

Stochastische Prozesse

WS 15/16

Vorlesung: Prof. Dr. Thorsten Schmidt

Exercise: Dr. Tolulope Fadina

http://www.stochastik.uni-freiburg.de/lehre/2015WiSe/inhalte/2015WiSeStochProz

Exercise 13

Submission: 09-02-2016

Problem 1 (4 Points). Let B be a Brownian motion and define the \mathbb{R}^2_+ -valued process X by $X_i(t) = (\sqrt{x_i} + B(t))^2$ for i = 1, 2, and for some $x \in \mathbb{R}^2$ such that X satisfies

$$dX_1 = dt + 2\sqrt{X_1}dW,$$

$$dX_2 = dt + 2\sqrt{X_2}dW,$$

$$X(0) = x$$

Is X an affine process?

Problem 2 (4 Points). Compute the characteristic function of X(t) and verify your result concerning the (supposed) affine property of X.

Problem 3 (4 Points). Let $b, \sigma > 0$ and $\beta \in \mathbb{R}$, and consider the affine process

$$dX = (b + \beta X)dt + \sigma\sqrt{X}dW, \quad X(0) = x \in \mathbb{R}_+,$$

with state space \mathbb{R}_+ .

Compute the corresponding system of Riccati equations.

Problem 4 (4 Points). Consider the Riccati differential equation

$$\partial_t G = aG^2 + bG - c, \quad G(0, u) = u$$

where $a,b,c\in\mathbb{C}$ and $u\in\mathbb{C}$, with $a\neq 0$ and $b^2+4ac\in\mathbb{C}\setminus\mathbb{R}$. Let $\sqrt{\cdot}$ denote the analytic extension of the real square root to $\mathbb{C}\setminus\mathbb{R}_-$, and define $\theta=\sqrt{b^2+4ac}$. Show that the function

$$G(t,u) = \frac{2c(e^{\theta t} - 1) - (\theta(e^{\theta t} + 1) + b(e^{\theta t} - 1))u}{\theta(e^{\theta t} + 1) - b(e^{\theta t} - 1) - 2a(e^{\theta t} - 1)u}$$

is the unique solution of the Riccati differential equation on its maximum interval of existence $[0, t_{+}(u))$.