small using the right-
continuity of S.

(ii) This follows from

Y πn
− • (X −Xπn) = Y πn(X −Xπn)

up−→ 0.

1.6.3 Remark. E
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(i) For any cadlag adapted process X there exists a sequence (πn)n∈N

of random partitions such that Xπn
up−→ X.

(ii) There is a cadlag adapted process X and a sequence of random

partitions such that Xπn
up−→ X does not hold.

1.7 Quadratic variation

Recall from Lemma 1.3.4 that caglad adapted processes are integrable
with respect to any good integrator.

1.7.1 Definition. Let X,Y ∈ I. We use the convention X0− = Y0− = 0.

(i) The quadratic variation of X is the cadlag adapted process

[X] = [X,X] = X2 − 2X− •X.

(ii) The quadratic covariation of X and Y is the cadlag adapted process

[X,Y ] = XY −X− • Y − Y− •X.

1.7.2 Lemma. Let X ∈ I.

(i) [X] is cadlag increasing, [X]0 = X2
0 , and ∆[X] = (∆X)2.

(ii) If (πn)n∈N is a sequence of random partitions tending to the identity,
then

[Xπn ] = X2
0 +

∑
i

(XTn
i+1 −XTn

i )2 up−→ [X].

(iii) For any stopping time T , [XT ] = [X]T .

(iv) For any H ∈ L(X), [H •X] = H2 • [X].

Proof.

(i) follows from ∆(X− •X) = X−∆X.

(ii) Assume wlog. X0 = 0 by replacing X by X−X0. Then Lemma 1.6.2
implies that∑

i

(XTn
i+1 −XTn

i )2

=
∑
i

(
(X2)T

n
i+1 − (X2)T

n
i
)
− 2

∑
i

XTn
i
(
XTn

i+1 −XTn
i
)

= X2 − 2
∑
i

XTn
i

(
XTn

i+1 −XTn
i
)

= X2 − 2Xπn
− •X

up−→ X2 − 2X− •X = [X].

(iii) [XT ] = (XT )2 − 2XT
− •XT = (X2)T − 2(X− •X)T = [X]T .

(iv) holds for elementary H by (iii), for H ∈ L1(X) by taking limits, and
for H ∈ L(X) by localization using (iii).

1.7.3 Remark. E

(i) The above statements about [X] extend to corresponding statements
about [X,Y ] by polarization. In particular, [X,Y ] is a finite varia-
tion process.

(ii) The set of semimartingales is an algebra.

(iii) The jumps of any semimartingale are square summable.
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1.7.4 Lemma. Let X ∈ I.

(i) If X has finite variation, then [X] =
∑
s≤·(∆Xs)

2.

(ii) If X is a continuous local martingale, then X2 − [X] is a local mar-
tingale. Moreover, X = X0 if and only if [X] = X2

0 .

(iii) If X is a locally square integrable local martingale, then [X] is the
unique finite variation process A such that X2−A is a local martin-
gale, ∆A = (∆X)2, and A0 = X2

0 .

Proof.

(i) The stochastic integral coincides with the Lebesgue-Stieltjes integral,
which satisfies the change of variables formula X2 = 2X− •X.

(ii) X2−[X] = 2X•X is a local martingale; see Remark 1.4.5. IfX = X0,
then [X] = X2

0 . Conversely, if [X] = X2
0 , then X2 − X2

0 is a non-
negative continuous local martingale with initial value zero, which
implies that X2 −X2

0 is identically zero.

(iii) Existence: the process A = [X] satisfies the stated properties be-
cause X− •X is a local martingale; see Remark 1.4.5. Uniqueness:
if A and B satisfy the stated properties, then A−B is a continuous
local martingale with initial value zero and paths of finite variation.
Then [A−B] vanishes by (i), which implies that A−B vanishes by
(ii).

1.7.5 Example. E

(i) If Xt = t, then [X] = 0.

(ii) If X is Brownian motion, then [X]t = t.

(iii) If X is a Poisson process, then [X] = X.

1.8 Burkholder–Davis–Gundy inqualities

1.8.1 Theorem. For any p ∈ [1,∞) there exist constants ap and bp such
that every local martingale X satisfies

E
[
[X,X]

p/2
1

]
≤ apE

[
|Xp|∗1

]
, E

[
|Xp|∗1

]
≤ bpE

[
[X,X]

p/2
1

]
,

Proof. This holds for every piecewise constant local martingale by [BS15],
and for general local martingales by approximation as in Lemma 1.7.2.

1.8.2 Remark.

(i) Theorem 1.8.1 gives control over the integral H •M for unbounded
integrands H and local martingales M . As the proof is elementary,
this can be taken as a starting point for defining stochastic integra-
tion; see [SC02].

(ii) The proof of Theorem 1.8.1 in [BS15] is elementary and interesting
and was read in class. Financially speaking the key observation is
that |Xp|∗ can be super-replicated by a constant times [X]p/2 plus
a stochastic integral, and vice versa.
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1.9 Itô’s formula

1.9.1 Theorem (Itô’s formula). Let X ∈ Id, and let f ∈ C2(Rd), and
let Xi denote the i-th component of X. Then f(X) ∈ I and

f(X) = f(X0) +

d∑
i=1

(∂if)(X−) •X +
1

2

d∑
i,j=1

(∂i,jf)(X−) • [Xi, Xj ]

+
∑
s≤·

(
f(X)− f(X−)−

d∑
i=1

(∂if)(X−)∆Xi

− 1

2

d∑
i,j=1

(∂i,jf)(X−)∆Xi∆Xj

)
.

Proof. We follow [Tei17, Lemma 5.8 and Theorem 5.10]. Let (πn)n∈N be

a sequence of partitions tending to the identity such that Xπn
up−→ X;

cf. Remark 1.6.3. As Xπn is piecewise constant, Itô’s formula with X
replaced by Xπn holds for all n ∈ N by direct inspection. It remains to
take a limit n→∞ uniformly in probability.

The summands on the first line of Itô’s formula converge uniformly
in probability as n → ∞ by Lemma 1.6.2. For any fixed r > 0, the sum∑
s≤· spanning the second and third line is split into a finite sum

∑
A over

large jumps with |∆X| > r and a possibly countable sum
∑
B of small

jumps with |∆X| ≤ r. As
∑
A is a finite sum, it converges uniformly in

probability as n → ∞. Moreover,
∑
B can be made arbitrarily small by

choosing r sufficiently small thanks to the estimates
∑
s≤·(∆X

i
s)

2 ≤ [Xi]
and

f(y)− f(x)−
d∑
i=1

(∂if)(x)(y − x)i − 1

2

d∑
i,j=1

(∂i,jf)(x)(y − x)i(y − x)j

= o
(
‖y − x‖

)
‖y − x‖2.

1.9.2 Remark. E

(i) Itô’s formula can be rewritten as

f(X) = f(X0) +

d∑
i=1

(∂if)(X−) •X +
1

2

d∑
i,j=1

(∂i∂jf)(X−) • [Xi, Xj ]c

+
∑
s≤·

(
f(X)− f(X−)−

d∑
i=1

(∂if)(X−)∆Xi

)
,

where [X]c denotes the continuous part of [X], which is defined as
[X]c = [X]−

∑
s≤·∆[X]s =

∑
s≤·(∆Xs)

2.

(ii) Itô’s formula can be used to derive and prove explicit solution for- E
mulas for the following stochastic differential equations:

• Ornstein–Uhlenbeck: dXt = κ(θ − Xt)dt + σdWt with κ > 0,
θ, σ ∈ R, and W Brownian motion.

• Stochastic exponential: dXt = Xt−dZt with Z ∈ I.

