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Abstract

The paper is concerned with the comparison and extension of VaR bounds for
joint portfolios. The aim is to improve VaR bounds based on marginal information
only by including dependence information by higher order marginals, by some
positive or negative dependence information in the tails, or in some central part
of the distribution or by including some copula information. Various methods to
include this information are introduced and the magnitude of reduction of the VaR
bounds is illustrated in a series of examples.

1 Introduction

To establish reliable bounds for the VaR of a joint portfolio is a relevant subject in
connection with the amount of risk capital in the Basel II/III regulations for the
finance sector as well as with the solvency regulations for the insurance sector. A
series of results and different methods have been established in the last 10 years to
find good bounds for the VaR based on available information on the dependence
structure of the portfolio. Some general descriptions of these developments can
be found in Puccetti and Rüschendorf (2012, 2014), Embrechts et al. (2013, 2014)
and in Rüschendorf (2013). The methods described there concern in particular the
standard bounds and the dual bounds in the case of marginal information and the
rearrangement algorithm (RA) to calculate these bounds.

For the case with dependence information improved standard bounds are available.
Effects of this dependence information on the reduction of the VaR bounds are
described in Bignozzi et al. (2015) and in Bernard et al. (2013a). Some higher
order marginal information has been investigated in Embrechts and Puccetti (2010),
Puccetti and Rüschendorf (2012), Embrechts et al. (2013) and in Puccetti et al.
(2015). The reduction of VaR bounds by inclusion of additional second or higher
order moment information was described in Bernard et al. (2013b) and in Bernard
et al. (2015).

In Section 3 of this paper we compare the influence of higher order marginals as
given by various types of Bonferroni inequalities on the improved standard bounds
with the

’
nearly‘ optimal dual bounds based on marginal information only and

describe which of these bounds is giving the best bound in dependence on the
dimension n of the portfolio and on the confidence level. The findings are illustrated
in several examples.

In Section 4 we consider the case where bounds on the distribution function
of the joint portfolio are known on a given subset of the domain. This allows to
include positive or negative dependence information in the tail of the distribution.
We determine based on this information bounds on the distribution function and
thus can apply the improved standard bounds. We describe the effects of this
additional information on the VaR bounds. We also include some cases of additional
copula information on the model. In particular we consider the case of independence
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of subgroups combined with positive or negative copula information within the
subgroups and describe the various effects in several illustrative examples. This
model is a modification of the model assumptions made in Bignozzi et al. (2015).

2 Improved standard and dual bounds with depen-
dence information

For a risk vector X = (X1, . . . , Xn) with Xi ∼ Fi it is a classical problem to find
good (best possible) bounds for the distribution function and tail probability of the
joint portfolio S =

∑n
i=1Xi. Define

M(s) = sup{P (S ≥ s); Xi ∼ Fi, 1 ≤ i ≤ n}
and m(s) = inf{P (S ≥ s); Xi ∼ Fi, 1 ≤ i ≤ n}.

(2.1)

So called ‘standard bounds’ were derived for (2.1) in several ways in the literature,
see Frank et al. (1987), Denuit et al. (1999), Embrechts et al. (2003), Rüschendorf
(2005) and Puccetti and Rüschendorf (2012). As result one obtains the following
Standard bounds:

max
( n∨
i=1

F i(t)− (n− 1), 0
)
≤ m(t) ≤M(t) ≤ min

( n∧
i=1

F i(t), 1
)
, (2.2)

where the infimal and supremal convolutions are defined as

n∧
i=1

F i(t) = inf
{ n∑
i=1

F i(ui); u ∈ U(t)
}
,

n∨
i=1

F i(t) = sup
{ n∑
i=1

F i(ui); u ∈ U(t)
}
,

and where

U(t) =
{
u = (u1, . . . , un) ∈ Rn;

n∑
i=1

ui = t
}
, and F i(t) = P (Xi ≥ t) = 1− Fi(t−).

The standard bounds have been improved under additional positive or negative
dependence restrictions on the distribution functions. Let FX(x) = P (X ≥ x),
x ∈ Rn denote the tail probability and assume that H is a decreasing function on
Rn, G an increasing function on Rn such that

max
({ n∑

i=1

Fi(xi)− (n− 1)
}
, 0
)
≤ G(x),

H(x) ≤ max
( n∑
i=1

F i(xi)− (n− 1), 0
)
.

