Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen

Einleitung/Wiederholung

1. Semimartingal-Charakteristiken: (vgl. Jacod/Shiryaev, II.§2a) Für ein Semimartingal X und eine Abschneidefunktion $h \in C_t^d$ betrachte

$$\check{X}(h) = \sum_{s \le t} \Delta X_s - h(\Delta X_s)$$

$$X(h) = X - \check{X}(h).$$

Dann hat X(h) eine kanonische Zerlegung

$$X(h) = X_0 + M(h) + B(h)$$

in ein lokales Martingal M(h) und einen Prozess endlicher Variaton B(h). Definiere B = B(h),

$$C^{ij} = \langle X^{i,c}, X^{j,c} \rangle$$

und bezeichne mit ν den Kompensator des Sprungmaßes μ^X . Dann nennt man das Tripel (B,C,ν) die Charakteristiken von X. Oft betrachtet man statt C die modifizierte zweite Charakteristik \tilde{C} , die durch

$$\tilde{C}^{ij} = \langle M(h)^i, M(h)^j \rangle$$

definiert ist. Es gilt:

$$\tilde{C}^{ij} = C^{ij} + h^i h^j * \nu - \sum_{s < \cdot} \Delta B^i_s \Delta B^j_s.$$

2. Stochastisches Exponential:(vgl. Jacod/Shiryaev, I.4.61) Für ein C-wertiges Semimartingal X hat die Gleichung

$$Y = 1 + Y_{-} \cdot X$$

eine eindeutige (cadlag, adaptierte) Lösung. Diese Lösung ist ein Semimartingal, das wir mit $\epsilon(X)$ bezechnen. Falls X endliche Variation hat, dann hat auch $\epsilon(X)$ endliche Variation und es gilt:

$$\epsilon(X)_t = e^{(X_t - X_0)} \prod_{s \le t} (1 + \Delta X_s) e^{-\Delta X_s}.$$

3. Eigenschaft der Charakteristiken: (vgl. Jacod/Shiryaev,II,2.47) Definiere

$$A(u)_t = iu \cdot B_t - \frac{1}{2}u \cdot C_t u + (e^{iu \cdot x} - 1 - iu \cdot h(x)) * \nu_t$$

Sei $T(u) = \inf\{t : \Delta A(u)_t = -1\}$ und $G(u) = \epsilon[A(u)]$, dann gilt: T(u) ist eine predictable time, $T(u) = \inf\{t : G(u)_t = 0\}$, und der Prozess $(e^{iu \cdot X}/G(u))1_{[0,T(u))}$ ist ein lokales Martingal auf [0,T(u)).

4. Für einen PII X existiert ein eindeutiges Tripel (B, C, ν) , so dass (unter anderem, vgl. Müller, Theorem 3, Jacod/Shiryaev, II.4.15,II.5.2) gilt:

$$\mathbb{E}\Big[\exp\big(iu\cdot(X_t-X_s)\big)\Big] = \exp\Big(iu\cdot(B_t-B_s) - \frac{1}{2}u\cdot(C_t-C_s)u$$

$$+ \int_s^t \int_{\mathbb{R}^d} \big(e^{iu\cdot x} - 1 - iu\cdot h(x)\big)1_{J^C}(r)\nu(\mathrm{d}r,\mathrm{d}x)\Big)$$

$$\prod_{s < r \le t} \Big(e^{-iu\cdot\Delta B_r}\Big(1 + \int_{\mathbb{R}^d} (e^{iu\cdot x} - 1)\nu(\{r\} \times \mathrm{d}x)\Big)\Big)$$

und

$$\Delta B_t = \nu(\{t\} \times h).$$

Setting und Vorarbeit

Im folgenden sei immer X^n ein d-dimensionales Semimartingal mit $X^n_0 = 0$, mit Charakteristiken (B^n, C^n, ν^n) und modifizierter Charakteristik \tilde{C}^n . Der Grenzprozess X sei immer ein PII mit Charakteristiken (B, C, ν) . Definiere für $t \geq 0, u \in \mathbb{R}^d$

$$g(u)_t = \mathbb{E}(\exp iu \cdot X_t),$$

$$A^n(u)_t = iu \cdot B_t^n - \frac{1}{2}u \cdot C_t^n u + (e^{iu \cdot x} - 1 - iu \cdot h(x)) * \nu_t^n,$$

$$G^n(u)_t = \epsilon [A^n(u)]_t.$$

Wir beginnen mit einem Theorem, das uns die Möglichkeit gibt, die Konvergenzaussage dieses Vortrags auf die bereits behandelten Probleme zurückzuführen.