11



2 Financial mathematics

The cornerstone of modern mathematical finance is the fundamental the-
orem of asset pricing. It establishes an equivalence between arbitrage-
properties of market models and the existence of so-called risk-neutral
probabilities. Intuitively, the risk-neutral probability measure accounts
for the risk preferences of the market participants by assigning higher
weight to adverse extreme events. The resulting framework for option
pricing and hedging has become the industry standard.

Setting. Let (Ω,F , (Ft)t∈[0,1],P) be filtered probability space satisfying
the usual conditions, and let d ∈ N. All processes are defined on [0, 1]×Ω,
and all stopping times take values in [0, 1]∪{∞}. Recall that L(S) denotes
the set of all processes φ such that φ • S is well-defined. It is assumed
throughout this section that φ0 = 0 and therefore (φ • S)0 = 0.

2.1 Financial markets

2.1.1 Definition.

(i) A financial market is a semimartingale S = (S1, . . . , Sd).

(ii) A trading strategy is a process φ = (φ1, . . . , φd) ∈ L(S).

(iii) The wealth process associated to φ with initial wealth V0 ∈ L0(F0)
is the cadlag adapted process

V = V0 + φ • S.

(iv) A portfolio is a triple (S, φ, V ) as above.

2.1.2 Remark.

• There can be arbitrary short and long positions. There are no trans-
action costs, market impacts of trades, bid-ask spreads, and interest
rates.

• The wealth process is defined such that all gains and losses are due
to movements of the stock market.

• Discrete-time models can be treated in the framework by setting φ
and S piecewise constant. Models with infinite time horizon work in
a very similar way [SC02].

2.1.3 Example. Let W,B be Brownian motions, let BH be fractional
Brownian motion of Hurst index H ∈ (0, 1), let 0 = t0 ≤ · · · ≤ tn+1 = 1,
let a, b, g, µ, σ ∈ R, and let β > 0.

• Bachelier: dSt = µdt+ σdWt.

• Black–Scholes: dSt = St(µdt+ σdWt).

• Heston: dSt = St(µdt+
√
VtdWt), dVt = (b− βVt)dt+ σ

√
VtdBt.

• Rough Bergomi: dSt = St(µdt+
√
VtdWt), Vt = V0 exp(σBHt − at).

• Cox–Ross–Rubinstein: St = S0

∏
ti≤tRi, Ri ∈ {g, b}.

2.1.4 Remark. To get a feel for how these models are used, one can E
download some stock prices (e.g. of the SNP 500 index) and estimate the
volatility parameter σ in the Bachelier and Black–Scholes models (e.g.
using the discrete approximations of Lemma 1.7.2).

12



2.2 Admissible portfolios

2.2.1 Definition. A portfolio (S, φ, V ) is called admissible if it is a-
admissible for some a ≥ 0, i.e.,

P[V ≥ −a] = 1.

2.2.2 Remark.

• Economically, the admissibility condition corresponds to a finite
credit line.

• Without the admissibility condition, even the nicest markets admit E
arbitrages e.g. in the form of doubling strategies.

• Due to the admissibility condition there may be no simple admissible E
trading strategies at all: consider e.g. asset prices whose jumps are
unbounded from below. Thus, meaningful fundamental theorems of
asset pricing require a larger class of strategies than just simple ones.

• In the fundamental theorem of asset pricing, the main role of the
admissibility condition is to ensure that wealth processes are super-
martingales under the risk-neutral measure.

2.3 Self-financing portfolios

2.3.1 Definition. A portfolio (S, φ, V ) is called self-financing if

V =
∑
i

φiSi.

2.3.2 Remark.

• The self-financing condition means that all of the gains and losses
are re-invested in the assets; no money is put into or taken out from
the portfolio.

• In discrete time this means that the wealth does not change when E
the portfolio is rebalanced:∑

i

φinS
i
n

rebalancing of φ−−−−−−−−−−→
∑
i

φin+1S
i
n

evolution of S−−−−−−−−−→
∑
i

φin+1S
i
n+1.

The self-financing condition can always be ensured by adding to the
portfolio a constant asset S0 = 1, which can be thought of as a bank
account holding the gains and losses from trading.

2.3.3 Lemma. There is a one-to-one correspondence between:

(i) Portfolios ((S1, . . . , Sd), (φ1, . . . , φd), V ); and

(ii) Self-financing portfolios ((S0, . . . , Sd), (φ0, . . . , φd), V ) with S0 = 1.

Proof.

(i) (ii): Augment the market to d+ 1 dimensions by setting

S0 = 1, φ0 = V− −
d∑
i=1

φiSi−.

Then the resulting (d + 1)-dimensional market is self-financing be-
cause

V = V− + ∆V =

d∑
i=0

φiSi− + ∆V =

d∑
i=0

φiSi− +

d∑
i=1

φi∆Si =

d∑
i=0

φiSi.

(i) (ii): Discard the zero-th components of S and φ.

13



2.4 Discounting

Discounting is a change of reference unit, also called numeraire. As a
notational distinction, undiscounted quantities will carry a tilde.

2.4.1 Definition.

(i) A numeraire is a real-valued semimartingale S̃0 which satisfies S̃0 >
0, S̃0

− > 0, and S̃0
0 = 1.

(ii) A portfolio (S̃, φ̃, Ṽ ) is called admissible with respect to S̃0 if there
is a ≥ 0 such that

P[Ṽ ≥ −aS̃0] = 1.

2.4.2 Example. Common choices of numeraires are:

• Domestic or foreign currencies;

• Bank account processes, i.e., deposits with continuously (or, in prac-
tice, daily) compounded interest;

• Highly diversified market indices, which approximate the growth-
optimal portfolio in the benchmark approach.

2.4.3 Lemma. Let S̃0 be a bank account process. Then the discounting
relations

S = S̃/S̃0, φ = φ̃, V = Ṽ /S̃0

establish a one-to-one correspondence between:

(i) Self-financing portfolios ((S̃0, . . . , S̃d), (φ̃0, . . . , φ̃d), Ṽ ) which are ad-
missible with respect to S̃0.

(ii) Admissible self-financing portfolios ((S0, . . . , Sd), (φ0, . . . , φd), V ) with
S0 = 1.

Proof.

(i) (ii): Given (S̃, φ̃, Ṽ ), define (S, φ, V ) by the discounting relations,
and let D = 1/S̃0. Recall from the proof of Lemma 2.3.3 that the
self-financing condition implies

Ṽ − =

d∑
i=0

φ̃iS̃i−.

This implies that V is the discounted wealth process associated to
φ:

V = Ṽ D = Ṽ 0D + Ṽ − •D +D− • Ṽ + [Ṽ , D]

= V0 + Ṽ − •D +D− • (φ̃ • S̃) + [φ̃ • S̃,D]

= V0 + Ṽ − •D + φ̃ • (D− • S̃ + [S̃,D])

= V0 + Ṽ − •D + φ̃ • (DS̃ − S̃− •D)

= V0 +
(
Ṽ − −

d∑
i=0

φ̃iS̃i−

)
•D + φ̃ • (DS̃)

= V0 + φ̃ • (DS̃) = V0 + φ • S.

The self-financing and admissibility conditions of (S, φ, V ) are trivial
to check.

(ii) (i): Similar to the above.

14



2.4.4 Remark.

(i) Lemma 2.4.3 uses the general vector integral and breaks down for E
the component-wise integral. Indeed, there is a discounted self-
financing portfolio (S, φ, V ) and a bank account process S̃0 such
that the component-wise integral φ̃ • S̃ does not exist.

(ii) No-arbitrage theory is typically applied to discounted assets.