(2.3)

Then the following improved standard bounds have been given in various forms
in Williamson and Downs (1990), Denuit et al. (1999), Embrechts et al. (2003),
Rüschendorf (2005) and Embrechts and Puccetti (2006).

Improved standard bounds:

a) If H is decreasing, satisfies (2.3) and if FX(x) ≥ H(x), ∀x, then

P
( n∑
i=1

Xi ≥ t
)
≥

n∨
i=1

H(t). (2.4)
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b) If G is increasing, satisfies (2.3) and if FX(x) ≥ G(x), ∀x, then

P
( n∑
i=1

Xi > t
)
≤ 1−

n∨
i=1

G(t). (2.5)

In the case that H resp. G is the lower Fréchet bound, i. e.

H(x) = max
( n∑
i=1

FXi
(xi)− (n−1), 0

)
, resp. G(x) = max

( n∑
i=1

Fi(xi)− (n−1), 0
)
.

(2.4) and (2.5) are identical to the standard bounds. In the particular case where X
is positive orthant dependent (POD) (2.4) and (2.5) lead to the bounds

∨( n∏
j=1

F i

)
(t) ≤ P

( n∑
i=1

Xi ≥ t
)
≤ P

( n∑
i=1

Xi > t
)

≤ 1−
∨( n∏

j=1

Fi

)
(t).

(2.6)

Similar inequalities also hold for monotone increasing aggregation functions Ψ(X)
replacing the sum S =

∑n
i=1Xi, where the inf(sub)-convolutions are replaced by

the Ψ-convolutions (see Puccetti and Rüschendorf (2012)).
To determine sharp upper and lower bounds of P (

∑n
i=1Xi ≥ t) there are exact

dual representations which however are difficult to evaluate in general. Embrechts
and Puccetti (2006) restricted the class of admissible dual functions to admissible
piecewise linear dual functions and as a result got the following

dual bounds:

M(s) ≤ D(s) = inf
u∈U(s)

min

{∑n
i=1

∫ s−∑j 6=i uj

ui
F i(t) dt

s−
∑n
i=1 ui

, 1

}
, (2.7)

where U(s) = {u ∈ Rn;
∑n
i=1 ui < s}. A similar lower bound d(s) is also given. In

the homogeneous case where Fi = F , 1 ≤ i ≤ n, the dual bound simplifies to

D(s) = inf
t< s

n

n
∫ s−(n−1)t
t

F (u) du

s− nt
. (2.8)

It was shown in Puccetti and Rüschendorf (2013) that in the homogeneous case
D(s) is a sharp bound if F has a decreasing density on t ≥ t0 for some t0 ∈ R. This
implies for α ≥ α0, that

VaRα(S) = D−1(1− α). (2.9)

3 Improved Hoeffding–Fréchet bounds with higher
order marginals

If higher order marginal distributions of the risk vector X are known then it is
possible to improve the Hoeffding–Fréchet bounds and as consequence of (2.4) and
(2.7) one gets improved standard bounds for the VaR. In this section we consider
the case where two dimensional marginal distributions are known. Alternative dual
bounds with higher order marginals have been discussed in Embrechts and Puccetti
(2006) and in Embrechts et al. (2013). As a result it was found in these papers that
the additional information of higher dimensional marginals may lead to considerably
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improved upper VaR bounds, when the joint marginals are not ‘too close’ to the
upper Hoeffding–Fréchet bounds.

One obtains improved Hoeffding–Fréchet bounds for the distribution function
(resp. for the copula) by means of Bonferroni-type bounds (see Rüschendorf (1991,
Prop. 6)).

Proposition 3.1 (Bonferroni-type bounds). Let C be an n-dimensional copula with
bivariate marginals Ci,j for i 6= j. Then

C ≥WB ≥WA ≥W, (3.1)

where W (u) = (
∑n
i=1 ui − (n− 1))+ is the Hoeffding–Fréchet lower bound,

WA(u) =
( n∑
i=1

ui − (n− 1) +
2

n

∑
i<j

(1− ui − uj + Ci,j(ui, uj))
)
+

(3.2)

and WB(u) =
(∑

ui − (u− 1) + sup
τ

∑
(i,j)∈τ

(1− ui − uj + Ci,j(ui, uj))
)
+
, (3.3)

the sup being taken over all spanning trees of the complete graph induced by {1, . . . , n}.