Theorem 1. Angenommen X hat keine festen Sprungzeiten, dann folgt aus

$$G^n(u)_t \xrightarrow{P} g(u)_t$$
 für alle $u \in \mathbb{R}^d$,

 $\textit{f\"{u}r alle t in einer Teilmenge D von } \mathbb{R}_+, \; \textit{dass } X^n \overset{\mathcal{L}(D)}{\longrightarrow} X$

Bemerkung 2. Die Aussage ist trivial falls die X^n PII-Semimartingale sind, da in diesem Fall $G^n(u)_t = \mathbb{E}^n(\exp iu \cdot X_t^n)$ gilt.

Lemma 3. Die Abbildung $t \mapsto |g(u)_t|$ ist fallend und für $S(u) = \inf\{t : g(u)_t = 0\}$ gilt:

$$g(u)_{S(u)} \neq 0$$
 falls $S(u) < \infty$.

Insbesondere ist für einen Prozess X ohne feste Sprungzeiten $g(u)_t \neq 0$ für alle $t \in \mathbb{R}_+, u \in \mathbb{R}^d$.

Definition 4. Für eine Teilmenge $D \subseteq \mathbb{R}_+$ und die Charakteristiken (B^n, C^n, ν^n) von X^n bzw.

 (B, C, ν) von X definieren wir folgende Eigenschaften:

$$\begin{split} [\beta_5\text{-}D] & B^n_t \stackrel{P}{\longrightarrow} B_t \quad \text{für alle } t \in D \\ [\gamma_5\text{-}D] & \tilde{C}^n_t \stackrel{P}{\longrightarrow} \tilde{C}_t \quad \text{für alle } t \in D \\ [\delta_{5,i}\text{-}D] & g * \nu^n_t \stackrel{P}{\longrightarrow} g * \nu_t \quad \text{für alle } t \in D, g \in C_i(\mathbb{R}^d) \\ [\text{Sup-}\beta_5] & \sup_{s \leq t} |B^n_t - B_t| \stackrel{P}{\longrightarrow} 0 \quad \text{für alle } t \in \mathbb{R}_+ \\ [\text{Sup-}\gamma_5] & \sup_{s \leq t} |\tilde{C}^n_t - \tilde{C}_t| \stackrel{P}{\longrightarrow} 0 \quad \text{für alle } t \in \mathbb{R}_+ \\ [\text{Sup-}\delta_{5,i}] & \sup_{s \leq t} |g * \nu^n_t - g * \nu_t| \stackrel{P}{\longrightarrow} 0 \quad \text{für alle } t \in \mathbb{R}_+, g \in C_i(\mathbb{R}^d) \end{split}$$

Für Prozesse X^n mit unabhängigen Zuwächsen sind die Charakteristiken B^n, C^n, ν^n deterministisch und diese Bedingungen stimmen mit den Bedingungen [β_3 -D], usw... überein.

Konvergenz der endlichdimensionalen Randverteigungen

Theorem 5. Sei X ein Prozess ohne feste Sprungzeiten und $D \subseteq \mathbb{R}_+$

1. Angenommen

$$\sup_{s \le t} \nu^n(\{s\} \times \{|x| > \epsilon\}) \xrightarrow{P} 0 \quad \text{für alle } t \in D, \epsilon > 0$$
 (1)

und $[\beta_5-D]$, $[\gamma_5-D]$, $[\delta_{5,1}-D]$ gelten. Dann folgt $X^n \stackrel{\mathcal{L}(D)}{\longrightarrow} X$ und $[\delta_{5,2}-D]$.

2. Falls D dicht in \mathbb{R} liegt, dann folgt (1) aus $[\delta_{5,1}$ -D] (und somit aus $[\beta_5$ -D], $[\gamma_5$ -D], $[\delta_{5,1}$ -D] bereits $X^n \xrightarrow{\mathcal{L}(D)} X$).

Wir wollen die Aussage aus dem entsprechenden Resultat für PII folgern.