2.5 Fundamental theorem of asset pricing

2.5.1 Prerequisites. Section 3.9 on sigma-martingales is needed now.

2.5.2 Definition. Let S be a financial market.

(i) Claims which are replicable and super-replicable at zero initial wealth:

K = {f ∈ L0; f = (φ • S)1 for some admissible φ} ∩ L∞,

C = {f ∈ L0; f ≤ (φ • S)1 for some admissible φ} ∩ L∞.

(ii) S satisfies

no arbitrage (NA)⇔ C ∩ L∞+ = {0},
no free lunch with vanishing risk (NFLVR)⇔ C ∩ L∞+ = {0},

no free lunch (NFL)⇔ C
∗ ∩ L∞+ = {0},

completeness⇔ (K ∩ −K) + R = L∞.

Here C and C
∗

denote the closure and weak* closure in L∞, respec-
tively.

(iii) Equivalent separating and sigma-martingale measures:

Me
sep(S) = {Q ∼ P;EQ[f ] ≤ 0 for all f ∈ C},
Me

σ(S) = {Q ∼ P;S is Q-sigma martingale}.

Similarly, Ma
sep and Ma

σ for absolutely continuous measures.

2.5.3 Theorem (Fundamental theorem of asset pricing). Let S be a
financial market.

(i) S satisfies (NFLVR) ⇔ Me
σ(S) 6= ∅.

(ii) S satisfies (NFLVR) and is complete ⇔ Me
σ(S) = {Q} for some Q.

Proof. The line of argument is as follows:

• Section 2.6: Identify the polars of C and K.

• Section 2.7: The bipolar theorem gives a preliminary version of the
FTAP with Me

sep(S) in place of Me
σ(S) and under the assumption

that C = C
∗
.

• Section 2.8: Identify Me
sep(S) and Me

σ(S).

• Sections 2.9–2.12: Show that (NFLVR) implies C = C
∗
. This is the

difficult part.

2.5.4 Remark.

(i) It is illuminating to formulate the contrapositions of (NA), (NFLVR), E
and (NFL): what is an arbitrage, what is a free lunch with vanishing
risk, and what is a free lunch?
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(ii) The (NFLVR) condition strikes a balance between economic plausi-
bility and mathematical usefulness:

• (NA) is economically convincing but mathematically insufficient
because it does not imply Me

σ(S) 6= ∅ [DS94, Example 9.7.7].

• (NFL) mathematically sufficient but economically questionable
because arbitrages in the weak* closure might be too complex
to be siphoned off by traders in equilibrium.

• (NFLVR) is both mathematically and economically satisfactory
thanks to the surprising theorem of Delbaen and Schachermayer
that (NFLVR) implies (NFL).

(iii) Trivially, C ⊆ C ⊆ C∗ and (NFL) ⇒ (NFLVR) ⇒ (NA).

(iv) Sigma-martingales are needed because the arbitrage conditions do
not imply the existence of an equivalent local martingale measure
unless S is locally bounded [SC02, Example 5.3].

(v) A model can be complete, but not free of arbitrage.

(vi) Definition 2.5.2 depends on P only through its null sets.

(vii) If Ω is a finite set, then all strategies are admissible, and one has E
C = C = C

∗
. Indeed, C = 〈c1, . . . , cn〉cone for some n ∈ N and

c1, . . . , cn ∈ L∞ = L2, and it can be shown by induction on n that
C is closed.

2.5.5 Example.

(i) Some common claims are:

• European call (put) options: the holder has the right to buy
(sell) one unit of the asset S at time T at the preset strike
K; the time-T value of the option is (ST − K)+ for calls and
(K − ST )+ for puts.

• American call (put) options: a European call (put) which may
be exercised at any time before T ; the time-T value of the option
is ess sup(Sτ−K)+ for calls and ess sup(K−Sτ )+ for puts, where
the supremum is over [0, T ]-valued stopping times τ .

(ii) No-arbitrage and completeness properties of some common models: E

• All models mentioned in Exercise 2.1.3 are free of arbitrage,
provided that 1 is contained in the convex hull of {g, b}.

• The Bachelier, Black–Scholes and Cox–Ross–Rubinstein models
are complete, whereas the Heston and Rough Bergomi models
are incomplete.

These statements follow easily from the fundamental theorem of as-
set pricing if one skips the verification that the candidate measure
changes from Girsanov’s theorem are true martingales.

(iii) Option pricing in some common models:

• The Bachelier and Black–Scholes models admit explicit formu- E
las for European call and put prices, which can be derived by
integration over the density of the normal distribution.

• The Heston model admits explicit formulas for Fourier payoffs,
and general payoffs can be treated by Fourier inversion.

• In the Rough Bergomi model option prices can be calculated
using Monte Carlo simulations.

• In the Cox–Ross–Rubinstein model option prices can be calcu- E
lated by backwards induction (dynamic programming) on the
binary tree of possible outcomes.

16



2.6 Polars of replicable and super-replicable claims

2.6.1 Prerequisites. Section 3.7 on the bipolar theorem is needed now.

2.6.2 Lemma. Let Q0 ∈ Me
sep(S), consider C and K as subsets of L∞

with the weak* topology, and write C
∗

for the weak star closure of C.

(i) The polar of C is

C0 =

〈
dQ
dP

;Q ∈Ma
sep(S)

〉
cone

.

(ii) If C = C
∗
, then the polar of K ∩ −K is

(K ∩ −K)0 =

〈
dQ
dP

;Q ∈Ma
sep(S)

〉
vector

.

Proof.

(i) ⊆ Let 0 6= z ∈ C0 ⊆ L1. Then P[z ≥ 0] = 1 because L∞− ⊆ C.
Then Q := z

EP[z]
P ∈Ma

sep.

⊇ C0 is a cone, and { dQ
dP ;Q ∈Ma

sep} ⊆ C0.

(ii) ⊆ Let

f ∈
〈
dQ
dP

;Q ∈Ma(S)

〉0

vector

⊆
〈
dQ
dP

;Q ∈Ma(S)

〉0

cone

= C00 = C
∗

= C.

Then f ≤ g for some g ∈ K. This implies f = g Q0-a.s. because
0 = EQ0 [f ] ≤ EQ0 [g] ≤ 0 by separation. As Q0 ∼ P one obtains
f ∈ K. The same argument with f replaced by −f yields
f ∈ K ∩ −K. As f was general, we have shown that〈

dQ
dP

;Q ∈Ma(S)

〉0

vector

⊆ K ∩ −K.

By the bipolar theorem,

(K ∩ −K)0 ⊆
〈
dQ
dP

;Q ∈Ma(S)

〉
vector

,

where we have used that the right-hand side is σ(L1, L∞)-closed.

⊇ (K ∩ −K)0 is a vector space, and { dQ
dP ;Q ∈ Ma

sep} ⊆ (K ∩
−K)0.

2.7 Preliminary version of the FTAP

Hahn–Banach and the bipolar theorem yield the following preliminary
version of the FTAP.

2.7.1 Theorem (Kreps, Yan). Let S be a financial market.

(i) S satisfies (NFL) ⇔ Me
sep(S) 6= ∅.

(ii) Assume that S satisfies (NFL) and C = C
∗
. Then S is complete ⇔

Me
sep(S) = {Q} for some Q.