The bound WB is a consequence of the Bonferroni inequality from Hunter (1976)
(see Rüschendorf (1991, Prop. 6)). It improves the bound WA arising from a
Bonferroni bound of Hunter (1976) and Worsley (1982). As consequence of (2.4)
and (2.5) these bounds imply improved bounds for the tail-risk and the VaR of the
joint portfolio

∑n
i=1Xi, where (Xi, Xj) have copulas Ci,j . Let

VaRW
α = W (F1, . . . , Fn)−1(α), VaRWA

α = WA(F1, . . . , Fn)−1(α)

and VaRWB
α = WB(F1, . . . , Fn)−1(α)

(3.4)

denote the upper α-quantiles of W , WA, WB with marginals F1, . . . , Fn. Then we
obtain as consequence of (3.1)

VaRα(S) ≤ VaRWB
α ≤ VaRWA

α ≤ VaRW
α . (3.5)

The upper bound VaRWA
α has been investigated in Liu and Chan (2011). In

contrast to their statement this bound is not the ‘best possible upper bound’ for
VaRα(S). As their numerical results indicate the bound VaRWA

α improves on the dual
bound, which is based solely on marginal information, only for high confidence levels
α and for highly positive correlated two-dimensional marginals. Correspondingly it
was seen in Embrechts et al. (2013) that strong improvements of lower bounds are
obtained, when the two-dimensional marginals are independent.

In the following examples we compare the Bonferroni bounds VaRWA
α and VaRWB

α

with each other and with the standard bounds VaRW
α as well as with the dual bound

VaRD
α for various dependence levels on the bivariate marginals.

By (2.5) we have

P
( n∑
i=1

Xi ≤ t
)
≥ sup
u∈U(t)

CL(F1(u1), . . . , Fn(un)), (3.6)

where CL is eitherW or is one of the (improved) boundsWA, WB . For u =
(
t
n , . . . ,

t
n

)
we get the lower bound

P
( n∑
i=1

Xi ≤ t
)
≥ CL

(
F1

( t
n

)
, . . . , Fn

( t
n

))
. (3.7)
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In general the improvements of the Fréchet bounds as in (3.1) can be considerable.
The improved standard bounds in (3.6) are not easy to determine in general in
explicit form. In several cases however conditions are easy to state which allow to
determine them explicitly. In general we obtain the strongest improvement of the
upper bound VaRW

α if the two-dimensional copulas are comonotonic.
We next state for some cases explicit solutions to (3.6). If CL = W and F1, . . . , Fn

have decreasing densities and u∗ ∈ U(t) satisfies F1(u∗1) = · · · = Fn(u∗n) then u∗ =
(u∗1, . . . , u

∗
n) is uniquely determined and u∗ is a solution to (3.6). If F1 = · · · = Fn

has a decreasing density, then
(
t
n , . . . ,

t
n

)
is a solution to (3.6) and thus the bound

in (3.7) coincides with that in (3.6).
More generally let

A = {(F1(u1), . . . , Fu(un)); u = (ui) ∈ U(t)}

and assume that u∗ = (u∗i ) is a largest element of A w.r.t. the increasing Schur
convex order �S , then

sup
u∈U(t)

W (F1(u1), . . . , Fn(un)) = W (F1(u∗1), . . . , Fn(u∗n)). (3.8)

Similarly, assuming that WA resp WB are increasing w.r.t. the increasing Schur
convex order �S we obtain

sup
u∈U(t)

WA(F1(u1), . . . , Fn(un)) = WA(F1(u∗1), . . . , Fu(u∗n)) (3.9)

resp. sup
u∈U(t)

WB(F1(u1), . . . , Fn(un)) = WB(F1(u∗1), . . . , Fu(u∗n)). (3.10)

In the following we use the vector u∗ with identical components (F1(u∗1), . . . ,
Fn(u∗n)) as above as a proxy for comparison of the upper bounds in (3.8)–(3.10). In
particular in the case F1 = · · · = Fn = F we use the vector

(
F
(
t
n

)
, . . . , F

(
t
n

))
. In

contrast to statements in Liu and Chan (2011) this choice will not give the exact
bounds in (3.8) and (3.9) (and also in (3.10)) in general.