Theorem 6. (vgl. Jacod/Shiryaev, VII.2.52) Sei X^n ein PII-Semimartingal, X ein PII ohne feste Spungzeiten und $D \subseteq \mathbb{R}_+$. Unter der Annahme

$$\lim_{n} \sup_{s \le t} \nu^{n}(\{s\} \times \{|x| > \epsilon\}) = 0 \quad \text{für alle } \epsilon > 0, t \in D$$
 (2)

sind äquivalent:

1.
$$X^n \stackrel{\mathcal{L}(D)}{\longrightarrow} X$$

2.
$$[\beta_3-D], [\gamma_3-D], [\delta_{3,i}-D] \text{ für } i=1 \text{ oder } i=2.$$

Auch von Theorem 5 existiert eine quadratintegrierbare Version. Falls ν^n die Bedingung

$$|x|^2 * \nu_t^n < \infty \qquad \text{für alle } t \ge 0 \tag{3}$$

erfüllt betrachten wir

$$\hat{B}^n = B^n + (x - h(x)) * \nu^n \tag{4}$$

$$\hat{C}_{t}^{n,jk} = C_{t}^{n,jk} + (x^{j}x^{k}) * \nu_{t}^{n} - \sum_{s < t} \Delta \hat{B}_{s}^{n,j} \Delta \hat{B}_{s}^{n,k}.$$
 (5)

Ebenso sei X ein quadratintegrierbares PII-Semimartingal, dann erfüllt auch ν Bedingung (3) und wir können \hat{B} und \hat{C} analog zu (4) bzw. (5) definieren.

Theorem 7. Sei $D \subseteq \mathbb{R}_+$. Angenommen zusätzlich zu den bereits genannten Bedingungen hat X keine festen Sprungzeiten und es gelten

$$\lim_{a \uparrow \infty} \limsup_{n} \mathbb{P}^{n}(|x|^{2} 1_{|x| > a} * \nu_{t}^{n} > \eta) = 0 \quad \text{für alle } \eta > 0, t \in D,$$

$$(6)$$

$$[\beta_5'-D]$$
 $\hat{B}_t^n \xrightarrow{P} \hat{B}_t$ für alle $t \in D$ (7)

$$[\gamma_5'-D]$$
 $\hat{C}_t^n \xrightarrow{P} \hat{C}_t$ für alle $t \in D$, (8)

sowie (3) und $[\delta_{5,1}$ -D]. Dann gilt $X^n \xrightarrow{\mathcal{L}(D)} X$.

Funktionale Grenzwertsätze

Zu zeigen ist noch die Straffheit der Folge (X^n) . Hierfür nutzen wir folgendes Straffheitskriterium (vgl. Schmidt-Bruncke, Satz 2.3, Jacod/Shiryaev,VI.4.18): Eine Folge (X^n) von Semimartingalen ist straff, falls sie folgende Bedingungen erfüllt:

- 1. Die Folge (X_0^n) ist straff;
- 2. für alle $N \in \mathbb{N}, \epsilon > 0$,

$$\lim_{a\uparrow\infty} \limsup_{n} \mathbb{P}^{n}[\nu^{n}([0,N]\times\{|x|>a\})>\epsilon]=0;$$

3. Die Prozesse (B^n) , (\tilde{C}^n) , $(g_n * \nu^n)$ für $g_n(x) = (p|x|-1)^+ \wedge 1$, $p \in \mathbb{N}^*$ sind C-Straff

Theorem 8. Angenommen X hat keine festen Sprungzeiten und D ist eine dichte Teilmenge von \mathbb{R}_+ . Dann folgt aus $[Sup-\beta_5]$, $[\gamma_5-D]$ und $[\delta_{5,1}-D]$, dass $X^n \xrightarrow{\mathcal{L}} X$. In diesem Fall gilt auch $[Sup-\gamma_5]$ und $[Sup-\delta_{5,2}]$

Bemerkung 9. Der Satz verallgemeinert Theorem 8, $(ii) \Rightarrow (i)$ aus dem letzten Vortrag. Die Rückrichtung gilt im allgemeinen nicht, wenn die X^n keine PII sind.

Theorem 10. Sei $D \subseteq \mathbb{R}_+$. Angenommen ν^n, ν erfüllen (3), dann definiere \hat{B}^n, \hat{B} wie in (4) und \hat{C}^n, \hat{C} wie in (5). Angenommen

$$\sup_{s < t} |\hat{B}^n - \hat{B}| \xrightarrow{P} 0$$
 für alle $t \in \mathbb{R}_+$,

 $[\gamma_5'-D], [\delta_{5,1}-D]$ und (6) gelten, dann folgt $X^n \xrightarrow{\mathcal{L}} X$. In diesem Fall gilt außerdem $[Sup-\delta_{5,2}]$ und

$$\sup_{s \le t} |\hat{C}_s^n - \hat{C}_s| \xrightarrow{P} 0 \quad \text{für alle } t \in \mathbb{R}_+.$$