Proof.
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(i) ⇐ Let Q ∈ Me
sep(S). Then EQ[f ] ≤ 0 for all f ∈ C because Q

is separating. This extends to all f ∈ C
∗

because the map
f 7→ EQ[f ] = E[ dQ

dP f ] is weak* continuous. This implies C
∗ ∩

L∞+ = {0}.
⇒ By Hahn–Banach on L∞ with the weak* topology, any nonzero

x ∈ L∞+ can be separated from C
∗
: there is zx ∈ L1 such

that E[zxx] > 0 and E[zxf ] ≤ 0] for all f ∈ C. Then zx ≥ 0
because L∞− ⊆ C, and we may normalize to E[zx] = 1. There
are x1, x2, . . . with P

⋃
i[xi > 0] = 1: otherwise, the supremal

= maximal such probability could be enlarged by adding x =
1
⋂

i[xi=0] to the sequence. Set z =
∑
i 2−izxi . Then P[z > 0] =

1, EP[z] = 1, and Q := zP ∈Me
sep(S).

(ii) ⇒ Let S be complete, and let A ∈ F . Then 1A = x + g for some
g ∈ K ∩ −K. Thus, all Q,Q′ ∈Me

sep(S) satisfy

Q′[A] = EQ′ [x+ g] = x = EQ[x+ g] = Q[A].

Thus, Q′ = Q.

⇐ Let Me
sep(S) = {Q}, let f ∈ L∞, and let x = EQ[f ]. Then

EQ[f ] = 0. This implies EQ′ [f ] = 0 for all Q′ ∈ Ma
sep by

approximation

Me
sep 3 (1− ε)Q′ + εQ −−−→

ε→0
Q.

Thus, f ∈ 〈 dQ
′

dP ;Q′ ∈ Ma
sep(S)〉vector)

0 = (K ∩ −K)00 = K ∩
−K.

2.8 Separating and sigma-martingale measures

2.8.1 Prerequisites. Section 3.10 on semimartingale characteristics, Sec-
tion 3.11 on the characteristics of sigma martingales, Section 3.12 on char-
acteristics of stochastic integrals, and Section 3.13 on Girsanov’s theorem
are needed now.

2.8.2 Lemma (Delbaen, Schachermayer). Let S be a financial market.

(i) Me
σ(S) 6= ∅ ⇔ Me

sep(S) 6= ∅.
(ii) Me

σ(S) = {Q} ⇔ Me
sep(S) = {Q}.

(iii) S locally bounded ⇒ Me
sep(S) =Me

σ(S) =Me
loc(S).

Proof. (i) and (ii) follow from (i)’ and (ii)’ below.

(i)’ Claim: Me
σ(S) ⊆ Me

sep(S). To see this, let Q ∈ Me
σ and f ∈ C.

Then f ≤ (φ • S)1 for some admissible φ. By Ansel–Stricker, φ • S
is a Q-local martingale, and by Fatou a Q-supermartingale. Thus,
EQ[f ] ≤ EQ[(φ • S)1] ≤ 0, and Q ∈Me

sep(S).

(ii)’ Claim: Me
sep(S) ⊆ Me

σ(S), where the closure is in total variation
‖ · ‖TV. We sketch the proof of [Kab97, Addendum], restricting
to d = 1. Let Q ∈ Me

sep(S), and let (b, c,K) be the differential
characteristics of S with respect to A and hd as in Lemma 3.10.5.
Based on Girsanov (Lemma 3.13.2.(ii)), the Ansatz is to search for
a measure Q′ ∼ Q such that the differential characteristics under Q′
become

b′ = b+ cβ +

∫
hd(x)(Y (x)− 1)K(dx), c′ = c, K′ = Y K.
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If Y is close to 1, then such a measure exists and is ‖ · ‖TV-close to
Q. In this case, by Lemma 3.11.1, S is a sigma-martingale under Q′
if and only if

b+

∫
(xY (x)− h(x))K(dx) = 0. (∗)

We distinguish three cases:

• If b+
∫

(x− h(x))K(dx) = 0, then Y ≡ 1 satisfies (∗).
• If b +

∫
(x − h(x))K(dx) > 0, then the support of K must be

unbounded below: otherwise, there would be an admissible long
position φ ≥ 0 with positive expected return EQ[(φ•S)1] > 0, a
contradiction to the separation property of Q. Thus, (∗) can be
achieved by increasing Y (x) for strongly negative x to a value
slightly above 1.

• Similarly, if b +
∫

(x − h(x))K(dx) < 0, then the support of K
must be unbounded below, and (∗) can be satisfied by increasing
Y (x) for strongly positive x to a value slightly above 1.

Y can be chosen predictably in (t, ω) using measurable selection
techniques.

(iii) Claim: S locally bounded⇒Me
sep(S) =Me

σ(S) =Me
loc(S). To see

this, note from (i) that it suffices to show thatMe
sep(S) ⊆Me

loc(S).
Let Q ∈ Me

sep. By localization we may assume that S is bounded.
Then all strategies φ = ±1A1(s,t] with A ∈ Fs and s, t ∈ [0, 1] are
admissible. By separation, EQ[(±1A1(s,t] • S)1] ≤ 0, and S is a
Q-martingale.

As an aside, completeness is closely related to martingale representa-
tion:

2.8.3 Lemma. Let S be a financial market, let the filtration satisfy F0 =
{∅,Ω} and F1 = F , and let Q ∈Me

σ(S). Then Me
σ(S) = {Q} if and only

if every Q-sigma-martingale X can be represented as X = X0 +H •S for
some H ∈ L(S).

Proof.

⇐ Let Q′ ∈ Me
σ, let A ∈ F , let Mt = EQ[1A|Ft], and let H ∈ L(S)

such that M = M0 + H • S under Q. As M is bounded, Q′[A] =
EQ′ [M0 + (H • S)1] = M0 = EQ′ [M0 + (H • S)1] = Q[A]. Thus,
Q′ = Q.

⇒ See [SC02, Theorem 1.17].

2.9 No unbounded profit with bounded risk

2.9.1 Definition.

(i) Admissible and 1-admissible wealth processes:

X = {φ • S;φ is admissible},
X1 = {φ • S;φ is 1-admissible}.

(ii) S satisfies

no unbounded profit with
bounded risk (NUPBR)

⇔ {X1;X ∈ X1} is L0-bounded,

predictable uniform tightness (PUT)⇔ X1 is Emery-bounded.
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2.9.2 Remark.

• (NUPBR) can be tested using only elementary strategies. This is
not possible for (NA) and its variants.

• If S is cadlag adapted and X denotes the set of simple wealth pro-
cesses, then (NUPBR) implies that S is a semimartingale [Kar13,
Theorem 1.3].

• (NUPBR) fails if there exists 0 6= ξ ∈ L0
+ which can be super-

replicated at initial wealth x for all x ∈ (0,∞) [KKS16, Lemma A.1].

2.9.3 Lemma. (NFLVR) ⇔ (NA) + (NUPBR)

Proof. We follow [Kab97, Lemma 2.2].

⇒ (NA) follows trivially. If (NUPBR) was violated, there would be α >
0 and Xn ∈ X1 such that P[Xn

1 ≥ n] ≥ α. Set fn = (Xn
1 /n)∧1 ∈ C.

By the L0 version of Komlos there are gn ∈ 〈fn, fn+1, . . . 〉conv such
that gn → g a.s. for some g ≥ 0 with P[g > 0] =: 2β > 0. By Egorov
gn → g uniformly on some set B with P[B] > 1−β. Thus, (NFLVR)
fails because

C 3 gn − g+
n 1Ω\B = gn1B − g−n 1Ω\B

L∞−−−−→
n→∞

g1B

and P[g1B > 0] ≥ β > 0.