In the following examples we consider the homogeneous case where Fi = F and
where Ci,j = C2 for all i < j. We concentrate on the approximate bounds based on
u∗.

Comparison of VaRWA, standard bounds, and dual bound
In the first example we compare the standard bound, the VaR bound induced by WA

and the dual bound D, which gives the optimal bound with marginal information
only in this example.

Let n = 5 and let Xi be standard normal resp. log-normal distributed, 1 ≤ i ≤ 5.
Let C2 be a Gauß-copula with correlations % = 0, 0.5, 1. Figure 3.1 compares the
VaRWA

α,% upper bounds with the dual bound VaRD
α in dependence on α and % for

both distributions. Note that using the proxies the bounds VaRWA
α,% and VaRWB

α,%

coincide in this case.
Figure 3.1 a) shows that the VaRWA

α,% bound improves with increasing correlation.
In particular the case % = 1 (comonotonicity) for the two dimensional marginals gives
better upper bounds than the case % = 0 (independence). This kind of dependence
on % can also be seen directly from the definition of WA in (3.2). Further one finds
as expected, that for any % the VaRWA

α,% bound using information on two-dimensional
marginals is an improvement on the standard bound based on marginal information
only.

The dual bound VaRD
α is a strong improvement over the standard bound, both

being based on marginal information only. It is known that the dual bound is optimal
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a) b)

Figure 3.1 Comparison VaRWA
α,% , standard bound and dual bound, n = 5, % =

0, 0.5, 1.

in this example. This example shows that the technique of standard bounds does
not work well in higher dimensions.

From Figure 3.1 and Table 3.1 one sees that the dual bound VaRD
α is even an

improvement over the bounds VaRWA
α,% when % < 0.9 and α ≥ 0.9, i.e. the information

on two-dimensional marginal information does not lead to an improved upper bound
in these cases, when using the method of improved standard bounds.

α VaRS
α VaRD

α VaRWA
α,0 VaRWA

α,0.5 VaRWA
α,0.9 VaRWA

α,1

0.9 10.268 8.773 10.234 9.943 8.764 6.407

0.95 11.631 10.311 11.616 11.415 10.425 8.224

0.99 14.390 13.322 14.388 14.297 13.589 11.631

Table 3.1 Comparison of VaRS , VaRD and VaRWA

In Figure 3.1 b) we see that in the case of log-normal distributions with heavy
tails we obtain a similar picture of the relation between these VaR bounds.

While in this example the bounds VaRWA and VaRWB coincide when using the
proxies, in the following example we show that in inhomogeneous cases the difference
can be quite big so that VaRWB is a strong improvement over VaRWA .

Comparison of VaRWA and VaRWB

We consider the case n = 20 where the marginals Xi are log-normal distributed. We
assume that Ci,j(ui, uj) is a t-copula with three degrees of freedom and correlation
%. The risks Xi are divided into two groups of equal size 10. Within the groups the
rv’s are pairwise comonotone, i. e. % = %1 = 1 and between the groups the rv’s are
pairwise independent, i. e. % = %2 = 0.

In this case the sup in (3.3) is attained by the tree which uses only once the
correlation %2 = 0. On the other hand VaRWA

α can be seen as an average over all
starwise trees which also contains trees which use several times the low correlation
connections with %2 = 0. This construction makes the difference between both
bounds in a particular way big. We find in Figure 3.2 a) that in this case VaRWB

α
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a) %1 = 1, %2 = 0 b) %1 = 0.9, %2 = 0.1

Figure 3.2 Comparison of VaRWA
α , VaRWB

α , VaRD
α , inhomogeneous case Ci,j

t-copula

is strongly improved compared to the VaR bound VaRWA
α . For example we obtain

VaRWB
0.9 = 99.5875 which is about 50 % better than VaRWA

0.9 = 202.6817. The
difference between the bounds is increasing in α. For α = 0.99 we have for example
VaRWB

0.99 = 257.1075 an improvement of 59 % over VaRWA
0.99 = 437.2221. VaRWB

α

improves over the dual bound VaRD
α whereas VaRWA

α is worse than the dual bound.
In Figure 3.2 b) we see that under slightly weaker differences for the correlations

with %1 = 0.9 and %2 = 0.1 the dual bound VaRD
α is better than the Bonferroni

bounds VaRWA
α and VaRWB

α indicating again a weakness of the method of improved
standard bounds. While the Fréchet bounds for the df’s improve considerably
by inclusion of two dimensional marginals, the corresponding VaR bounds for the
aggregated sums only improve in certain cases which exhibit strong enough positive
dependence.

