Übungsaufgaben zur Vorlesung Wahrscheinlichkeitstheorie

WS 2015/16 - Blatt 12

Abgabe: Donnerstag, 28.01.2016 vor Beginn der Vorlesung Bitte vermerken Sie auf jedem Lösungsblatt Ihren Namen.

Aufgabe 44 (4 Punkte)

Für $n \in \mathbb{N}$ und X_0, \ldots, X_n unabhängige standardnormalverteilte Zufallsvariablen heißt die Verteilung von

$$\frac{X_0}{\sqrt{(X_1^2 + \ldots + X_n^2)/n}}$$

t-Verteilung mit n Freiheitsgraden. Zeigen Sie, dass diese für $n \to \infty$ in Verteilung gegen die Standardnormalverteilung konvergiert.

Aufgabe 45 (4 Punkte)

Es seien $(X_n)_{n\in\mathbb{N}}$ und $(Y_n)_{n\in\mathbb{N}}$ Folgen reeller Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) mit $X_n \xrightarrow{\mathcal{D}} X$ für eine Zufallsvariable X. Zeigen Sie:

- 1. Gilt $Y_n \xrightarrow{P} 0$, so folgt $X_n + Y_n \xrightarrow{\mathcal{D}} X$.
- 2. Gilt $Y_n \xrightarrow{P} 1$, so folgt $X_n Y_n \xrightarrow{\mathcal{D}} X$.

Aufgabe 46 (4 Punkte)

Für zwei Verteilungsfunktionen F und G ist der Lévy-Abstand d_L definiert durch

$$d_L(F,G) := \inf\{\varepsilon > 0 : F(x-\varepsilon) - \varepsilon \le G(x) \le F(x+\varepsilon) + \varepsilon \text{ für alle } x \in \mathbb{R}\}.$$

Der Lévy-Abstand definiert eine Metrik auf der Menge der Verteilungsfunktionen \mathcal{F} .

Sei $(F_n)_{n\in\mathbb{N}}$ eine Folge von Verteilungsfunktionen und F eine weitere Verteilungsfunktion. Zeigen Sie $F_n \xrightarrow{\mathcal{D}} F$ genau dann, wenn $\lim_{n\to\infty} d_L(F_n, F) = 0$ gilt.

Aufgabe 47 (4 Punkte)

Für $\mu \in \mathbb{R}$ und $\sigma^2 \geq 0$ sei $N(\mu, \sigma^2)$ die Normalverteilung auf $(\mathbb{R}, \mathcal{B})$ mit Erwartungswert μ und Varianz σ^2 . Ist $M \subset \mathbb{R} \times \mathbb{R}_+$ so definieren wir

$$\mathcal{P}_M := \{ N(\mu, \sigma^2) : (\mu, \sigma^2) \in M \}.$$

Zeigen Sie, dass \mathcal{P}_M genau dann straff ist, wenn M beschränkt ist.