⇐ If (NFLVR) failed, there would be fn ∈ C and f ≥ 0 with P[f >
0] > 0 such that ‖fn − f‖∞ ≤ 1

n
. By definition, fn ≤ Xn

1 for some
Xn ∈ X . Obviously, Xn

1 ≥ − 1
n

. If there existed some s ∈ [0, 1) with
P[Xn

s < 1
n

] > 0, then 1{Xn
s <−

1
n
}1(s,1] • Xn would violate (NA).

Thus, Xn ≥ − 1
n

. By the L0 version of Komlos we may assume that
Xn

1 → g a.s. Thus, we have constructed nXn ∈ X1 with P[nXn
1 →

∞] ≥ P[g > 0] ≥ P[f > 0] > 0, a violation of (NUPBR).

2.10 Supermartingale deflators

2.10.1 Definition. A supermartingale deflator for 1 + X1 is a strictly
positive cadlag adapted process with D0 ≤ 1 such that D(1 + X) is a
supermartingale for all X ∈ X1.

2.10.2 Lemma. (NUPBR) ⇔ there exists a supermartingale deflator.

Proof. We skip the easier direction ⇐, which is not needed subsequently,
and sketch the proof in [KK07] under the assumption that S > 0 and
S− > 0. Then S = E (X) for some X with ∆X > −1. For any trading
strategy φ = (φ1, . . . , φd) with wealth process V = 1 + φ • S, define the
proportions of wealth invested in the assets as

π =

(
φ1S1

−

V−
, . . . ,

φ1S1
−

V−

)
.

Then V = E (π •X) because

dV

V−
=

φ

V−
dS =

π

S−
dS = πdX.

The Ansatz is to set D = 1/E (ρ •X) for ρ to be determined. Let (b, c,K)
be the differential characteristics of X with respect to A and hd as in
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Lemma 3.10.5. Then V D is a supermartingale deflator if and only if for
all π,

(π − ρ)>
(
b− cρ+

∫ (
x

1 + ρ>x
− hd(x)

)
K(dx)

)
≤ 0, P⊗ dA-a.s.

(∗)
The left-hand side equals the (formal) directional derivative ∇g(ρ)(π−ρ),
where g(π) is defined such that g(π) = 0 if and only if log V is a sigma-
martingale:

g(π) = π>b− 1

2
π>cπ +

∫ (
log(1 + π>x)− π>hd(x)

)
K(dx).

Up to technicalities, (NUPBR) implies for P ⊗ dA-a.e. (t, ω) that the
function π 7→ g(π) is concave and bounded from above. The (non-unique)
maximizer ρ satisfies (∗). Choosing ρ predictably in (t, ω) involves mea-
surable selection techniques.

2.11 Predictable uniform tightness

2.11.1 Lemma. (NUPBR) ⇔ (PUT).

Proof. We follow [CT15, Proposition 4.12].

⇐ The evaluation map (X1 3 X 7→ X1 ∈ L0) is continuous, where X1

carries the Emery topology; cf. Lemma 1.2.2.

⇒ Lemma 2.10.2 provides a supermartingale deflator D. Then Z :=
{Z = D(1 +X);X ∈ X1} consists of nonnegative supermartingales.
Recall Burkholder’s inequality: for every nonnegative supermartin-
gale Z and every H ∈ E with ‖H‖∞ ≤ 1 we have

∀α ≥ 0 : αP[|H • Z|∗1 ≥ α] ≤ 9E[Z0].

This gives Emery-boundedness of Z. We want to deduce Emery-
boundedness of X1. Note that D is a semimartingale because X1

contains zero. Thus, one obtains using integration by parts that

1 +X = 1 +
1

D−
• Z + Z− •

1

D
+

[
1

D
,Z

]
.

Recall that Emery-boundedness of Z implies uniform boundedness in
probability of Z. Thus, Emery boundedness of the sets { 1

D−
•Z;Z ∈

Z} and {Z− • 1
D

;Z ∈ Z} follows from the good integrator property.
Emery-boundedness of {

[
1
D
, Z
]

;Z ∈ Z} follows similarly using the
estimate[

1

D
,Z

]
=

1

2

([
1

D
+ Z,

1

D
+ Z

]
− [Z,Z]−

[
1

D
,

1

D

])
.

2.12 Weak star closedness of superreplicable claims

This section is the core of the fundamental theorem of asset pricing and
concludes its proof.

2.12.1 Definition.

(i) Unbounded claims which are (super-)replicable:

K0 = {f ∈ L0; f = (φ • S)1 for some admissible φ},

C0 = {f ∈ L0; f ≤ (φ • S)1 for some admissible φ}.
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(ii) Unbounded claims which are (super-)replicable using 1-admissible
strategies:

K1
0 = {f ∈ L0; f = (φ • S)1 for some 1-admissible φ},

C1
0 = {f ∈ L0; f ≤ (φ • S)1 for some 1-admissible φ}.

2.12.2 Lemma. (NFLVR) ⇒ C = C
∗
.

2.12.3 Remark.

• This result hinges on the Emery-closedness of the set of stochastic
integrals.

• It implies the equivalence of (NFLVR) and (NFL) and concludes the
proof of the FTAP (Theorem 2.5.3).

• To see the structure of the proof, draw the sets K, C, K0, C0, K1
0 , C1

0

in the special case where Ω = {g, b} and St(ω) = 1{1}(t)
(
1{g}(ω)−

1{b}(ω)
)
. Moreover, for some fixed f ∈ C1

0 , draw the set K1
0 ∩ L∞≥f

and the maximal elements in this sets.

Proof. We follow [CT15, Section 3]. Let K̂1
0 denote the L0 closure of K1

0 .

• It suffices to show that C0 is Fatou closed by Lemma 3.8.2. Take
−1 ≤ fn ∈ C0 converging a.s. to f . We want to show that f ∈ C0.
Thus, we need to construct h ∈ K0 with h ≥ f .

• Note: We certainly find hn ∈ K0 with hn ≥ fn, but there is no
reason why these hn should converge. Indeed, there are typically
many hn ∈ K0 which dominate fn, corresponding to different ways
of wasting money. The idea is to stop the spending spree and ask
for near-optimal results.

• We claim that K̂1
0 ∩ L0

≥f has a maximal element h. By (NUPBR)
this set is bounded and closed. Thus, it contains its essential supre-
mum if it is non-empty. This is indeed the case, as we verify now.
There are gn = Xn

1 with gn ≥ fn ≥ −1 for some Xn ∈ X . Then
Xn ≥ −1 because P(Xn

s < −1) > 0 for some s ∈ [0, 1) implies
(1{Xn

s <−1}1(s,1] • Xn)1  0 in violation with (NA). Therefore, gn
belongs to K1

0∩L0
≥f . By Komlos, some forward convex combinations

of gn converge a.s. to some limit in K̂1
0 ∩ L0

≥f .

• Let h be a maximal element in K̂1
0 ∩L0

≥f , and let Xn ∈ X1 such that
Xn

1 → h a.s. We claim that Xn converges uniformly in probability
to some X. Otherwise, there would be α > 0 and sequences nk, mk

of natural numbers such that P[|(Xnk −Xmk )+|∗1 > α] ≥ α. Set

Tk = inf{t ∈ [0, 1];Xnk −Xmk > α}, Y k = 1J0,TkK •Xmk + 1LTk,T K •Xnk .

Then P[Tk <∞] ≥ α, Y k ∈ X1, and

Y k1 = X
mk
1 1{Tk=∞} +X

nk
1 1{Tk<∞}︸ ︷︷ ︸

→h

+ (X
mk
Tk
−Xnk

Tk
)1{Tk<∞}︸ ︷︷ ︸

P[·>α]≥α

.

Some forward convex combinations of Y k1 converge to an element of

K̂1
0 strictly greater than h by Komlos, in violation of the maximality

of h.