In the following example we compare the bounds for a set of heavy tailed marginal
distributions and a different set of bivariate copulas.

Comparison of VaR bounds with bivariate Clayton copula
We assume that n = 20 and Xi are Pareto(2)-distributed, i. e. FXi

(x) = 1 − x−2,
x ≥ 1. We assume that Ci,j(ui, uj) is a Clayton copula with parameter Θ. Note
that for Θ→∞ the Clayton copula approaches comonotonicity while for Θ→ 0 it
approaches independence. As in the third example we consider the case that the
risks are divided into two groups. Within the groups the risks are approximatively
comonotone (strongly positive dependent), i. e. the Clayton parameter Θ = Θ1 is
big. Between the groups the risks are approximatively independent, i. e. the Clayton
parameter Θ = Θ2 is small. This construction allows us to investigate the behaviour
of the various VaR bounds in dependence of the dependence parameter Θ of the
copulas.

In Figure 3.3 and Table 3.2 we consider the choice Θ1 = 10 000, Θ2 = 0.1 in a)
and Θ = 1 000, Θ2 = 1 in b). As in the case of log-normal distributions we find that
the Bonferroni bound VaRWB

α is significantly better than VaRWA
α and in particular

improves the standard bound VaRS
α.

In case Θ1 = 10 000 and Θ2 = 0.1 the dual bound VaRD
α improves on the

Bonferroni bound VaRWB
α for α ≥ 0.9975 = α0. Experience of further examples

shows that this turning point moves to smaller values of α, the smaller the dependence
parameter Θ1 gets. For example, for Θ1 = 1 000 and Θ2 = 1 the turning point is
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a) Θ1 = 10 000, Θ2 = 0.1 b) Θ1 = 1 000, Θ2 = 1

Figure 3.3 Comparison of VaR bounds, n = 20, Pareto(2)-marginals, bivariate
Clayton copula

Θ1 = 10 000, Θ2 = 0.1 Θ1 = 1 000, Θ2 = 1

α VaRS
α VaRD

α VaRWA
α VaRWB

α VaRWA
α VaRWB

α

0.9 282.842 123.288 209.452 88.717 214.864 93.168

0.99 894.427 389.871 684.720 301.371 813.773 676.727

0.999 2 828.427 1 232.883 2 574.672 2 141.456 2 797.193 2 764.304

Table 3.2 Comparison of VaR bounds, n = 20, Pareto(2)-marginals, Clayton
copulas with parameter Θ1 and Θ2 for α ≥ 0.9

α0 = 0.975. For α > α0 the dual bounds are better than the Bonferroni bounds if
the model is in enough distance to the comonotonic case.

As general conclusion of the examples in this section we obtain that the Bonferroni
bound VaRB

α and the dual bound VaRD
α improve upon the standard bound VaRS

α.

VaRWB
α also improves generally on VaRWA

α . The Bonferroni Bound VaRWB improves
for high degree of positive dependence on the dual bound VaRD but for weaker
forms of positive dependence the dual bound may be preferable. It should be noted
however that the dual bound is typically only calculable for small dimensions for
inhomogeneous cases. In these cases however the rearrangement algorithm can be
applied to yield sharp marginal bounds. In our applications we used proxies for the
calculation of the Bonferroni bounds. These were shown above to be sharp under
some conditions.

