

Stochastische Prozesse

WS 15/16

Vorlesung: Prof. Dr. Thorsten Schmidt

Exercise: Dr. Tolulope Fadina

http://www.stochastik.uni-freiburg.de/lehre/2015WiSe/inhalte/2015WiSeStochProz

Exercise 2

Submission: 27-10-2015

Problem 1 (4 Points). Let $X = (X_t)_{t>0}$ be a Poisson process with parameter $\lambda > 0$.

- (a) Show that $Y_t = X_t \lambda t$ is a martingale with respect to the filtration $(\mathcal{F}_t)_{t\geq 0}$ generated by the family of random variables $\{X_s : s \in [0, t]\}$. (Hint: Y_t is a martingale implies (i) $Y_t \in L^1$, for all $t \geq 0$. (ii) $\mathbb{E}[Y_t | \mathcal{F}_s] = Y_s$, for $0 \leq s \leq t$.
- (b) Show that

$$\lim_{t \to \infty} \frac{X_t}{t} = \lambda \quad a.s.$$

Problem 2 (4 Points). (a) Let $X = (X_t)_{t\geq 0}$ and $Y = (Y_t)_{t\geq 0}$ be two independent Poisson processes with parameters $\lambda > 0$ and $\mu > 0$. Show that $(X_t + Y_t)_{t\geq 0}$ is a Poisson process with parameter $\lambda + \mu$.

(b) Let $X = (X_t)_{t \ge 0}$ and $Y = (Y_t)_{t \ge 0}$ be two independent standard Brownian motions. Show that

$$\frac{X_t + Y_t}{\sqrt{2}}$$

is also a standard Brownian motion.

Problem 3 (4 Points). Let $(\xi_n)_{n\geq 0}$ be a martingale with a τ stopping time with respect to the filtration $(\mathcal{F}_n)_{n\geq 0}$ such that the following conditions holds:

- (i) $\tau < \infty$ a.s.
- (ii) ξ_{τ} is integrable
- (iii) $\mathbb{E}[\xi_n \mathbf{1}_{\tau > n}] \to 0 \text{ as } n \to \infty.$

Then

$$\mathbb{E}[\xi_{\tau}] = \mathbb{E}[\xi_1]$$

Problem 4 (4 Points). A real-valued stochastic process $X = (X_t)_{t \geq 0}$ is measurable if the mapping $[0, \infty) \times \Omega \to \mathbb{R}^d$; $(t, \omega) \mapsto X_t(\omega)$ is $\mathcal{B}([0, \infty]) \otimes \mathcal{F} - \mathcal{B}(\mathbb{R}^d)$ measurable.

- (a) Give an example of a predictable process.
- (b) Give an example of an optional process which is not predictable
- (c) Give an example of an adapted stochastic process X that is not measurable.
- (d) Show that every progressively measurable stochastic process $X = (X_t)_{t\geq 0}$ with respect to the filtration $(\mathcal{F}_t)_{t\geq 0}$ is also measurable.