• (PUT) implies that Xn Emery-converge to X [CT15, Theorem 5.1].

• Then X ∈ X1 by Emery-closedness of the set of stochastic integrals.
Thus, f ≤ h = X1 ∈ K0 and f ∈ C0.

2.12.4 Remark. The proof of [CT15, Theorem 5.1] was read in class.
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3 Auxiliary results

3.1 Martingales in discrete time

3.1.1 Theorem. Let (Ω,F , (Fn)n∈N,P) be a filtered probability space with
a complete filtration, let X : Ω× N → R be an adapted process, let X∗ be
the running supremum of X given by X∗n = supk≤nXk, and let S, T : Ω→
N ∪ {∞} be stopping times.

(i) Doob’s decomposition: if Xn is integrable for each n ∈ N, then
X = M − A for a martingale M and a predictable process A with
A0 = 0.

(ii) Martingale transforms: if X is a martingale (supermartingale) and
H is predictable (predictable non-negative) such that the random
variables (H • X)n, n ∈ N, are integrable, then H • X is a mar-
tingale (supermartingale).

(iii) Doob’s optional sampling: if X is a supermartingale (martingale,
resp.) and S ≤ T , then XS and XT are integrable and satisfy XS ≥
E[XT |FS ] (XS ≥ E[XT |FS ], resp.).

(iv) Doob’s maximal inequality, weak type: if X be a supermartingale
and α > 0, then

P[|X|∗n ≥ α] ≤ c

α
sup
n∈N

E[|Xn|],

where c = 1 if X ≥ 0, X ≤ 0, or X is a martingale, and c = 3
otherwise.

(v) Doob’s maximal inequality, strong type: if X is a non-negative su-
permartingale and p, q ∈ (1,∞) satisfy 1

p
+ 1

q
= 1, then

∀n ∈ N : ‖|X|∗n‖Lp ≤ qE[|Xn|].

(vi) Burkholder’s maximal inequality: let X be a supermartingale, let H
be predictable, and let α > 0. If X is nonnegative, then

αP[|H •X|∗1 ≥ α] ≤ 9E[|X0|],

and if X is a martingale, then

αP[|H •X|∗1 ≥ α] ≤ 18E[|X1|].

Proof.

(i) See [Mey72, Theorem I.16].

(ii) See [Mey72, Theorem II.1].

(iii) See [Mey72, Theorem II.3].

(iv) See [Mey72, Theorem II.5].

(v) See [Mey72, Theorem II.8].

(vi) See the proof of [Mey72, Theorem II.47].
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3.2 Gauges

3.2.1 Definition. Let V be a vector space.

(i) A gauge is a function V·W : V → R+.

(ii) The gauge V·W is subadditive if

∀x, y ∈ V : Vx+ yW ≤ VxW + VyW.

(iii) The gauge V·W is balanced if

∀x ∈ V, ∀|λ| ≤ 1 : VλxW ≤ VxW.

(iv) The gauge V·W is absolute homogeneous if

∀x ∈ V, ∀λ ∈ R : VλxW = |λ|VxW.

(v) The gauge V·W induces the pseudo-metric (x, y) 7→ Vx − yW and
corresponding topology.

(vi) A vector x ∈ V is called V·W-finite if

lim
r→0

VrxW = 0,

and V·W is called finite if this holds for all x ∈ V .

(vii) A vector x ∈ V is called V·W-negligible if VxW = 0.

3.2.2 Remark. The word gauge is used with different meanings in dif-
ferent contexts. Our use of the word is consistent with [Bic02].

3.2.3 Lemma. For any topological vector space V , the following are
equivalent:

(i) The topology of V is induced by a metric.

(ii) The topology of V is induced by a subadditive gauge.

Proof. (i) follows trivially from (ii), and (ii) follows from (i) and the
Birkhoff–Kakutani theorem.

3.2.4 Lemma. Let V·W be a gauge on a vector space V .

(i) If V·W is subadditive, then addition V × V → V is V·W-continuous.

(ii) If V·W is subadditive, balanced, and finite, then scalar multiplication
R× V → V is V·W-continuous.

Thus, V·W induces a vector space topology under the assumptions of (ii).

Proof. Let xn → x, yn → y, λn → λ, and N ∈ N such that supn |λn| ≤ N .
Under the assumptions of (i),

V(xn + yn)− (x+ y)W ≤ Vxn − xW + Vyn − yW→ 0.

Moreover, under the additional assumptions of (ii),

Vλnxn − λxW ≤ VλnN−1N(xn − x)W + V(λn − λ)xW
≤ NVxn − xW + V(λn − λ)xW→ 0,

where the second inequality is obtained as follows: first, the factor λnN
−1

is discarded using the balanced property of the gauge, and then the factor
N is pulled out using an N -fold application of the triangle inequality.
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3.3 The gauge space L0

3.3.1 Setting. Let (Ω,F ,P) be a probability space, and let V be the
vector space of measurable functions f : Ω→ R.

3.3.2 Definition. L0(Ω) = (V, V·W0) with V·W0 as in Lemma 3.3.3 below.

3.3.3 Lemma.

(i) The following gauges on V are subadditive, balanced, and finite:

VfW0 = inf{λ ∈ R;P[|f | > λ] ≤ λ},
VfW� = E[|f | ∧ 1].

(ii) For each α ∈ R, the following gauge on V is absolute homogeneous
and finite:

‖f‖[α] = inf{λ ∈ R;P[|f | > λ] ≤ α}.

(iii) The gauges V·W0 and V·W� and the family of gauges {‖ · ‖[α];α ∈ R}
generate the same vector space topology on V thanks to the following
relations:

VfW� ≤ 2VfW0,

VfW� < 1⇒ VfW2
0 ≤ VfW�

VfW0 = inf{α; ‖f‖[α] ≤ α}.

Proof. See [Bic02, Appendix A.8]

3.3.4 Remark. It is illuminating to spell out the meaning of the following E
concepts in terms of the gauges V·W0, V·W�, and ‖ · ‖[α]:

(i) Continuity of sequences in L0.

(ii) Boundedness of sets in L0.

(iii) Continuity of linear maps from a topological vector space into L0.

(iv) Boundedness of linear maps from a topological vector space into L0.

3.4 Hahn–Banach

3.5 Komlos for L1 spaces

3.5.1 Lemma (Komlos, L1 version). Let (fn)n∈N be a uniformly inte-
grable sequence of random variables. Then there exist forward convex
combinations f̃n ∈ 〈fn, fn+1, . . . 〉conv such that (f̃n)n∈N converges in L1.

Proof. See [BSV12, Lemma 2.1]; the proof was read in class.

3.6 Komlos for L0 spaces

3.6.1 Lemma (Komlos, L0 version). Let (fn)n∈N be a sequence of non-
negative random variables.

(i) There exist forward convex combinations gn ∈ 〈fn, fn+1, . . . 〉conv

such that (gn)n∈N converges a.s. to a random variable g with val-
ues in [0,∞].

(ii) P[g <∞] = 1 if 〈f1, f2, . . . 〉conv is bounded in L0.

(iii) P[g > 0] > 0 if there is α > 0 such that P[fn ≥ α] ≥ α > 0.

25



Proof. We follow [Kab97, Lemma A].

(i) Let
Jn := inf

{
E[e−g]; g ∈ 〈fn, fn+1, . . . 〉conv

}
.

Then Jn increases to some J ≤ 1. Take gn ∈ 〈fn, fn+1, . . . 〉conv with
E[e−g] ≤ Jn + 1

n
. Let ε > 0, and let

A = {(x, y) ∈ R2
+; |x− y| < ε},

B = {(x, y) ∈ R2
+;x ∧ y ≥ 1

ε
},

C = R2
+ \ (Aε ∪Bε).