4 Improved Hoeffding–Fréchet bounds under de-
pendence restrictions

For a random vector X = (X1, . . . , Xn) with marginals F1, . . . , Fn we assume that
some additional dependence information is known which are described in the following
way. We assume that G : Rn → R1 is an increasing function such that

F (x) ≤ G(x) ≤ F (x), ∀x ∈ Rn, (4.1)

where F (x) =
(∑n

i=1 Fi(x)− (n− 1)
)
+

and F (x) = min1≤i≤n Fi(xi) are the lower
and upper Fréchet bounds. We assume that for some subset S ⊂ Rn it is known
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that F = FX ≤ G or that F ≥ G or that F = G on S. Under this dependence
assumption one can determine improved Hoeffding–Fréchet bounds on F . These
improved bounds can be used to derive by the method of improved standard bounds
in (2.4) and (2.5) improved VaR bounds for the aggregated portfolio.

In the case n = 2 improved Hoeffding–Fréchet bounds have been derived in
Rachev and Rüschendorf (1994). These bounds were rederived in the case of uniform
marginals, (i. e. for copulas) in Tankov (2011) for the case of equality constraints,
where also a sharpness result for increasing sets S is given. Also an application to
model free pricing bounds for multi-asset options is given there. For the case |S| = 1
and n = 2 sharpness of this bound is shown in Nelsen et al. (2004). Extensions of
the sharpness result are in Bernard et al. (2012). Bernard et al. (2013a) discuss
as application the case where S is the central part of the distribution. As to be
expected in this case one only obtains improvements of the VaR bounds for small
values of α (see Figure 4.1).

Figure 4.1 Comparison of VaRBS,Q

α and VaRS
α, Fi = Pareto(2), i = 1, 2.

To any function G as above we define

F ∗(x) = min
(

min
1≤i≤n

Fi(x), inf
y∈S

{
G(y) +

n∑
i=1

(Fi(xi)− Fi(yi))+
})

(4.2)

and

F∗(x) = max
( n∑
i=1

Fi(xi)− (n− 1), sup
y<∈S

{
G(y)−

n∑
i=1

(Fi(yi)− Fi(xi))+
})
. (4.3)

The following results extends the improved Hoeffding–Fréchet bounds from the
two-dimensional case to general n ≥ 2.

Theorem 4.1 (Improved Hoeffding–Fréchet bounds with dependence restrictions).
Let S ⊂ Rn and let G be an increasing real function on Rn satisfying (4.1). Further
let F ∈ F(F1, . . . , Fn) be a distribution function with marginals Fi, then

(i) If F (y) ≤ G(y) for all y ∈ S, then F (x) ≤ F ∗(x), for all x ∈ Rn.

(ii) If F (y) ≥ G(y) for all y ∈ S, then F (x) ≥ F∗(x), for all x ∈ Rn.
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(iii) If F (y) = G(y) for all y ∈ S, then F∗(x) ≤ F (x) ≤ F ∗(x) for all x ∈ Rn.

Proof. (i) Let X = (X1, . . . , Xn) be a random vector with df F and w. l. g. let
y ∈ S satisfy yi ≤ xi for 1 ≤ i ≤ n. Then using the assumption F (y) ≤ G(y)
for y ∈ S we obtain

F (x) = P (X1 ≤ x1, . . . , Xn ≤ xn)

= P (X1 ≤ y1, X2 ≤ x2, . . . , Xn ≤ xn)

+ P (y1 < X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

= P (X1 ≤ y1, X2 ≤ y2, X3 ≤ x3, . . . , Xn ≤ xn)

+ P (y1 < X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

+ P (X1 ≤ y1, y2 < X2 ≤ x2, X3 ≤ x3, . . . , Xn ≤ xn)

...

= P (X1 ≤ y1, . . . , Xn ≤ yn) + P (y1 < X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

+ · · ·+ P (X1 ≤ y1, . . . , Xn−1 ≤ yn−1, yn < Xn ≤ xn)

≤ G(y) +

n∑
i=1

(Fi(xi)− Fi(yi)).

This implies by the classical Hoeffding–Fréchet bounds that F ≤ F ∗.
(ii) F (y) ≥ G(y) is equivalent to F (y) ≤ G(y) where F (y) = 1−F (y). This implies

as in (i)

F (x) ≤ min
(

min
i=1,...,n

Fi(xi), inf
y∈S

{
G(y) +

n∑
i=1

(Fi(xi)− Fi(yi))+
})

= min
(

min
i=1,...,n

(1− Fi(xi)), inf
y∈S

{
1−G(y) +

n∑
i=1

(Fi(yi)− Fi(xi))+
})

= −max
(

max
i=1,...,n

(Fi(xi)− 1), sup
y∈S

{
G(y)− 1−

n∑
i=1

(Fi(yi)− Fi(xi))+
})
,

and, therefore, obtain

F (x) ≥ max
( n∑
i=1

Fi(xi)− (n− 1), sup
y∈S

{
G(y)−

n∑
i=1

(Fi(yi)− Fi(xi))+
})

= F∗(x).