By convexity there is δ > 0 such that

e−(x+y)/2 ≤ (e−x + e−y)/2− δ1C(x, y).

Therefore,

Jn∧m
::::

≤ E[e−(gn+gm)/2] ≤ (E[e−gn ]
::::::

+E[e−gm ]
::::::

)/2− δP[(gn, gm) ∈ C],

where the highlighted expressions converge to J as n,m → ∞. It
follows that

lim
n,m→∞

P[(gn, gm) ∈ C] = 0.

Then e−gn is Cauchy in L1 by the following estimate:

E[|e−gn − e−gm |] ≤ εP[(gn, gm) ∈ A] + 2e−1/εP[(gn, gm) ∈ B] + P[(gn, gm) ∈ C]

≤ ε+ 2e−1/ε + P[(gn, gm) ∈ C].

Thus, it has an a.s. convergent subsequence.

(ii) Clear by the completeness of L0.

(iii) For any g =
∑
n λnfn ∈ 〈f1, f2, · · · 〉conv one has

E[e−g] ≤
∑
n

λnE[e−fn ]

≤
∑
n

λn
(
P[fn < α] + e−αP[fn ≥ α]

)
≤ (1− α) + αe−α < 1.

3.7 Bipolar theorem

The following theorem is typically applied with W = V ∗, where V is
locally convex, and W carries the weak-* topology. The general form of
the theorem will be useful later on.

3.7.1 Theorem (Bipolar theorem). Let V,W be locally convex topological
vector spaces, and let 〈·, ·〉 : V ×W → R be a continuous bilinear mapping
which satisfies the non-degeneracy condition

{x ∈ V ; 〈x, y〉 = 0 ∀y ∈W} = {0},
{y ∈W ; 〈x, y〉 = 0 ∀x ∈ V } = {0}.

The polars of A ⊆ V and B ⊆W are defined as

A0 = {b ∈W ; 〈a, b〉 ≤ 1 ∀a ∈ A},

B0 = {a ∈ A; 〈a, b〉 ≤ 1 ∀b ∈ B}.
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The weak dual topology wd on V is coarsest topology such that 〈·, ·〉 : V →
W ∗ is continuous, where W ∗ carries the weak-* topology; similarly with
V and W interchanged. Then

A00 = 〈A ∪ {0}〉conv
wd
.

Proof.

• Auxiliary claim: The following map is a linear isomorphism,

(W,wd) 3 w 7→ 〈·, w〉 ∈ (V,wd)∗.

Injectivity follows from the non-degeneracy of the pairing. To prove
surjectivity, let ` ∈ (V,wd)∗. By the continuity of ` some neighbor-
hood basis of (V,wd) is mapped into the unit ball in R, i.e., there
exist n ∈ N, w1, . . . , wn ∈W , and t1, . . . , tn ∈ R such that

∀v ∈ V : |`(v)| ≤ t1|〈v, w1〉|+ · · ·+ tn|〈v, wn〉|.

This implies (verify!) that there exist α1, . . . , αn ∈ R such that

`(v) = α1t1〈v, w1〉+ · · ·+ αntn〈v, wn〉,

which proves surjectivity.

⊇ A00 is weak dual closed, convex, and contains A ∪ {0}.
⊆ Let x ∈ V \ 〈A ∪ {0}〉conv

w
. We claim that x /∈ A00. By Hahn–

Banach, there is ` ∈ V ∗ and s ∈ R such that

∀a ∈ A ∪ {0} : `(a) < s < `(x).

Wlog. s = 1 after rescaling of ` by 2/(`(x) + s). By non-degeneracy
` = 〈·, w〉 for some unique w ∈ W . Then w ∈ A0 by the first and
x /∈ A00 by the second inequality above.

3.8 Fatou convergence

3.8.1 Definition. A subset C of L0 is Fatou closed if for every sequence
(fn)n∈N uniformly bounded from below and such that fn → f almost
surely, we have f ∈ C.

3.8.2 Lemma. Let C0 be a Fatou closed convex cone in L0, and let
C = C ∩ L∞. Then C is σ(L∞, L1) closed.

Proof. Let ©L∞ denote the unit ball in L∞, and let C0 be Fatou closed.

• C ∩©L∞ is L2 closed because L2 convergence implies almost sure
convergence of a subsequence.

• C ∩©L∞ is Mackey closed, where the Mackey topology is defined
as the topology of uniform convergence on σ(L1, L∞)-compact ab-
solutely convex subsets of L1. Indeed, the Mackey topology is finer
than the L2 topology on L∞. To see this, note that©L2 is relatively
weakly compact in L1 by de la Vallée–Poussin. Thus, lettingA be the
σ(L1, L∞) closure of ©L2, the set {g ∈ L∞; supf∈A〈g, f〉L∞,L1 ≤
1}, which is contained in ©L2, is Mackey open.

• C ∩ ©L∞ is σ(L∞, L1) closed. Indeed, all compatible topologies
(i.e., locally convex topologies with the same dual) have the same
convex closed sets [Jar12, Proposition 8.2.5]. The weak* topology
σ(L∞, L1) is the coarsest [Jar12, Theorem 8.1.2] and the Mackey
topology µ(L∞, L1) the finest compatible topology [Jar12, Proposi-
tion 8.5.5].

• C is σ(L∞, L1) closed by Krein–Smulian [DS58, Theorem V.5.7] and
the convexity of C.
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3.9 Sigma-martingales

3.9.1 Definition. A sigma-martingale is a semimartingale of the form
H •M with M ∈Mloc and H ∈ L(M).

3.9.2 Remark. E

(i) Every local martingale is a sigma-martingale, but not the other way
round.

(ii) X is a sigma-martingale if and only if there is a sequence (Dn)n∈N
of predictable sets such that

⋃
nDn = [0, 1] × Ω and 1Dn • X is a

uniformly integrable martingale for each n ∈ N.

3.9.3 Lemma (Ansel, Stricker). Every sigma-martingale which is bounded
from below is a local martingale.

Proof. We follow [DP07]. By localization it is sufficient to show for any
C > 0, M ∈ M, and H ∈ L(M) with H •M ≥ −C that H •M ∈ Mloc.
Let Hn = H1{|H|≤n} for each n ∈ N. After passing to a subsequence one
has

|(Hn −H) •M |∗1
a.s.−−−−→
n→∞

0.

For all m,n ∈ N define

Tn := inf{t ∈ [0, 1] : |H •M |t > n or |(H −Hn) •M |t > 1} a.s.−−−−→
n→∞

∞,

Sm := inf
n≥m

Tn
a.s.−−−−→
m→∞

∞.

Let T be a finite stopping time. For each n ≥ m, (Hn • M)T∧Sm is
bounded from below: indeed, as the jumps of Hn •M are less extreme
than those of H •M ,

(Hn •M)T∧Sm = (Hn •M)(T∧Sm)− + ∆(Hn •M)T∧Sm

≥ (Hn •M)(T∧Sm)− + ∆(H •M)T∧Sm ∧ 0

≥ −(m+ 1)− (m+ C).

This implies via Fatou that

E[(H •M)T∧Sm ] ≤ lim inf
n→∞

E[(Hn •M)T∧Sm ] = 0.

Thus, (H •M)T∧Sm is integrable. As H •M is bounded strictly before Sm,
∆(H •M)T∧Sm is also integrable. This leads to the following integrable
upper bound:

(Hn •M)T∧Sm = (Hn •M)(T∧Sm)− + ∆(Hn •M)T∧Sm

≤ (Hn •M)(T∧Sm)− + ∆(H •M)T∧Sm ∨ 0

≤ (m+ 1) + |∆(H •M)T∧Sm |.