(iii) is a consequence of (i) and (ii).

Remark 4.2. 1) If X is positive lower orthant dependent (PLOD), i.e. it holds
F (x) ≥

∏n
i=1 Fi(xi) =: G(x) for all x ∈ S = Rn, then

sup
y∈Rn

{ n∏
i=1

Fi(yi)−
n∑
i=1

(Fi(yi)− Fi(xi))+
}

=

n∏
i=1

Fi(xi) = G(x) (4.4)

and as consequence F∗(x) =
∏n
i=1 Fi(xi) = G(x) coincides with G and is a sharp

lower bound. Similarly if G ∈ F(F1, . . . , Fn) and S = Rn, then the improved
Hoeffding–Fréchet bounds coincide with G and are sharp, i. e. F ∗ = G under
condition (i) and F∗ = G under condition (ii).

2) In the particular case where Fi ∼ U [0, 1], 1 ≤ i ≤ n, Theorem 4.1 implies
improved bounds for the copulas.
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Corollary 4.3 (Improved copula bounds). Let S ⊂ [0, 1]n and let Q be an increasing
function on [0, 1]n such that

( n∑
i=1

ui − (n− 1)
)
+
≤ Q(u) ≤ min{ui, 1 ≤ i ≤ n}. (4.5)

Define

AS,Q(u) := min
(

min
i=1,...,n

ui,min
a∈S

{
Q(a) +

n∑
i=1

(ui − ai)+
})
, (4.6)

BS,Q(u) := max
( n∑
i=1

ui − (n− 1),max
a∈S

{
Q(a)−

n∑
i=1

(ai − ui)+
})
, (4.7)

then for any copula C with C(a) = Q(a) for a ∈ S holds

BS,Q(u) ≤ C(u) ≤ AS,Q(u), ∀u ∈ [0, 1]n (4.8)

and equality holds in (4.8) for u ∈ S.

As is clear from Remark 4.2 the improved Hoeffding–Fréchet bounds may be
considerable improvements of the classical Hoeffding–Fréchet bounds and thus may
lead to strongly improved VaR bounds for the aggregated risk by the method of
improved standard bounds. The degree of improvement depends on the dependence
information described by S and G.

Known central domain
The first example is motivated by Bernard et al. (2013a) and Bernard and Vanduffel
(2015). For a portfolio it is assumed that the distribution is known by statistical
analysis in the central domain of the distribution while generally only marginals are
known. How much does the knowledge of the central part contribute to reduce VaR
bounds?

As model example to investigate this effect we consider the case n = 2 with
FX = FY = F a Pareto(2)-distribution. Let the central part S of the copula be given
as S = [0, 0.9]2 and assume that Q is given as product copula on S, i. e. Q(a, b) = ab,
(a, b) ∈ S, i. e. on the central part of the distribution the risks are independent.

In this case the bound BS,Q is a sharp bound for the joint distribution function
F(X,Y ) (see Bernard et al. (2012, 2013a)).

As consequence we obtain from the method of improved standard bounds in
Section 3

P (X + Y ≤ s) ≥ sup
(u,v)∈U(s)

BS,Q(F (u), F (v))

= BS,Q
(
F
(s

2

)
, F
(s

2

))
,

(4.9)

where U(s) = {(u, v) ∈ R2 : u+ v = s}. By inversion this implies improved bounds

for the VaR of the aggregated risk X + Y , which we call VaRBS,Q

α .
Figure 4.1 shows that one gets a strict improvement of the standard bound VaRS

α

only for small levels α ≤ 0.82. This is no surprise since the central domain S does
not bear much information on large quantiles of the sum, so that BS,Q is close to
the Hoeffding–Fréchet bound in the case of large quantiles α ≥ 0.9.

Based on Theorem 4.1 and Corollary 4.3 a similar effect can be found also for high
dimensional portfolios, i. e. the knowledge of the central part of the distribution only
helps to improve VaR bounds for moderate quantiles α but not for large quantiles.
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Positive dependence in the tails
In this example we consider as in the fourth example in Section 3 the case n = 2,
F1 = F2 = Pareto(2) where S = [0.9, 1]2. We assume that in the extreme tail domain
the copula Q is comonotonic, i. e. for a copula vector (U1, U2) ∼ Q holds

P (U1 ≥ u1, U2 ≥ u2) = min(1− u1, 1− u2), ui ≥ 0.9.

This models a case where in extreme situations a strong form of positive dependence
arises. As consequence of this strong positive dependence in the tails we obtain from
Corollary 4.3 and Theorem 4.1 a remarkable reduction of the improved VaR bounds

VaRBS,Q

α for moderate and in particular for high quantile levels α (see Figure 4.2).

Figure 4.2 Comparison of VaRBS,Q

α and the standard bound VaRS
α for n = 2 with

Pareto(2) marginals.

Based on Corollary 4.3 a similar effect also holds in the case that n ≥ 2. The
assumption of comonotonicity in the tails is a strong assumption. It is expected
that one obtains somewhat reduced effects of a similar form, when weakening the
positive dependence assumption in the tails by a weaker assumption of the form
Q(u) = 1 − Q(u) ≥ G(u) for u ∈ S, where S is a tail area and G is a decreasing
function ensuring positive dependence in the tail. A more detailed investigation of
this situation is planned for future research.

Independent subgroups with positive internal dependence
In this example we modify the model assumption investigated in Bignozzi et al.
(2015). We consider the case that the risks are split into k independent subgroups
Ij . Bignozzi et al. (2015) allow any kind of dependence within these subgroups. In
comparison we assume that the risks within the subgroups are strongly positive
dependent (comonotonic) in the tails, i. e., similar as in the fourth example in
Section 3 on [0.9, 1]ni , where ni = |Ii|.

As concrete example we consider the case where n = 20, with k = 1, 10, 20
subgroups, where the subgroup sizes are equal to 20

k . We further assume that
Fi = Pareto(2) = F , 1 ≤ i ≤ n. As consequence of Theorem 4.1 and Corollary 4.3
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Figure 4.3 Comparison of VaR
B

S,Q
k

α for k = 1, 10, 20 and standard bound VaRS
α,

n = 20, Fi = Pareto(2).

we obtain

P
( n∑
i=1

Xi ≤ s
)
≥ BS,Qk

(
F
( s
n

)
, . . . , F

( s
n

))
= max

(
nF
( s
n

)
− (n− 1),max

a∈S

{
Q(a)−

n∑
i=1

(
ai − F

( s
n

))
+

})
,

where S = [0.9, 1]n and Q(a) :=
∏k
j=1 mini∈Ij ai. The corresponding VaR bounds

VaR
BS,Q

k
α are obtained by inversion and are given in Figure 4.3.

The results obtained can be expected. The worst bound is the standard bound.
The best bound is obtained for the case k = 1 of general comonotonicity in the
tails. The case of 10 independent subgroups with positive tail dependence leads to a
considerable reduction. As in the previous example it is of interest to describe this
kind of positive dependence effects under weaker assumptions on the used notion of
positive dependence. This will be subject of a further study.
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P. Embrechts, G. Puccetti, L. Rüschendorf, R. Wang, and A. Beleraj. An academic
response to Basel 3.5. Risks, 2(1):25–48, 2014.

M. J. Frank, R. B. Nelsen, and B. Schweizer. Best-possible bounds for the distribution
of a sum – a problem of Kolmogorov. Probab. Theory Related Fields, 74(2):199–211,
1987.

D. Hunter. An upper bound for the probability of a union. Journal of Applied
Probability, 13:597–603, 1976.

E. G. Kounias. Bounds for the probability of a union, with applications. The Annals
of Mathematical Statistics, 39:2154–2158, 1968.

H. Liu and C.-H. Chan. Best possible upper bound on VaR for dependent portfolio
risk. ICIC Express Letters, 5(5):1795–1800, 2011.

R. B. Nelsen, J. J. Q. Molina, J. A. R. Lallena, and M. Úbeda-Flores. Best-possible
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