By dominated convergence one obtains

E[(H •M)T∧Sm ] = lim
n→∞

E[(Hn •M)T∧Sm ] = 0.

As this holds for all finite stopping times, (H •M)Sm ∈M.
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3.10 Semimartingale characteristics

3.10.1 Definition.

(i) P denotes the predictable sigma-algebra on [0, 1]× Ω.

(ii) A truncation function on a topological vector space V is a bounded
function h : V → V which is equal to the identity on a neighborhood
of zero.

(iii) For any semimartingale X : [0, 1] × Ω → Rd, truncation function
hd : Rd → Rd, and t ∈ [0, 1], let

X̂t = Xt −
∑
s≤t

(∆Xs − hd(∆Xs)), X̌t =
∑
s≤t

(∆Xs − hd(∆Xs)).

3.10.2 Remark.

• X̂ has bounded jumps, and X̌ has finite variation.

• A typical choice of truncation function is hd(x) = x1{‖x‖≤1}.

• If X is special, one can (at least formally) set hd(x) = x.

3.10.3 Definition (Characteristics, integrated form).

(i) The drift of X is the compensator of the special semimartingale X̂,
i.e., the unique predictable finite-variation process B : [0, 1]×Ω→ Rd
such that X̂ −X0 −B ∈Md

loc.

(ii) The volatility is the continuous quadratic covariation of X, i.e., the
continuous finite-variation process C : [0, 1]× Ω→ Rd×d given by

Ci,jt = [Xi, Xj ]t−
∑
s≤t

∆Xi
s∆X

j
s = 〈Xi,c, Xj,c〉t = [Xi,c, Xj,c]t = [Xi, Xj ]ct .

(iii) The jump measure of X is the compensator of the jumps of X, i.e.,
the unique transition kernel ν from (Ω,F) to ([0, 1]× Rd,B([0, 1]×
Rd)) such that for all W ∈ P ⊗ B(Rd) the process

(W ∗ ν)t(ω) :=

∫
[0,t]×Rd

W (ω, t, x)ν(ω, dt, dx)

is predictable non-decreasing and compensates the process

(W ∗ µX)t(ω) :=
∑
s≤t

W (ω, s,∆Xs(ω))1{∆Xs(ω)6=0}.

We call (B,C, ν) the characteristics of X with respect to hd.

3.10.4 Remark.

• The characteristics give a predictable forecast of the behavior of X.

• Under some Lipschitz conditions the characteristics determine X
uniquely, but not in general.

• Only the drift depends on the choice of truncation function; the
volatility and jump measure do not.

3.10.5 Lemma (Characteristics, differential form). Let X be a semi-
martingale with characteristics (B,C, ν). Then

B = b •A, C = C •A, ν = K dA,

where:
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(i) A is predictable, non-decreasing, and locally integrable;

(ii) b is predictable with values in Rd;

(iii) c is predictable with values in the positive semi-definite (d × d)-
matrices;

(iv) K is a transition kernel from ([0, 1] × Ω,P) into (Rd,B(Rd)) which
satisfies

Kω,t({0}) = 0,

∫
(‖x‖2 ∧ 1)Kω,t(dx) ≤ 1,

∆At(ω) > 0⇒ bt(ω) =

∫
h(x)Kω,t(dx),

∆At(ω)Kω,t(Rd) ≤ 1.

We call (b, c,K) the differentiable characteristics of X with respect to A
and hd.

Proof. See [JS03, Proposition II.2.9].

3.10.6 Remark. Lévy processes are semimartingales with constant and E
deterministic differential characteristics with respect to At = t. For ex-
ample, in d = 1 with truncation function h1:

• The process Xt = t has differential characteristics (1, 0, 0).

• Brownian motion Xt has differential characteristics (0, 1, 0).

• Poisson processesXt have differential characteristics (
∫
h1(x)K(dx), 0,K).

Standard Poisson process have K = δ1.

3.11 Characteristics of sigma martingales

The following lemma provides a predictable characterization of semimartin-
gale properties in terms of the characteristics.

3.11.1 Lemma.

(i) X is a special semimartingale if and only if∫
(‖x‖2 ∧ ‖x‖)K(dx) ∈ L(A).

(ii) X ∈Md
loc if and only if∫

(‖x‖2 ∧ ‖x‖)K(dx) ∈ L(A)

and

b+

∫
(x− h(x))K(dx) = 0 P⊗ dA-a.s.

(iii) X ∈Md
σ if and only if∫

(‖x‖2 ∧ ‖x‖)K(dx) <∞ P⊗ dA-a.s.

and

b+

∫
(x− h(x))K(dx) = 0 P⊗ dA-a.s.

Proof. See [JS03, Proposition II.2.29].
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3.12 Characteristics of stochastic integrals

The following lemma describes how the characteristics transform under
stochastic integration: the drift is multiplied by the integrand, the volatil-
ity is multiplied from the left and right by the integrand, and the jump
measure is pushed forward along the multiplication map corresponding to
the integrand.

3.12.1 Lemma. Let X be a semimartingale with differential character-
istics (b, c,K) and A as in Lemma 3.10.5, let h1 : R→ R be a truncation
function, and let H ∈ L(X). Then H •X has differential characteristics
(b′, c′,K′) with respect to A and h1, where

b′ = Hb+

∫
(h1(Hx)−Hhd(x))K(dx),

c′ =

d∑
i,j=1

Hici,jHj ,

K′(B) =

∫
1B(Hx)K(dx), ∀B ∈ B(R).

Proof. This follows from the more general result [JS03, Proposition IX.5.3].

3.13 Girsanov’s theorem

Girsanov’s theorem describes how the characteristics are affected by changes
of measures: the drift is adjusted by some multiple β of the volatility, and
the jump measure is multiplied by some density function Y .

3.13.1 Definition. Let X be a semimartingale with jump measure µX

as in Lemma 3.10.5.

(i) P⊗ µX denotes the measure on P ⊗ B(Rd) given by

∀W ∈ P ⊗ B(Rd) : (P⊗ µX)(W ) = E[(W ∗ µX)1].

(ii) For any nonnegative F ⊗ B(R+) ⊗ B(Rd)-measurable function W ,
the conditional expectation EP⊗µX [W |P ⊗B(Rd)] is the P⊗µX -a.e.

unique P ⊗ B(Rd)-measurable function W ′ satisfying

∀U ∈ P ⊗ B(Rd) : EP⊗µX [WU ] = EP⊗µX [W ′U ].

3.13.2 Lemma. Let X be a semimartingale with differential character-
istics (b, c,K) and A as in Lemma 3.10.5, let h1 : R→ R be a truncation

function, let Q� P, and let Z be the density process given by Zt = dQ|Ft

dP|Ft
.

(i) There exists a P ⊗ B(Rd)-measurable function Y and a predictable
Rd-valued process β such that X has differential characteristics (b′, c′,K′)
with respect to A and hd under Q, where

b′ = b+ cβ +

∫
hd(x)(Y (x)− 1)K(dx), c′ = c, K′ = Y K.

(ii) The coefficients Y and β are related to the density process Z as
follows: for all i ∈ {1, . . . , d},

Y Z− = EP⊗µX [Z|P ⊗ B(Rd)], [Z,Xi,c] =
( d∑
j=1

ci,jβjZ−
)
•A,
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where Xi,c denotes the continuous local martingale part of the i-th
component of X.

Proof. See [JS03, Theorem III.2.24].
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